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Diagnostic accuracy of contrast-enhanced MR
angiography in severe carotid stenosis:
meta-analysis with metaregression of different
techniques

Abstract Contrast-enhanced
magnetic resonance angiography (CE-
MRA) has become a well-established
noninvasive imaging method for the
assessment of severe carotid stenosis
(70–99% by NASCET criteria). How-
ever, CE-MRA is not a standardised
technique, but encompasses different
concurrent techniques. This review
analyses possible differences. A
bivariate random effects meta-analysis
of 17 primary diagnostic accuracy
studies confirmed a high pooled
sensitivity of 94.3% and specificity of
93.0% for carotid CE-MRA in severe
carotid stenosis. Sensitivity was fairly
uniform among the studies, while
specificity showed significant varia-
tion (I2=73%). Metaregressions found
significant differences for specificity
with two covariates: specificity was
higher when using not only maximum
intensity projection (MIP) images, but
also three-dimensional (3D) images
(P=0.01). Specificity was also higher
with electronic images than with
hardcopies (P=0.02). The timing
technique (bolus-timed,

fluoroscopically triggered or time-
resolved) did not result in any
significant differences in diagnostic
accuracy. Some nonsignificant trends
were found for the percentages of
severe carotid disease, acquisition time
and voxel size. In conclusion, in
CE-MRA of severe carotid stenosis the
three major timing techniques yield
comparably high diagnostic accuracy,
electronic images are more specific
than hardcopies, and 3D images
should be used in addition to MIP
images to increase the specificity.
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maximum intensity projection . Logit
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Introduction

In extracranial carotid artery disease contrast-enhanced
magnetic resonance angiography (CE-MRA) has become a
noninvasive imaging alternative for catheter angiography
[1–19]. The major task of carotid CE-MRA is to assess
carotid artery stenosis. Severe carotid stenosis (70–99% by
North American Symptomatic Carotid Endarterectomy
Trial (NASCET) criteria) is a major risk factor for

ischaemic stroke, causing about 20% of cases [20].
Surgical endarterectomy and transluminal angioplasty
make it a treatable risk factor [21, 22].

According to two current meta-analyses, carotid CE-
MRA has a high sensitivity of about 94% and a high
specificity of about 92% for the diagnosis of severe carotid
artery stenosis [23, 24]. Both meta-analyses treated carotid
CE-MRA as one entity, although this entity comprises
several concurrent methods. For example, the primary
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studies utilised three different timing techniques, which
were bolus-timed MRA, fluoroscopically triggered MRA
and time-resolved MRA. However, it is unclear whether
these three timing techniques have similar diagnostic
accuracy for the diagnosis of severe carotid disease.
Other differences among the primary studies were the
prevalence of severe carotid disease, the applied spatial
resolution and other known or unknown factors.

The purpose of this meta-analysis of the diagnostic
accuracy of CE-MRA in severe carotid stenosis was to
identify possible sources of heterogeneity and to compare
different CE-MRA techniques by metaregression.

Materials and methods

Literature search

The PubMed library was searched for articles published
from January 2000 to October 2008 concerning the
diagnostic accuracy of CE-MRA in the assessment of
carotid stenosis (Table 1). The Cochrane and Embase
libraries were searched with similar terms. Additionally,
the reference lists of retrieved articles were hand-searched.
English- and non-English-language articles were included.

Literature selection

Primary literature sources were included that had studied
(a) the index test CE-MRA; (b) versus the reference test

digital subtraction angiography; (c) in the diagnosis of
severe 70–99% carotid stenosis (NASCET criteria); (d) in
adults with known or suspected carotid artery disease and
with a clinical indication for imaging. Further inclusion
criteria for this meta-analysis were: (e) the CE-MRA were
performed with 1.0- or 1.5-T magnets; (f) the CE-MRA
technique was not changed during the study; (g) at least 20
patients were studied; (h) the publication provided
sufficient data to construct 2×2 contingency tables of
true-positive (TP), false-positive (FP), false-negative (FN),
and true-negative (TN) test results, where true-positives are
those with a diagnosis of 70–99% stenosis (NASCET
criteria) by both the index and the reference tests; (i) if
carotid stenoses were reported by European Carotid
Surgery Trial (ESCT) criteria, the results could be
transformed to NASCET grading including a subgroup
with severe 70–99% (NASCET) stenosis [25]; and (j) data
were reported for six covariates, which are defined below. If
these inclusion criteria were not fulfilled, the corresponding
literature source was excluded.

