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Objective: Aging acts as a dominating risk factor for human cancers. Herein, we

systematically dissected the features of transcriptional aging-relevant genes in gastric

cancer from multiple perspectives.

Methods: Based on the transcriptome profiling of prognostic aging-relevant

genes, patients with gastric cancer in The Cancer Genome Atlas (TCGA) stomach

adenocarcinoma (TCGA-STAD) cohort were clustered with a consensus clustering

algorithm. Mutational landscape and chemotherapeutic responses were analyzed and

immunological features (immunomodulators, immune checkpoint molecules, cancer

immunity cycle, and tumor-infiltrating immune cells) were systematically evaluated across

gastric cancer. Weighted gene co-expression network (WGCNA) was conducted for

screening aging molecular phenotype-relevant genes, and key genes were identified

with Molecular Complex Detection (MCODE) analyses. Expressions of key genes were

examined in 20 paired tumors and controls with RT-qPCR and Western blotting.

Proliferation and apoptosis were investigated in two gastric cancer cells under

MYL9 deficiency.

Results: Three aging-based molecular phenotypes (namely, C1, C2, and C3) were

conducted in gastric cancer. Phenotype C1 presented the most prominent survival

advantage and highest mutational frequencies. Phenotype C2 indicated low responses

to sorafenib and gefitinib, while C3 indicated low responses to vinorelbine and

gemcitabine. Additionally, phenotype C2 was characterized by enhanced immune and

stromal activation and an inflamed tumor microenvironment. Seven aging molecular

phenotype-relevant key genes (ACTA2, CALD1, LMOD1, MYH11, MYL9, MYLK, and

TAGLN) were identified, which were specifically upregulated in tumors and in relation to

dismal prognosis. Among them, MYL9 deficiency reduced proliferation and enhanced

apoptosis in gastric cancer cells.

Conclusion: Collectively, aging-basedmolecular subtypesmay offer more individualized

therapy recommendations and prognosis assessment for patients in distinct subtypes.

Keywords: gastric cancer, aging-relevant genes, molecular phenotype, prognosis, tumor immune

microenvironment, immunogenomic characteristics
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INTRODUCTION

Gastric cancer ranks the sixth most frequent malignancy as well
as the fifth major cause of cancer death across the globe (1).
When diagnosed at an advanced stage, patients’ 5-year overall
survival rate is merely 5% (1). As a heterogeneous disease, it
has the features of diverse histological and molecular subtypes
(2). At present, according to the morphology, differentiation,
and cohesion of gland cells, gastric cancer is histopathologically
classified as intestinal and diffuse (3). Genomic analyses have
become the major methodology applied in international efforts
for discovering novel biological targets in gastric cancer (4). It
is fundamental to unravel the complicated biology underlying
gastric cancer etiology and development for overcoming the
highly heterogeneous malignancy.

Accumulated pieces of evidence have uncovered the
implication of tumor-associated structures and activated
signaling pathways both in tumor cells and in the tumor
microenvironment (5). Aging is a complicated process primarily
categorized by a reduction in tissues, cells, and organ functions
as well as an elevated risk of mortality, which acts as a dominant
risk factor of diverse fatal malignancies, especially cancers
(6). This process presents prominent correlations to telomere
attrition, mitochondrial dysfunction, DNA injury, impaired
immune system, and the like (7). Nevertheless, the specific
mechanisms involved in aging are still indistinct. Transcriptomic
studies have identified abundant human aging-relevant genes
(8). The human aging genome resource (HAGR) project
offers a powerful set of aging-specific network features, which
reveals aging-relevant gene signatures as network hubs through
comprehensive analyses of biology and genetics of the human
aging process (8). Cellular senescence is a permanent state of
stagnant replication of proliferating cells as well as a sign of
aging (9). Senescent tumor cells triggered by tumorigenesis
may lead to cell cycle arrest, as an antitumor mechanism (10).
Nevertheless, senescent cells surrounding tumor cells generate
opposite results as well as present prominent correlations with
senescence-associated secretory phenotype factor secretions
(11). Moreover, senescence displays two-tier influences upon
cancer immunity (12, 13). Aging-relevant gene signatures exert
critical functions in modulating cellular senescence, not only
inhibiting tumor progression through modulating senescence
of cancer cells but also promoting malignant progression of
cancers and dismal clinical outcomes (14). Nevertheless, there is
still a lack of systematic analyses of aging-relevant genes during
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component analyses; GSVA, gene set variation analysis; MSigDB, Molecular

Signatures Database; Pan-F-TBRS, pan-fibroblast TGF-β response signature; EMT,

epithelial-mesenchymal transition; ssGSEA, single sample gene set enrichment

analysis; GDSC, Genomics of Drug Sensitivity in Cancer; IC50, half-maximal

inhibitory concentration; ESTIMATE, Estimation of Stromal and Immune cells

in Malignant Tumor tissues using Expression data; WGCNA, Weighted gene co-

expression network analysis; STRING, Search Tool for the Retrieval of Interacting

Genes/Proteins; PPI, protein-protein interaction; MCODE, Molecular Complex

Detection; RT-qPCR, Real-time quantitative reverse transcription PCR.

gastric carcinogenesis. Herein, we identified three aging-based
molecular phenotypes that offered more individualized therapy
options and prognosis prediction for gastric cancer patients.