Data extraction

The primary study data were extracted using a standardised
form. With more than one MRA reader, the reported results
were averaged to give one 2×2 contingency table per
study. Occasionally, this gave averaged counts with
decimals such as 7.5. These numbers were used without
rounding. In addition to the 2×2 count data six covariates
were extracted. The first three covariates were continuous:
(a) percentage prevalence of severe carotid artery disease
within the study group, including those with 70–99%
(NASCET criteria) stenosis and those with occlusion; (b)
acquisition time (in seconds) of the CE-MRA sequence; (c)
voxel volume (in mm3) of the CE-MRA before interpola-
tion. This voxel volume was normalised to an isotropic
voxel size (in millimetres) by calculating (voxel volume)1/3.
The other three covariates were categorical factors with
different classes: (d)MRA timing technique, with index “1”
for bolus-timed, index “2” for fluoroscopically triggered
and index “3” for time-resolved; (e) MRA image type, with
index “1” for hardcopy films and index “2” for electronic
monitor images; (f) MRA reading mode, with index “1” for
using solely maximum intensity projection (MIP) images
for diagnosis and index “2” for additionally using the
original 3D MRA images or postprocessed 3D images like
multiplanar reformations.

Diagnostic accuracy parameters

Table 2 summarises the diagnostic accuracy parameters
that were calculated for each study from the 2×2
contingency tables. If the false-positives (FP) or false-
negatives (FN) were zero, 0.5 was added to all 2×2 table

Table 1 Literature search terms

# PubMed search terms

1 Carotid artery diseases [MeSH]
2 Carotid stenosis [MeSH]
3 Carotid artery disease
4 Carotid artery diseases
5 Carotid stenosis
6 Carotid stenoses
7 Carotid artery stenosis
8 Carotid artery stenoses
9 #1 OR #2 OR #3 OR #4
10 #5 OR #6 OR #7 OR #8
11 #9 OR #10
12 Sensitivity and specificity [MeSH]
13 Sensitivity OR sensitivities
14 Specificity OR specificities
15 #13 AND #14
16 #12 OR #15
17 #11 AND #16
18 #17 2000:2008 [DP]

MeSH Medical Subject Headings, DP date of publication
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cells in the calculation of parameters (c) to (i) to prevent
division by zero. These diagnostic accuracy parameters
were solely used to place study symbols in the figures. The
bivariate meta-analysis itself used the 2×2 count data
without the +0.5 correction for zero counts.

Study quality and publication bias

Publication bias was visually assessed by a funnel plot of
the studies’ LOR (logarithm of the diagnostic odds ratios)
against its SE (standard error) [26]. Further bias sources
and the methodological study quality were assessed with
11 predefined standard quality items from the QUADAS
tool, using the meta-analysis program RevMan 5 [27, 28].

Study heterogeneity

Heterogeneity of sensitivity, specificity and LOR was
assessed by the meta-analysis program Meta-DiSC 1.4
[29, 30]. In addition to Cochran’sQ test, I-squared statistics
were obtained [29–31] that quantify the amount of
heterogeneity, i.e. the unexplained variation that remains
after subtracting the expected variation in measurement
errors.

Bivariate random effects meta-analysis

Pooled estimates for sensitivity and specificity were
calculated with a bivariate generalized linear random
effects model, using the new PROC GLIMMIX of SAS
9.2 (SAS Institute, Cary, NC, USA) [32, 33], according to
the formula presented by Chu and Cole [34]. With PROC
GLIMMIX the observed binomial data of sensitivity = TP/
(TP+FN) and that of specificity = TN/(TN+FP) enter
directly in the model with an events/trials syntax. The
model uses an internal logit link function to link the
observed data to the so-called linear predictor. This linear
predictor is defined on the linearised logit scale and consists
of fixed effects and random effects. The estimated pooled