MATERIALS AND METHODS

Retrieval and Preprocessing of
Genome-Relevant Data and Clinical
Information
Raw RNA-seq data [Fragments Per Kilobase Million (FPKM)
value] and relevant clinicopathological characteristics for The
Cancer Genome Atlas (TCGA) stomach adenocarcinoma
(TCGA-STAD) cohort containing 443 patients with gastric
cancer were curated from Genomic Data Commons (GDC) data
portal (https://portal.gdc.cancer.gov) utilizing TCGAbiolinks
package (15). Additionally, normalized microarray expression
profiling of 433 patients with gastric cancer in the GSE84437
cohort was curated from the Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/gds/) (16). The
detailed information of patients with gastric cancer in TCGA
and GSE84437 cohorts is listed in Supplementary Table 1. The
expression profiling (FPKM values) of the TCGA-STAD dataset
was transformed into transcripts per kilobase million (TPMs). In
total, 307 aging-relevant genes (Supplementary Table 2) were
curated from the HAGR (https://genomics.senescence.info/)
(8). Molecular subtypes [genome stable (GS), microsatellite
instability (MSI), EBV infection, and chromosomal instability
(CIN)] of gastric cancer samples were retrieved from Liu et al.
(17). Somatic mutation data [Mutation Annotation Format
(MAF) format] of 433 patients with gastric cancer on the basis
of the whole-exome sequencing platforms were curated from
the TCGA project. Mutational types and frequencies of genes
were analyzed as well as visualized utilizing the maftools package
(18). Tumor mutation burden (TMB) was defined as the entire
number of non-synonymous variations within the coding
regions per megabase (19). In addition, copy number alteration
(CNA) data were retrieved from GDAC Firehose (https://gdac.
broadinstitute.org), and prominent amplification and deletion
across the whole genome were identified with GISTIC2.0 (20).
Somatic copy-number alterations (SCNAs) and homologous
recombination deficiency (HRD) across gastric cancer specimens
were also curated from Davoli et al. (21).

Molecular Characterization for Subtypes
Tumors with qualitatively diverse aging-relevant gene
expressions were clustered utilizing hierarchical agglomerative
clustering on the basis of Euclidean distance as well as Ward’s
linkage. Unsupervised clustering method (K-means) was utilized
for identifying aging-related molecular phenotypes as well as
classifying samples for subsequent analyses. Through consensus
clustering algorithm, the number of clusters was determined
using TCGA-STAD and GSE84437 cohorts for assessing the
stability of the identified molecular phenotypes. This procedure
was presented through adopting the ConsensuClusterPlus
package as well as repeated 50 times for ensuring the accuracy
regarding this classification (22).
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Gene Set Variation Analysis (GSVA)
Gene set variation analysis, a non-parametric and unsupervised
gene set enrichment algorithm, may infer the enrichment scores
of specific pathways or signatures on the basis of transcriptomic
profiling (23). The 50 hallmarks of gene signatures were
collected from the Molecular Signatures Database (MSigDB)
project (24). Moreover, the gene sets of other relevant biological
processes were curated fromMariathasan et al. containing CD8T
effectors, DNA damage repair, pan-fibroblast TGF-β response
signature (Pan-F-TBRS), antigen-processingmachinery, immune
checkpoint, epithelial-mesenchymal transition (EMT) markers,
FGFR3-related genes, angiogenesis, Fanconi anemia, WNT
targets, cell cycle regulators, and the like (25). Utilizing
single sample gene set enrichment analysis (ssGSEA) from
the GSVA package, gene sets of hallmarks and other relevant
biological processes were chosen for presenting quantifications
of pathway activity.

Estimation of Chemotherapeutic Response
Chemotherapeutic sensitivity in cancer cells, as well as molecular
markers of chemotherapeutic response profiles, were curated
from the largest publicly available pharmacogenomics project:
the Genomics of Drug Sensitivity in Cancer (GDSC; https://
www.cancerrxgene.org/) (26). Four commonly applied
chemotherapeutic agents, sorafenib, gefitinib, vinorelbine,
and gemcitabine, were chosen. The prediction procedure was
implemented via the pRRophetic package (27). The half-maximal
inhibitory concentration (IC50) values were estimated with the
ridge regression method, and the prediction accuracy was
assessed through 10-fold cross-verification.

Evaluation of Tumor Immune
Microenvironment and Immunogenomic
Characteristics
Immunological features of the tumor immune
microenvironment contained the expression profiles of
immunomodulatory factors and immune checkpoint molecules,
the activity of the cancer immunity cycle, and infiltrations
of immune cells. In total, 122 immunomodulatory factors
comprising MHC, receptor, chemokine, and immune stimulator
were curated from Sokolov et al. (28). Immune checkpoint
molecules with therapeutic potential were collected from
Auslander et al. (29). The cancer immunity cycle uncovers
antitumor immune response, and the activity of each step
determines the fate of tumor cells (30). Here, the activity of
each step was quantified with ssGSEA on the basis of the
expression profiling of individual specimens. Thereafter, the
ssGSEA algorithm was developed for quantifying the abundance
of lymphocytes within the tumor immune microenvironment
utilizing bulk RNA-seq profiles. Through Estimation of Stromal
and Immune cells in Malignant Tumor tissues using Expression
data (ESTIMATE), immune and stromal contents (immune and
stromal scores and tumor purity) were inferred across gastric
cancer specimens (31). Tumor tissues with abundant immune
cell infiltration represented an increased immune score and a
decreased level of tumor purity.