sensitivity and specificity belong to the model’s fixed
effects. Further covariates may be added to the fixed effects
to model a bivariate metaregression. The linear predictor
also includes random effects to model unexplained
between-study heterogeneity [32, 33]. These random
effects account for randomly distributed differences
between study populations, study methods or other
unknown factors [31]. PROC GLIMMIX was used with
the default RSPL pseudolikelihood estimation method. The
unstructured covariance matrix was modelled in terms of its
Cholesky parameterisation with TYPE = CHOL in the
RANDOM statement, except from one metaregression
where TYPE = UN was used to achieve convergence of the
model’s iterative estimation [33]. Standard Wald confi-
dence intervals and P values were implemented by the
setting DF=1,000, as described by van Houwelingen et al.
and Reitsma et al. [35, 36]. The significance level was
generally set at P<0.05.

Bivariate random effects metaregression

Six bivariate random effects metaregressions were per-
formed with the covariates described to study possible
reasons for heterogeneity among the primary studies [35].
Meta-analytic plots were generated with PROC SGPLOT.
In these plots the primary studies are represented by circles.
The area of each study’s circle is inversely proportional to
the variance of the study’s LOR and indicates the relative
weight of that study (Table 2) [37].

Results

Primary study data

In total 2,505 potential sources were identified by the
literature search (Fig. 1). After screening titles and
abstracts, 40 sources were left. After reading the full text,
17 sources remained for the meta-analysis. The primary
data comprise the imaging findings of 1,714 carotids in 905
patients. All patients had suspected or known carotid artery

Table 2 Diagnostic accuracy parameters

Parameter Calculation Description

(a) sens =TP/(TP+FN) Sensitivity
(b) spec =TN/(TN+FP) Specificity
(c) logit(sens) =log(TP/FN) Logit of sensitivity
(d) logit(spec) =log(TN/FP) Logit of specificity
(e) DOR =(TP×TN)/(FP×FN) Diagnostic odds ratio
(f) LOR =log(DOR) Logarithm of the DOR
(g) LOR =logit(sens)+logit(spec) Alternative calculation of LOR
(h) Var(LOR) =1/TP+1/FP+1/FN+1/TN Variance of the LOR
(i) SE(LOR) =Var(LOR)0.5 Standard error of the LOR
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disease. Eight primary literature sources gave additional
information about the numbers of symptomatic (stroke or
transient ischaemic attacks) and asymptomatic patients,
with the majority (448 of 495 patients) being symptomatic.
The count data and the covariates are summarised in
Table 3. This table also shows a forest plot of individual
sensitivities and specificities.

Study quality and heterogeneity

The study quality was generally excellent. The funnel plot
(Fig. 2) showed no major publication bias. The sensitivities
were homogeneously distributed among the 17 studies (I2=
0%, Cochran Q=15.6, P=0.49). However, the specificities
showed high between-study heterogeneity (I2=73%, Co-
chran Q=58.4, P<0.01). This heterogeneous distribution
of the specificities was not obvious from the LORs, which
were slightly but not significantly overdispersed (I2=20%,
Cochran Q=20.1, P=0.22).

Meta-analysis

The bivariate random effects meta-analysis gave the
following pooled estimates (with 95% confidence intervals
in parentheses): sensitivity 94.3% (92.0–96.0%), specific-
ity 93.0% (89.8–95.3%) and LOR 5.40 (4.85–5.95). A
receiver operating characteristic (ROC) plot of sensitivity
versus specificity is shown in Fig. 3.

Metaregressions with continuous covariates

The three continuous covariates showed trends that were,
however, not significant (Fig. 4 and Table 4). Sensitivity
and specificity increased slightly but not significantly if
there were more cases with severe carotid artery disease
(defined as 70–99% stenosis plus occlusion) within the
study group (Fig. 4a–c). True-negative cases were
tendentiously better detected with larger voxels (Fig. 4e).
On the other hand, true-positive cases did not profit much
from smaller voxel sizes (Fig. 4d). The acquisition time had
no major influence on sensitivity. However, specificity was
tendentiously higher with shorter acquisition times.