Quantification of Gene Expression-Based
Stemness Index (MRNAsi)
Through the one-class logistic regression (OCLR) method, the
stemness index was calculated on the basis of transcriptome
profiling of normal PSCs (32). The stemness signatures were
generated with the OCLR algorithm (28). Thereafter, this study
estimated Spearman’s correlation between the weight vector of
the stemness signatures and mRNA expression across gastric
cancer. Eventually, the stemness index was mapped onto the
range of 0 to 1 utilizing a linear conversion, which subtracted the
minimum as well as separated through the maximal correlation
coefficient. The stemness index produced from transcriptome
profiling was defined as mRNAsi.

Weighted Gene Co-expression Network
Analysis (WGCNA)
Weighted gene co-expression network analysis was presented
for identifying underlying co-expression modules that were
prominently correlated with aging-associated molecular
phenotypes. The soft-thresholding for the scale-free network
was identified. The topological overlap matrix similarity was
adopted for the evaluation of the distance between gene pairs.
Furthermore, hierarchical clustering analyses with mean and
dynamic methods were utilized for building the clustering
tree as well as classifying the gene signatures into diverse
modules. Following merging the initial modules in line with
their similarity, functional modules were eventually conducted.
Spearman’s correlation coefficient, as well as matched p-value
between aging-associated molecular phenotypes and functional
modules, was determined through cor function. For each
module, gene significance (GS) and module membership (MM)
were calculated. Genes with GS > 0.5 and MM > 0.8 were
utilized as aging phenotype-relevant genes. Through the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING)
tool (33), protein-protein interaction (PPI) analysis of aging
phenotype-relevant genes was carried out. Molecular Complex
Detection (MCODE) (34), a plugin in Cytoscape software
(35), was used for screening the significant modules of the PPI
network in line with the filtrating criteria of degree cutoff = 2,
node score cutoff= 0.2, k-core= 2, and depth from depth= 100.

Patients and Specimens
In total, 20 patients with gastric cancer were recruited at the
General Hospital of Ningxia Medical University. Adjacent gastric
tissues (3–6 cm from the tumor). Tumor tissues and adjacent
non-cancerous gastric tissues (>5 cm from the edge of tumor
tissues) were harvested during surgical resection. The inclusion
criteria included: (1) patients pathologically diagnosed with
gastric cancer and (2) patients who did not experience radio-
and/or adjuvant chemotherapy prior to surgery. The exclusion
criteria included: (1) patients previously diagnosed with other
malignancies; (2) patients who were previously treated with
radio- or adjuvant chemotherapy; and (3) patients who died
within 4 weeks of this surgery. All specimens were frozen in liquid
nitrogen at once following collection and were stored at −80◦C
before usage. This study was conducted in accordance with the
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TABLE 1 | Primer sequences used for RT-qPCR.

Gene Sequence (5′-3′)

MYL9 F: TCTTCGCAATGTTTGACCAGT

R: GTTGAAAGCCTCCTTAAACTCCT

ACTA2 F: AAAAGACAGCTACGTGGGTGA

R: GCCATGTTCTATCGGGTACTTC

TAGLN F: AGTGCAGTCCAAAATCGAGAAG

R: CTTGCTCAGAATCACGCCAT

MYH11 F: CGCCAAGAGACTCGTCTGG

R: TCTTTCCCAACCGTGACCTTC

LMOD1 F: GTAAAAGGGGAGCGTAGGAAC

R: CTCGGGTGTTTTGGTCTTGCT

CALD1 F: TGGAGGTGAATGCCCAGAAC

R: GAAGGCGTTTTTGGCGTCTTT

MYLK F: CCCGAGGTTGTCTGGTTCAAA

R: GCAGGTGTACTTGGCATCGT

GAPDH F: CTGGGCTACACTGAGCACC

R: AAGTGGTCGTTGAGGGCAATG

guidance of the Declaration of Helsinki. The protocol gained
the approval of the Institutional Ethical Committee of General
Hospital of Ningxia Medical University (Approval No. 2020-
031). All participants signed an informed consent form prior to
our study.

Real-Time Quantitative Reverse
Transcription PCR
Tissues or cells were lysed with RNAiso plus (Takara, Japan).
Thereafter, RNA extraction was presented with the phenol-
chloroform/isopropanol method. The cDNA was prepared
through PrimeScript RT reagent kits as well as a gDNA eraser.
About 20 µl qPCR system was prepared, followed by analysis
with GoTaq qPCR Master Mix. The relative mRNA expressions
were quantified with the 2−11Ct method, with GAPDH as a
control. The primer sequences are listed in Table 1.

Western Blotting
Tissues or cells were lysed with RIPA buffer plus protease
inhibitor cocktail. Following separation via electrophoresis
in SDS/PAGE gel, the protein was transferred onto PVDF
membranes. The membrane was blocked in PBS-T buffer
in supplements of 5% milk/BSA lasting 2 h and presented
the incubation with primary antibody targeting MYL9 (1:500;
15354-1-AP; Proteintech, China), ACTA2 (1:1000; 23081-1-AP;
Proteintech, China), TAGLN (1:300; 15502-1-AP; Proteintech,
China), MYH11 (1:1000; 18569-1-AP; Proteintech, China),
LMOD1 (1:500; 15117-1-AP; Proteintech, China), CALD1
(1:2000; 20887-1-AP; Proteintech, China), MYLK (1:500; 21642-
1-AP; Proteintech, China), and β-actin (1:5000; 20536-1-AP;
Proteintech, China) overnight at 4◦C. Following incubation
by horseradish peroxidase-labeled HRP-coupled secondary
antibodies lasting 1 h, the protein band was visualized with an
ECL detection reagent.

Cell Culture
Two gastric cancer cell lines (MGC-803 and BGC-823) were
acquired from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). The cells were cultivated in the Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, United States) with
supplements of 10% fetal bovine serum (FBS) as well as
1% antibiotics penicillin/streptomycin. Moreover, all cells were
fostered in an incubator with 5% CO2 at 37

◦C.

Transfection
For generatingMYL9-knockdown clones, two short hairpin RNA
(shRNA) sequences against MYL9 were synthesized and cloned
into pSUPER-retro-puro plasmids. The recombinant plasmids
or negative control vector ligated by scrambled-base hairpin
oligos were co-transfected with packaging plasmids pIK into
293T cells. Thereafter, the supernatant was harvested, which
was utilized for infecting MGC-803 and BGC-823 cells. The
above-mentioned cells were plated into 6-well plates. When
the confluency reached 50%, transfections were presented with
Lipofectamine 2000 (Invitrogen, United States) in accordance
with themanufacturer’s instructions. Following 48 h, transfection
efficiencies were evaluated.

Cell Counting Kit (CCK)-8
For the determination of viable MGC-803 and BGC-823 cells,
CCK-8 (Dojindo, Japan) kits were adopted. In brief, cells were
administered on a 96-well plate (3×103 cells/well). Following
cultivation lasting 24 h, 10 µl of CCK-8 reagent was added,
followed by incubation at 37◦C lasting 1 h. The absorbance values
were tested at 450 nm with an ultraviolet spectrophotometer at
diverse time points.

Flow Cytometry
MGC-803 and BGC-823 cells were treated with propranolol
lasting 24 h. Thereafter, 100 µl cell suspension was incubated
with 5 µl fluorescein isothiocyanate (FITC)-Annexin V as
well as 2.5 µl propidium iodide (PI) protecting from light in
accordance with the manufacturer’s instruction. Apoptosis was
under evaluation utilizing flow cytometry on BD FACSCanto
II (BD, United States). Flow cytometry was analyzed with
FlowJo software.

Statistics
All statistical analyses were conducted with R software and
GraphPad Prism software. Measurement data were displayed
as mean ± SD. If the variables were normally distributed,
comparisons of continuous variables between two or more
than two subgroups were presented through a parametric test
(Student’s t-test or ANOVA). Otherwise, a non-parametric test
(Wilcoxon rank-sum test or Kruskal–Wallis test) was presented.
Principal component analyses (PCAs) were used to present the
dissimilarity among diverse clusters. Hazard ratio (HR) was
determined with a Cox regression model utilizing a survival
package. Analyses of overall survival (OS), disease-free survival
(DFS), and disease-specific survival (DSS) were conducted with
Kaplan–Meier method, and the log-rank test was adopted for
determining the statistical difference. Pearson’s or Spearman’s
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TABLE 2 | Prognostic aging-relevant genes in gastric cancer with univariate-cox

regression analyses.

Genes HR HR 0.95L HR 0.95H P-value

GHR 1.5437 1.1596 2.0551 0.0029

POU1F1 3.5083 1.2136 10.142 0.0205

GH1 1.9524 1.0594 3.5981 0.0320

NGF 1.7419 1.2548 2.4180 0.0009

EGF 1.5420 1.1022 2.1572 0.0115

PDGFRB 2.2543 1.1351 4.4766 0.0202

PEX5 0.3813 0.1479 0.9831 0.0460

NR3C1 2.0259 1.1514 3.5646 0.0143

TGFB1 3.0279 1.2103 7.5751 0.0179

APOC3 1.2600 1.0596 1.4984 0.0089

AR 1.3530 1.0050 1.8215 0.0463

FEN1 0.4273 0.1849 0.9872 0.0466

A2M 2.4406 1.0382 5.7374 0.0408

SNCG 1.7807 1.2627 2.5113 0.0010

PON1 1.4702 1.0866 1.9893 0.0125

IL6 1.3283 1.0257 1.7201 0.0314

FGFR1 1.5856 1.0199 2.4652 0.0406

PAPPA 1.6353 1.1335 2.3593 0.0085

EFEMP1 1.9565 1.2875 2.9732 0.0017

AGTR1 1.2752 1.0316 1.5763 0.0246

PDGFRA 1.8412 1.1501 2.9478 0.0110

correlation test was used for evaluating the correlation between
variables. For all statistical analyses, a two-tailed P < 0.05
indicated significance.