Metaregressions with categorical covariates

The results of the metaregressions with the three categorical
covariates are depicted in Fig. 5 and numerically sum-
marised in Tables 5 and 6. The three different timing
techniques (1=bolus-timed; 2=fluoroscopically triggered;
3=time-resolved) showed no significant differences in
diagnostic accuracy. There was only a slight nonsignificant
trend in favour of bolus-timing (Fig. 5a–c). With hardcopy
films the pooled mean specificity was 89.6%. With
electronic images on a workstation’s monitor the pooled
mean specificity was 95.6% and thus significantly higher
(Fig. 5e). For the sensitivity, a corresponding slight
difference did not reach significance (Fig. 5d). The pooled
mean specificity was 88.8% when using only MIP images
for the diagnosis. The pooled mean specificity was 95.8%
and thus significantly higher, when using 3D images in
addition to MIP images (Fig. 5h). A corresponding slight
difference in sensitivity was not significant (Fig. 5 g). These
metaregression results are presented in more detail in
Table 5 for the logit scale, and in Table 6 for the original
sensitivity/specificity scale.

Discussion

Relevance of carotid CE-MRA

In symptomatic patients with recent transient ischaemic
attacks or ischaemic stroke within the last 6 months and
ipsilateral severe (70–99%) extracranial carotid stenosis,
carotid endarterectomy or angioplasty with carotid artery
stenting is recommended according to current guidelines to
reduce the stroke risk [18, 21]. Additionally, endarterec-
tomy may be considered in selected asymptomatic patients
with severe carotid stenosis for the primary prevention of
ischemic stroke [18, 22]. To apply these guidelines it is
necessary to distinguish severe carotid stenosis from
moderate stenosis and from occlusion. Currently digital
subtraction angiography (DSA) is the diagnostic gold
standard that offers angiographic images with high spatial

2505 sources possibly fulfilling inclusion criteria 

1391 sources from PubMed library (http://www.pubmed.gov) 

76 sources from Cochrane library (http://www.cochrane.org) 

1037 sources from Embase library (http://www.embase.com) 

1 source from references lists of retrieved articles 

  

 2465 sources excluded by screening titles and abstracts

  

40 sources retrieved and assessed 

  

 23 sources excluded by reading full text 

  

17 sources included in meta-analysis 

Fig. 1 Literature search
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resolution and high contrast between vessels and surrounding
tissues [18]. However, DSA is invasive and has complica-
tions in about 1% of cases [1, 5, 18]. For diagnostic purposes
carotid CE-MRA has become a well-established noninvasive
alternative [5, 18].

Meta-analysis

In appropriate patients carotid MRA has a high sensitiv-
ity and specificity for diagnosing or ruling out severe
carotid stenosis [18, 23, 24]. The presented bivariate
random effects meta-analysis found a pooled sensitivity
(with 95% confidence interval) of 94.3% (92.0–96.0%)
and a pooled specificity of 93.0% (89.8–95.3%) based on
17 primary studies. These results are similar to two other
current meta-analyses: Wardlaw et al. used a random
effects model and found a pooled sensitivity of 94% (88–
97%) and specificity of 93% (89–96%) [23]. Debrey et
al. used a fixed effects model and found a pooled

sensitivity of 94.6% (92.4–96.4%) and specificity of
91.9% (90.3–93.4%) [24]. In this case the results from
random effects and fixed effects meta-analytic models
were relatively similar.

Heterogeneity of diagnostic accuracy
among the studies

Both of the previously mentioned meta-analyses found a
homogeneous distribution of sensitivities, but a heteroge-
neous distribution of specificities among the primary
studies, similar to the meta-analysis presented here [23,
24]. Wardlaw et al. focused on comparing several
noninvasive carotid imaging techniques in general and,
therefore, did not explore sources of heterogeneity in more
detail [23]. Debrey et al. focused on comparing CE-MRA
with time-of-flight MRA and studied sources of heteroge-
neity predominantly for time-of-flight MRA [24]. The
presented meta-analysis focused on carotid CE-MRA and

Table 3 Primary 2×2 count data with forest plots

Part (a) summarises 2×2 count data and covariates of the 17 primary studies. Part (b) shows the resulting sensitivities and specificities (with
95% confidence intervals) and additional forest plots. For each study the squares represent the sensitivity and specificity. The horizontal
lines indicate the surrounding confidence intervals
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analysed possible sources of heterogeneity that have not
been studied by either of the other meta-analyses [23, 24].
This was done by bivariate random effects metaregressions
of sensitivity and specificity with six different covariates.
The results are discussed below.