RESULTS

Aging-Genomic Profiles Identify Three
Diverse Molecular Phenotypes of Gastric
Cancer
This study analyzed the expression patterns of aging-relevant
genes across gastric cancer specimens in the TCGA cohort.
Through univariate-cox regression analyses, abnormal
expression of 24 aging-relevant genes was in relation to
gastric cancer prognosis (Table 2). With the consensus clustering
method, patients with gastric cancer were clustered into
three aging-relevant molecular phenotypes (C1, 143 samples;
C2, 117 samples; C3, 91 samples) in accordance with the
transcriptome profiling of prognostic aging-relevant genes
(Figure 1A). PCA uncovered the dissimilarity between aging-
relevant molecular phenotypes (Figure 1B). The prominent
discrepancy in expressions of prognostic aging-relevant genes
was investigated among phenotypes (Figure 1C). Survival
analyses demonstrated that three aging-relevant molecular
phenotypes presented prominent survival outcomes. C1
phenotype possessed more favorable OS (Figure 1D), DFS
(Figure 1E), and DSS (Figure 1F) outcomes than C2 and C3
phenotypes. The classification accuracy was confirmed in the
GSE84437 cohort (Supplementary Figures 1A–D). Figure 1G

showed the heterogeneity in the distribution of three aging-
relevant molecular phenotypes (C1, C2, and C3) among the most
known molecular subtypes (CIN, EBV, GS, and MSI). C1 subtype
occupied the highest percentage in EBV and MSI, while C2
occupied the highest percentage in GS. Thus, the aging-relevant
molecular phenotypes presented remarkable associations with
the most known molecular subtypes of gastric cancer.

Aging-Relevant Molecular Phenotypes
With Diverse Cancer Mutational Genome
The preclinical studies and clinical trials have uncovered
that somatic mutation is linked to therapeutic response,
survival outcome, and clinical benefit of patients with gastric
cancer (36). Hence, this study evaluated the distributions of
somatic mutations across gastric cancer among three aging-
related molecular phenotypes. We investigated that molecular
phenotype C1 presented higher mutational frequency (132,
30.48%; Figure 2A) compared with C2 (84, 19.4%; Figure 2B)
and C3 (86, 19.86%; Figure 2C). The first 20 genes with
the highest mutational frequencies were shown in each
phenotype. Gistic2.0 identified 54 amplifications in phenotype
C1 (Figure 2D), 37 amplifications in phenotype C2 (Figure 2E),
and 58 amplifications in phenotype C3 (Figure 2F). Meanwhile,
there were 46 deletions in phenotype C1 (Figure 2G), 35
deletions in phenotype C2 (Figure 2H), and 51 deletions in
phenotype C3 (Figure 2I). Collectively, aging-relevant molecular
phenotypes presented diverse cancer mutational genomes.

Aging-Associated Molecular Phenotypes
With Distinct Activations of Functional
Pathways and Chemotherapeutic
Responses
We further investigated the mechanisms underlying distinct
aging-associated molecular phenotypes. In Figure 3A, we
observed that immune activation pathways (complement,
IL2-STAT5 signaling, inflammatory response, IL6-JAK-
STAT3 signaling, allograft rejection, and interferon gamma
response) and stromal activation pathways (epithelial-
mesenchymal transition, angiogenesis, and WNT β-catenin
signaling) were prominently upregulated in aging-associated
molecular phenotype C2. Several tumorigenic pathways
(mTORC1 signaling, MYC targets, DNA repair, E2F targets,
and G2M checkpoint) presented a significant activation in
molecular phenotypes C1 and C3. Consistently, pan-F-TBRS,
immune checkpoint, EMT1-3, angiogenesis, and WNT target
were prominently upregulated in molecular phenotype C2
(Figure 3B). The above data demonstrated the immune
and stromal activation in molecular phenotype C2. The
chemotherapeutic responses to sorafenib, gefitinib, vinorelbine,
and gemcitabine were compared among three molecular
phenotypes. Our results showed that molecular phenotype
C2 presented the lowest therapeutic responses to sorafenib
and gefitinib (Figures 3C,D) while phenotype C3 had the
lowest therapeutic responses to vinorelbine and gemcitabine
(Figures 3E,F).
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FIGURE 1 | Aging-genomic profiles identify three molecular phenotypes in gastric cancer. (A) Heatmap depicted sample clustering at consensus k = 3 in accordance

with the transcriptome profiling of prognostic aging-relevant genes across gastric cancer samples in the TCGA cohort. (B) PCA plots visualized the dissimilarity

between aging-relevant molecular phenotypes. (C) Heatmap showed the expression patterns of prognostic aging-relevant genes in three aging-relevant molecular

phenotypes. (D–F) Kaplan–Meier curves of (D) OS, (E) DFS, and (F) DSS were conducted for gastric cancer patients with diverse aging-relevant molecular

phenotypes. (G) Distribution of aging-related molecular phenotypes C1, C2, and C3 in different molecular subtypes (CIN, EBV, GS, and MSI).