Prevalence of severe carotid artery disease in the study
group

The 17 studies included had a high prevalence of severe
carotid stenosis and occlusions, ranging from 21 to 59%. In
the metaregression, sensitivity slightly increased with
disease prevalence (Fig. 4a–c and Table 4). This has also
been empirically observed in other situations, although
there is no mathematical relationship between sensitivity
and specificity on the one hand and prevalence on the other
hand [38, 39]. Here, not only sensitivity but also specificity
slightly increased. However, these trends were not signif-
icant. This qualifies sensitivity and specificity to be
suitable diagnostic accuracy parameters across a wide
range of prevalence percentages.

Spatial resolution of the CE-MRA

Within the isotropic voxel size range of 0.8 to 1.8 mm
under study, the metaregression found no significance
change in sensitivity with voxel size (Fig. 4d–e and

Table 4). There was a trend for specificity to increase with
larger voxels, but this trend was not significant either. These
meta-analysis findings are consistent with the empirical
findings of Cosottini et al., who studied the diagnostic
accuracy of carotid CE-MRA by sequences with different
voxel sizes [10]. They found that smaller voxels with a
volume of 0.8 mm3 did not cause a significant improvement
in diagnostic accuracy compared with larger voxels with a
volume of 2.15 mm3. With reference to Fig. 4d–e, these
voxel volumes correspond to a normalised isotropic voxel
size of (0.8)1/3=0.5 mm and (2.15)1/3=1.3 mm. However,
their findings and this study’s metaregression findings are
limited to the techniques applied. With other carotid
CE-MRA techniques smaller voxel sizes may allow for
increased diagnostic accuracy, for instance when using 3-T
magnets, parallel imaging or blood pool contrast agents with
their prolonged vessel enhancement [40–44].

Acquisition time of the CE-MRA sequence

The metaregression showed a slight increase in diagnostic
accuracy with smaller acquisition times, although this trend
was not significant (Fig. 4g–i and Table 4). Generally, in
MRA a better temporal resolution comes at the expense of
spatial resolution [1]. In carotid CE-MRA this trade-off
between temporal and spatial resolution seems to be
slightly in favour of temporal resolution. This may explain
why time-resolved CE-MRAwith its inherently low spatial
resolution provides a high diagnostic accuracy, and thus
remains concurrent with bolus-timed and fluoroscopically

Fig. 3 ROC plot of sensitivity versus specificity. The sensitivities
and specificities of the 17 primary studies are represented by the
small grey circles. The central black spot represents the bivariate
summary estimate from the random effects meta-analysis. The
surrounding confidence ellipse shows the corresponding bivariate
95% confidence interval. Here the confidence ellipse is asymmet-
rical, because it is shown on the original sensitivity/specificity scale
instead of the linearised logit-link scale

Fig. 2 Funnel plot to assess publication bias. The funnel plot is
approximately symmetrical and indicates no major publication bias.
The 17 primary studies are represented by circles. The LOR
(logarithm of the diagnostic odds ratio) is given on the horizontal
axis and its SE (standard error) on the vertical axis. The dashed line
represents the pooled LOR (=5.40) from the bivariate random
effects meta-analysis. Both diagonal lines are calculated by [5.40 −
1.96 × SE] and [5.40 + 1.96 × SE]. They represent the 95%
confidence intervals of the LOR at different standard errors. In the
absence of between-study heterogeneity 95% of the studies should
lie within the funnel that is defined by these diagonal lines
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triggered sequences with their longer acquisition times and
higher spatial resolution. A further explanation in favour of
shorter acquisition times may be that the risk of slight
motion artefacts increases with measurement time, perhaps
not only in noncompliant patients [13].

MRA timing technique

In the literature there is currently no evidence that any of
the three MRA timing techniques (bolus-timed, fluorosco-
pically triggered, time-resolved) has a higher diagnostic

Fig. 4 Bivariate random effects metaregression with continuous
covariates. In each panel the circles represent the 17 primary studies.
The area of each study’s circle is inversely proportional to the
variance of the study’s LOR and indicates the relative weight of that
study. The central line is the regression line. The upper and lower
boundaries indicate the corresponding 95% confidence intervals.
For further details see Results and Table 4. Upper row percentage of
severe disease (70–100% stenosis) within the study group. Central
row normalised isotropic voxel size (in millimeters) as a measure for

the spatial resolution. Lower row acquisition time of the contrast-
enhanced MRA sequence (in seconds). Left column logit(sens) =
sensitivity on the linearised logit scale. Middle column logit(spec) =
specificity on the linearised logit scale. Right column LOR
(logarithm of the diagnostic odds ratio) = logit(sens) + logit(spec).
The numbers in brackets on the right vertical axes of the left and
middle columns are the sensitivities and specificities on their original
percentage scale
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accuracy than the others. Only one primary study
compared fluoroscopically triggered versus time-resolved
CE-MRA intraindividually in a small number of 21
patients [15]. This study found sensitivities of 100%
(11/11 carotids) with both timing techniques. The observed
specificity was 80.6% (25/31 carotids) with fluoroscopi-
cally triggered CE-MRA and elliptic acquisition. The
specificity was 83.9% (26/31 carotids) with time-resolved
CE-MRA, and thus slightly but not significantly higher. In
their discussion the authors favoured fluoroscopically
triggered CE-MRA because of its higher spatial resolution,
which allowed for greater diagnostic confidence and
interobserver agreement [15]. Another study used time-
resolved CE-MRA in 19 patients and examined the next 20
patients with bolus-timed CE-MRA [45]. However, the
authors found no significant differences between the two
timing techniques regarding the diagnostic accuracy in
severe carotid stenosis [45]. Currently, there are no other
studies that compare the different CE-MRA timing techni-
ques at the person-level. At the study-level the metaregres-
sion presented here found a trend in favour of bolus-timed
CE-MRA, but the differences in diagnostic accuracy
observed among the three CE-MRA timing techniques did
not reach significance (Fig. 5a–c, Tables 5 and 6). Therefore,
it seems justified to apply and to further develop all three
different CE-MRA timing techniques equally.

MRA image type

There are no primary studies that compare the use of
hardcopy films versus electronic monitor images in carotid
CE-MRA at the person-level. At the study-level the
metaregression showed a significant improvement in
sensitivity with electronic monitor images (P=0.02)
(Fig. 5d–e, Tables 5 and 6). This gives evidence of the
trend in clinical practice, where conventional film systems
are subsequently replaced by electronic viewing facilities
and electronic picture archive and communication systems

(PACS). This requires sufficiently suitable monitors not
only for the radiologist, but also for the admitting clinician.
However, the net costs of electronic systems are generally
smaller than those of hardcopy films, and the fast image
access is a further advantage.

MRA reading mode

In the metaregression of two different MRA reading modes
the pooled specificity was 88.8% with (1) using solely MIP
images; with (2) using MIP plus 3D images the pooled
specificity was 95.8% and thus significantly higher (P=0.01)
(Fig. 5g–i, Tables 5 and 6). This can be explained by the
maximum intensity projection (MIP) algorithm, which
generates the MIP images from the original 3D images
[46]. In MIP images it easier to detect vessels with large
diameters than those with small diameters. A small vessel
may be hidden in the MIP image, although it is visible in the
original 3D data [46]. The same applies to a vessel stenosis,
which also has a small diameter. Therefore, a vessel stenosis
may be overestimated on the MIP image, although being less
severe on the 3D source images. This increases the rate of
false-positives and thus reduces the specificity of method (1)
compared with method (2), which explains the metaregres-
sion findings. However, according to the metaregression, the
sensitivity with method (1) was nearly similar to that with
method (2). These findings give statistical evidence to support
the following reading algorithm that has naturally developed
in clinical practice: first, theMIP images are viewed to search
for severe carotid stenoses; then, the 3D images are assessed,
paying specific attention to the suspected stenoses to reduce
the rate of false-positives. This image-reading algorithm is
consistent with the findings of Huston et al., who compared
the diagnostic accuracy ofMIP images and 3D source images
in 50 patients [3]. They found that MIP images have the
highest sensitivity (93.3%) for the detection of severe carotid
stenosis, whereas 3D images have the highest specificity
(97.0%) for ruling out severe carotid stenosis.