Aging-Associated Molecular Phenotypes
Display Diverse Tumor Immune
Microenvironment and Immunological
Status
In Figure 4A, most MHC molecules (HLA-DMB, HLA-DOA,

HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1,

HLA-DRA, HLA-DRB1, and HLA-E) presented the highest
expressions in aging-associated molecular phenotype C2. This
was indicative that the ability of antigen presentation and
processing was upregulated in phenotype C2. Additionally,
molecular phenotype C2 had the highest expressions of most
chemokines (XCL2, CXCL1, CXCL12, CXCL13, CCL11, CCL13,
CCL14, CCL16, CCL17, CCL19, CCL2, CCL21, CCL22, CCL23,
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FIGURE 2 | Aging-relevant molecular phenotypes with diverse cancer mutational genomes. (A–C) Oncoprint of somatic mutation status across patients with gastric

cancer in aging-related molecular phenotypes (A) C1, (B) C2, and (C) C3. Individual patients were represented in each column. The right bar plots showed the

mutation frequencies of the first 20 mutated genes in each molecular phenotype. (D–F) The amplifications of genes were separately shown in molecular phenotypes

(D) C1, (E) C2, and (F) C3. The false-discovery rate (q value) and scores for amplifications were plotted against genomic locations. (G–I) The deletions of genes were

separately shown in molecular phenotypes (G) C1, (H) C2, and (I) C3. The q-value and scores for deletions were depicted against genomic locations. Dotted lines

indicated the centromeres. The green line represented 0.25 of q-value cutoff value that determined significance.
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FIGURE 3 | Aging-associated molecular phenotypes with distinct activations of functional pathways and chemotherapeutic responses. (A) Heatmap visualized the

activities of the 50 hallmark gene sets in three aging-associated molecular phenotypes. (B) Comparisons of the activities of common biological processes among

distinct molecular phenotypes. (C–F) Comparisons of the estimated IC50 values of chemotherapeutic agents, including (C) sorafenib, (D) gefitinib, (E) vinorelbine, and

(F) gemcitabine. *p < 0.05; **p < 0.01; ***p < 0.001.

CCL4, and CCL8) and their receptors (XCR1, CCR1, CCR10,
CCR2, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CXCR1,
CXCR3, CXCR4, and CXCR5), and the lowest expression
of above molecules was found in molecular phenotype C1
(Figures 4B,C). Above chemokines and receptors facilitate the
recruitment of effector lymphocytes like CD8+ T cell, TH17
cell, as well as antigen-presenting cells. In Figure 4D, molecular
phenotype C2 was characterized by the highest expressions of
most immune checkpoint molecules (IL2RA, IL6, IL6R, KLRK1,
LTA, NT5E, RAET1E, TNFRSF13B, TNFRSF13C, TNFRSF17,
TNFRSF4, TNFRSF8, TNFSF13B, TNFSF14, TNFSF18, TNFSF4,
ENTPD1, BTNL2, CD27, CD276, CD28, CD40, CD40LG, CD48,
and CD86). These data reflected the activated immunological
status in molecular phenotype C2. Cancer immunity cycle
activity is the overall manifestation of the chemokine system
as well as immunomodulatory factors. Most steps in the
cancer immunity cycle presented the highest activities in
molecular phenotype C2, like cancer cell antigen release and
presentation, priming and activation, recruitment of B cell,
CD4T cell, dendritic cell, eosinophil, macrophage, monocyte, T
cell, Th17 cell, and Treg (Figure 4E). Thereafter, we calculated
the infiltration levels of immune cells utilizing the ssGSEA
algorithm. The infiltration levels of most immune cells were
upregulated in molecular phenotype C2, like activated B cell,
activated CD8T cell, central memory CD4T cell, central memory

CD8T cell, effector memory CD4T cell, effector memory CD8T
cell, gamma delta T cell, immature B cell, memory B cell,
regulatory T cell, T follicular helper cell, type 1 T helper
cell, type 2 T helper cell, activated dendritic cell, eosinophil,
immature dendritic cell, macrophage, mast cell, MDSC, natural
killer cell, natural killer T cell, and plasmacytoid dendritic
cell (Figure 4F). Collectively, molecular phenotype C2 had an
inflamed tumor microenvironment.

Aging-Associated Molecular Phenotypes
Associated With Immunotherapeutic
Response Predictors in Gastric Cancer
We investigated the difference in immunotherapeutic responses
among three aging-associated molecular phenotypes through
comparisons of multiple immunotherapeutic predictors. Aging-
associated molecular phenotype C2 presented higher stromal
and immune scores as well as reduced tumor purity compared
with C1 and C3, indicating that samples in phenotype
C2 had increased infiltrations of stromal and immune cells
(Figures 5A–C). The mRNAsi was quantified for reflecting the
levels of cancer stem cells across gastric cancer. There was the
lowest mRNAsi in phenotype C2, while the highest mRNAsi
in phenotype C1 (Figure 5D). Also, we investigated the lowest
SCNA in phenotype C2 but the highest SCNA in phenotype
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FIGURE 4 | Three aging-associated molecular phenotypes display diverse tumor immune microenvironment and immunogenomic characteristics. (A–D)

Comparisons of the mRNA expressions of immunomodulators, including (A) MHC, (B) chemokines, (C) receptors, and (D) immune checkpoint molecules among

three aging-associated molecular phenotypes. (E) Comparisons of the activities of all steps in the cancer immunity cycle among three molecular phenotypes. (F)

Comparisons of the infiltration levels of tumor-infiltrating lymphocytes among three molecular phenotypes. *p < 0.05; **p < 0.01; ***p < 0.001.

C3 (Figure 5E). In Figure 5F, phenotype C2 displayed the

lowest MSI, while phenotype C1 possessed the highest MSI.