Table 4 Metaregressions with continuous covariates (logit scale)

Covariate Parameter Intercept Slope P (slope)

Percentage of severe disease Logit(sens) 2.44 (0.91) 0.009 (0.021) 0.68
Logit(spec) 1.85 (0.82) 0.019 (0.020) 0.35
LOR 4.29 (1.21) 0.028 (0.029) 0.33

Normalized isotropic voxel size Logit(sens) 2.93 (0.86) −0.101 (0.692) 0.88
Logit(spec) 1.44 (0.80) 0.942 (0.647) 0.15
LOR 4.38 (1.16) 0.840 (0.936) 0.37

Acquisition time of the MRA Logit(sens) 2.89 (0.41) −0.003 (0.015) 0.84
Logit(spec) 2.89 (0.44) −0.013 (0.016) 0.42
LOR 5.78 (0.58) −0.016 (0.021) 0.45

This table relates to Fig. 4. The fixed effects estimates of the metaregressions are given on the logit scale with their standard errors in
parentheses. For the parameters sensitivity, specificity and LOR, the P (slope) indicates whether the corresponding regression slope is
significantly different from zero (P<0.05). The covariates and their regression slopes showed trends, but these trends were not significant
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Fig. 5 Bivariate random effects metaregression with categorical
covariates. In each panel the circles represent the 17 primary studies.
The area of each study’s circle is inversely proportional to the
variance of the study’s LOR and indicates the relative weight of that
study. The centre line of each box represents that subgroup’s pooled
estimate, while the box itself represents the corresponding 95%
confidence interval. Further details are given in Results and Tables 5
and 6. Upper row subgroup analysis for the three different MRA
timing techniques. Central row analysis for using 1 hardcopy films

versus 2 electronic monitor images. Lower row reading 1 only MIP
images versus 2 reading MIP plus 3D images. Left column logit
(sens) = sensitivity on the linearised logit scale. Middle column logit
(spec) = specificity on the linearised logit scale. Right column LOR
(logarithm of the diagnostic odds ratio) = logit(sens) + logit(spec).
The numbers in brackets on the right vertical axes of the left and
middle columns are the sensitivities and specificities on their original
percentage scale
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Table 6 Pooled subgroup estimates of sensitivity and specificity

Covariate Parameter Subgroups Estimate (%) (95% CI)

MRA timing technique Sensitivity 1 (bolus-timed) 96.0 (92.7–97.8)
2 (fluoroscopic) 91.9 (85.0–95.8)
3 (time-resolved) 93.4 (88.4–96.4)

Specificity 1 (bolus-timed) 94.1 (88.4–97.1)
2 (fluoroscopic) 91.7 (84.0–95.8)
3 (time-resolved) 93.2 (86.5–96.8)

MRA image type Sensitivity 1 (hardcopy) 93.3 (89.6–95.8)
2 (electronic) 95.6 (92.2–97.6)

Specificity 1 (hardcopy) 89.6 (84.0–93.4)*
2 (electronic) 95.6 (92.2–97.4)*

MRA reading mode Sensitivity 1 (only MIP) 94.0 (90.2–96.3)
2 (MIP+3D) 94.9 (91.4–97.0)

Specificity 1 (only MIP) 88.8 (83.2–92.7)*
2 (MIP+3D) 95.8 (93.0–97.5)*

In this table the pooled subgroup estimates of sensitivity and specificity are given on the original percentage scale (with 95% confidence
intervals in parentheses). This table also relates to Fig. 5 and Table 5
*Indicates subgroups with significant differences with reference to Table 5

Table 5 Metaregressions with categorical covariates (logit scale)

Covariate Parameter Subgroups Estimate Vs. 2 (P) Vs. 3 (P)

MRA timing technique Logit(sens) 1 (bolus-timed) 3.17 (0.32) 0.74 (0.12) 0.52 (0.25)
2 (fluoroscopic) 2.43 (0.35) −0.22 (0.64)
3 (time-resolved) 2.65 (0.32)

Logit(spec) 1 (bolus-timed) 2.77 (0.38) 0.38 (0.48) 0.15 (0.78)
2 (fluoroscopic) 2.40 (0.38) −0.23 (0.67)
3 (time-resolved) 2.62 (0.39)

LOR 1 (bolus-timed) 5.95 (0.50) 1.12 (0.12) 0.67 (0.35)
2 (fluoroscopic) 4.83 (0.52) −0.45 (0.53)
3 (time-resolved) 5.28 (0.51)