Phenotype C2 presented the lowest TMB score but C1 had

the highest TMB score (Figure 5G). We also evaluated the

differences in cancer testis antigen (CAT) and HRD score among

three aging-associated molecular phenotypes. We investigated

that phenotype C3 had the highest CAT score, followed by C2

and C1 (Figure 5H). Additionally, the highest HRD score was

found in phenotype C3 (Figure 5I). The above data suggested
that aging-associated molecular phenotypes presented distinct
immunotherapeutic responses in gastric cancer.

Identification of Aging Molecular
Phenotype-Relevant Key Genes
The WGCNA method was adopted for the construction of
a co-expression network as well as finding genes highly
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FIGURE 5 | Aging-associated molecular phenotypes associated with immunotherapeutic response predictors in gastric cancer. (A–C) Distributions of stromal and

immune scores as well as tumor purity among three aging-associated molecular phenotypes. (D–G) Comparisons of mRNAsi, SCNA, MSI, and TMB scores among

three aging-associated molecular phenotypes. (H,I) Comparisons of CAT and HRD scores in diverse aging-associated molecular phenotypes. *p < 0.05; **p < 0.01;

***p < 0.001; ****p<0.0001; ns, not significant.

associated with aging molecular phenotypes. We first detected
outliers among gastric cancer specimens on the basis of
gene expression profiling. As a result, there was no outlier
sample (Figure 6A). Thereafter, soft thresholding power β

was calculated, and β was set at 5 for ensuring a scale-free
network (Figures 6B,C). In total, 11 co-expression modules
were merged, as depicted in Figure 6D. Among them, the
brown module presented the strongest association with aging
molecular phenotype C2 (Figure 6E). Thereafter, we evaluated
intramodular analyses of genes in each module. Especially, genes
in the brown module had high correlations with aging molecular
phenotype C2 (Figure 6F). Eventually, 312 genes in this module
were selected as aging molecular phenotype-relevant genes in

accordance with the criteria of module membership >0.8 and
gene significance >0.5 (Supplementary Table 3). We further
observed the interactions between aging molecular phenotype-
relevant genes through the STRING database. With MCODE
analyses, seven aging molecular phenotype-relevant hub genes
were identified, namely, ACTA2, CALD1, LMOD1, MYH11,
MYL9, MYLK, and TAGLN (Figure 6G). In Figure 6H, we
noted that the hub genes displayed remarkable associations
with the infiltration levels of immune cells. All of them
were negatively correlated to the infiltration levels of activated
CD4T cell, CD56dim natural killer cell, neutrophil, and type
17 T helper cell but were positively associated with the other
immune cells.
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FIGURE 6 | Identification of aging molecular phenotype-relevant key genes. (A) Sample dendrogram and heatmap were conducted based on transcriptome data of

gastric cancer. The color intensity indicated aging-associated molecular phenotypes (C1, C2, and C3). (B) The scale-free fitting index was determined across diverse

soft thresholding powers. (C) Mean connectivity was analyzed under different soft thresholding powers. (D) Clustering dendrogram was conducted on the basis of

co-expression network analyses. Totally, 11 co-expression modules were merged as well as uniquely identified by diverse colors. (E) Heatmap showed the correlation

between co-expression modules and aging-associated molecular phenotypes across gastric cancer. The brown module presented the strongest correlation module

with phenotype C2. (F) Scatter plots depicted the interactions of module membership in the brown module with gene significance for phenotype C2. (G) MCODE

analyses identified the most prominent module in the PPI network of genes in the brown module. (H) Heatmap visualized the interaction between the hub genes and

the infiltration levels of immune cells. *p < 0.05; **p < 0.01.
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FIGURE 7 | Verification of prognostic implication and deregulated expression of aging molecular phenotype-relevant key genes. (A–G) Kaplan–Meier curves were

conducted for the investigation of survival significance of MYL9, ACTA2, TAGLN, MYH11, LMOD1, CALD1, and MYLK across patients with gastric cancer patients.

(H) The mRNA expressions of MYL9, ACTA2, TAGLN, MYH11, LMOD1, CALD1, and MYLK were verified in 20 paired tumors and controls with RT-qPCR. The

displayed graph contained normalized data to controls. (I–P) Western blotting was conducted for verification of the expressions of MYL9, ACTA2, TAGLN, MYH11,

LMOD1, CALD1, and MYLK in tumors and controls. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Verification of Prognostic Implication and
Deregulated Expression of Aging
Molecular Phenotype-Relevant Key Genes
Survival analyses were conducted for investigations of the
prognostic implications of aging molecular phenotype-relevant
key genes across patients with gastric cancer. Our data
demonstrated that the upregulations of ACTA2, CALD1,
LMOD1, MYH11, MYL9, MYLK, and TAGLN were in
relation to more dismal survival outcomes in comparisons
with their downregulations (Figures 7A–G). We further
verified their expressions in 20 paired tumors and controls.
In Figure 7H, compared with controls, their prominent

upregulations were investigated in tumors in line with RT-
qPCR. Additionally, Western blotting results confirmed their
abnormal expressions of these key genes in gastric cancer
(Figures 7I–P).

In Gastric Cancer Cells, MYL9 Loss
Weakens Proliferation and Triggers
Apoptosis
Among aging molecular phenotype-relevant key genes,
only the role of MYL9 in gastric cancer remains unknown.
Thus, we investigated the function of MYL9 in gastric
carcinogenesis. Herein, MYL9 expressions were reduced in
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FIGURE 8 | MYL9 loss weakens proliferation and triggers apoptosis in gastric cancer cells. (A–C) MYL9 expressions were determined in MGC-803 and BGC-823

cells under shRNAs targeting MYL9 transfections with RT-qPCR and Western blotting. (D,E) Viable MGC-803 and BGC-823 cells were evaluated following shRNAs

against MYL9 transfections through CCK-8. (F,G) Apoptotic MGC-803 and BGC-823 cells were investigated after shRNAs against MYL9 transfections with flow

cytometry. ****p < 0.0001.

MGC-803 and BGC-823 cells under two shRNAs against
MYL9 transfections (Figures 8A–C). In accordance with
CCK-8 results, MYL9 loss reduced the cell viability of
MGC-803 and BGC-823 cells (Figures 8D,E). Additionally,

apoptosis of MGC-803 and BGC-823 cells was enhanced
when MYL9 expressions were defective (Figures 8F,G).
The above data indicated the gastric tumorigenic roles
of MYL9.
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DISCUSSION

In our study, we conducted three aging-based molecular
phenotypes with a consensus clustering algorithm. Further,
aging-based molecular phenotypes were characterized by
diverse clinical prognoses, mutational status as well as
the immunological status of tumor microenvironment
across gastric cancer. In this aspect, our findings offered
individualized treatment options and prognosis evaluation
for distinct subpopulations based on the aging-related
molecular phenotypes.

The tumor microenvironment is comprised of a
heterogeneous cellular milieu that influences cancer cell
behaviors (3). The feature produces a far-reaching impact
on treatment responses like immunotherapy. An inflamed
tumor microenvironment combined with preexisting antitumor
immunity is necessary for immunotherapy that suppresses
tumor growth through tumor-cytotoxic T-cell re-invigoration.
In theory, molecules and signals contribute to an inflamed
tumor microenvironment that may trigger sensitivity to
immunotherapy. Herein, in accordance with immunological
features (immunomodulators, immune checkpoint molecules,
cancer immunity cycle, and tumor-infiltrating immune
cells), aging-based molecular phenotype C2 presented an
inflamed tumor microenvironment. This indicated that the
subpopulations in this phenotype possessed greater chances of
responding to immunotherapy. Cancer stem cells contribute to
chemotherapeutic resistance as well as distant metastases due
to the self-renewal and tumorigenic capacities (37). Through
mRNAsi, we quantified the levels of cancer stem cells across
gastric cancer. There was the lowest mRNAsi in phenotype C2,

while the highest mRNAsi in phenotype C1. TMB and MSI are
capable of predicting the clinical responses to immunotherapy.
Nevertheless, the predictors are examined utilizing complex
molecular tools that are slow and expensive. Thus, it is an urgent

medical requirement for developing faster and economical
predictors. Our data indicated that phenotype C2 displayed the
lowest MSI and TMB scores, while phenotype C1 possessed
the highest MSI and TMB scores. HRD leads to impaired
double-strand break repair, which is a common driving factor of
carcinogenesis (38). Herein, phenotype C2 presented the features
of reduced HRD score, while phenotype C3 was characterized by
elevated HRD score.

Through WGCNA combined with MCODE methods, we

identified seven aging molecular phenotype-relevant key genes,
namely, ACTA2, CALD1, LMOD1, MYH11, MYL9, MYLK, and

TAGLN. The above genes displayed the specific upregulations
in gastric cancer and contributed to a dismal clinical prognosis.
Previously, CALD1 acts as a prognostic indicator and also is
in relation to immune infiltrates in gastric carcinoma (39).
MYH11 expression is downregulated in gastric carcinoma and is
indicative of a dismal clinical prognosis (40). Hypermethylation
of MYLK serves as a circulating diagnostic marker of gastric
carcinoma (41). Stromal fibroblasts in the microenvironment
trigger gastric carcinoma metastases through the upregulation of
TAGLN (42). Among them, our experimental pieces of evidence

demonstrated that MYL9 deficiency reduced proliferation as well
as enhanced apoptosis in gastric carcinoma cells, confirming the
tumorigenic function of MYL9. Nevertheless, there were a few
limitations in this study. The aging-based molecular phenotypes
should be further verified in large patients from multicenter
cohorts for identifying the characteristics of clinical prognosis
and drug responses. Additionally, we identified aging molecular
phenotype-relevant key genes, especially MYL9. Nevertheless,
the specific experimental verifications should be designed for the
assessment of the biological implications.

CONCLUSION

Herein, our comprehensive assessment of the cellular,
molecular, and genetic features correlated with aging-
based molecular phenotypes generated novel insights on
how gastric tumors responded to immunotherapy and
guided the development of more effective combination
therapeutic regimens.
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confirmed the classification accuracy of aging-relevant molecular phenotypes. (C)

Heatmap showed the expression patterns of prognostic aging-relevant genes in

three aging-relevant molecular phenotypes. (D) Kaplan–Meier survival curves were

conducted for gastric cancer patients with diverse

molecular phenotypes.

Supplementary Table 1 | Clinicopathological characteristics of patients with

gastric cancer in TCGA and GSE84437 cohorts.

Supplementary Table 2 | The list of aging-relevant genes.

Supplementary Table 3 | The list of 312 genes in the brown module.
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