MRA image type Logit(sens) 1 (hardcopy) 2.64 (0.25) −0.44 (0.27)
2 (electronic) 3.08 (0.31)

Logit(spec) 1 (hardcopy) 2.15 (0.25) −0.92 (0.02)*
2 (electronic) 3.07 (0.29)

LOR 1 (hardcopy) 4.79 (0.32) −1.36 (0.01)*
2 (electronic) 6.15 (0.40)

MRA reading mode Logit(sens) 1 (only MIP) 2.74 (0.26) −0.18 (0.64)
2 (MIP+3D) 2.92 (0.28)

Logit(spec) 1 (only MIP) 2.07 (0.24) −1.06 (0.01)*
2 (MIP+3D) 3.13 (0.28)

LOR 1 (only MIP) 4.81 (0.33) −1.24 (0.01)*
2 (MIP+3D) 6.05 (0.37)

The fixed effects estimates of the metaregressions are given on the logit scale with their standard errors in parentheses. For the parameters
sensitivity, specificity and LOR the right two columns show pairwise mean differences among the subgroups (Vs.versus). For example, the
difference in logit(sens) for bolus-timed CE-MRA versus time-resolved CE-MRA is 0.51 and not significant (P=0.26). This table also
relates to Fig. 5. See Table 6 for pooled subgroup estimates on the original sensitivity/specificity scale
*Indicates significant differences (P<0.05)
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Study limitations

The metaregression findings presented here are limited to
carotid CE-MRA. Transfer of these findings to other
imaging techniques like carotid computed tomographic
angiography would mean an extrapolation of results and is
perhaps invalid. It will be better to study the possible
sources of heterogeneity directly for the other noninvasive
carotid imaging techniques.

The metaregressions were limited to analysing the six
covariates at the study-level. In the literature there are only
a few primary studies that studied these covariates at the
person-level. Future diagnostic accuracy studies might, for
example, compare the different MRA timing techniques
intraindividually [15, 45]. Another limitation of this meta-
analysis results from analysing only six covariates. It is
possible that the diagnostic accuracy of carotid CE-MRA is
influenced by further factors. To some degree such factors
are statistically considered by the random effects compo-
nent of this meta-analysis.

The 17 primary studies applied DSA as their gold
standard for the grading of carotid stenosis. However, DSA
has its own measurement errors and may additionally
underestimate noncircular carotid stenoses because of the
angle-dependent projection. This has, for example, been
illustrated by Serfaty et al. (Fig. 5 in ref. [1]). Rotational
angiography, with its multiple projections at different
angles, overcomes this problem and may thus become a
more accurate gold standard than DSA [16]. However, for a
meta-analysis there are currently not enough studies that
compare carotid CE-MRA with rotational angiography
[16]. In summary, the true diagnostic accuracy of CE-MRA
may be somewhat higher than when assessed by DSA.

The populations of the 17 primary studies consisted of
preselected patients with a high probability for severe

carotid artery disease. Thus, there is no major selection
bias, when applying the meta-analysis results in similar,
clinically high-risk collectives. However, extrapolation of
the meta-analysis results to asymptomatic screening
populations with less than 20% disease prevalence might
produce such selection bias. Currently, this is not relevant,
because Doppler sonography, not CE-MRA, is the first-line
technique in the general population. Furthermore, the net
benefit of such screening for carotid artery disease is
unclear [47–49].

This meta-analysis is limited to primary CE-MRA studies
with 1.0- or 1.5-T magnets. In principle, CE-MRAwith 3-T
magnets allows for higher spatial resolution and image
contrast [40, 41]. It may be hypothesised that the diagnostic
accuracy of carotid CE-MRA at 3-T might be somewhat
higher than with 1.5-T magnets. However, currently, there
are not many publications on the sensitivity and specificity
of carotid CE-MRA at 3-T [41, 50]. Perhaps such studies
could be conducted with rotational angiography as the
reference standard [16].

Conclusion

In CE-MRA of severe carotid artery stenosis the three
major timing techniques yield comparably high diagnostic
accuracy, electronic images are more specific than hard-
copies, and 3D images should be used in addition to MIP
images to increase specificity.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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