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� Diagnosis of liver diseases involves multiple tests,

often including invasive liver biopsy.

� Machine learning computational methods were
used with gene expression data.

� These methods accurately classified alcohol-
associated and non-alcohol-associated liver
diseases.

� Promising blood-based diagnostic gene biomarkers
were identified.

� These methods and biomarkers could aid in the
development of liquid biopsy for liver disease.
https://doi.org/10.1016/j.jhepr.2022.100560
Distinguishing between inflammatory liver diseases
without multiple tests can be challenging due to their
clinically similar characteristics. To lay the ground-
work for the development of a non-invasive blood-
based diagnostic across a range of liver diseases, we
compared samples from participants with alcohol-
associated hepatitis, alcohol-associated cirrhosis,
chronic hepatitis C infection, and non-alcohol-
associated fatty liver disease. We used a machine
learning computational approach to demonstrate that
gene expression data generated from either liver tis-
sue or blood samples can be used to discover a small
set of gene biomarkers for effective diagnosis of these
liver diseases.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2022.100560&domain=pdf
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Background & Aims: Liver disease carries significant healthcare burden and frequently requires a combination of blood tests,
imaging, and invasive liver biopsy to diagnose. Distinguishing between inflammatory liver diseases, which may have similar
clinical presentations, is particularly challenging. In this study, we implemented a machine learning pipeline for the iden-
tification of diagnostic gene expression biomarkers across several alcohol-associated and non-alcohol-associated liver dis-
eases, using either liver tissue or blood-based samples.
Methods: We collected peripheral blood mononuclear cells (PBMCs) and liver tissue samples from participants with alcohol-
associated hepatitis (AH), alcohol-associated cirrhosis (AC), non-alcohol-associated fatty liver disease, chronic HCV infection,
and healthy controls. We performed RNA sequencing (RNA-seq) on 137 PBMC samples and 67 liver tissue samples. Using gene
expression data, we implemented a machine learning feature selection and classification pipeline to identify diagnostic
biomarkers which distinguish between the liver disease groups. The liver tissue results were validated using a public inde-
pendent RNA-seq dataset. The biomarkers were computationally validated for biological relevance using pathway analysis
tools.
Results: Utilizing liver tissue RNA-seq data, we distinguished between AH, AC, and healthy conditions with overall accuracies
of 90% in our dataset, and 82% in the independent dataset, with 33 genes. Distinguishing 4 liver conditions and healthy
controls yielded 91% overall accuracy in our liver tissue dataset with 39 genes, and 75% overall accuracy in our PBMC dataset
with 75 genes.
Conclusions: Our machine learning pipeline was effective at identifying a small set of diagnostic gene biomarkers and
classifying several liver diseases using RNA-seq data from liver tissue and PBMCs. The methodologies implemented and genes
identified in this study may facilitate future efforts toward a liquid biopsy diagnostic for liver diseases.
Lay summary: Distinguishing between inflammatory liver diseases without multiple tests can be challenging due to their
clinically similar characteristics. To lay the groundwork for the development of a non-invasive blood-based diagnostic across a
range of liver diseases, we compared samples from participants with alcohol-associated hepatitis, alcohol-associated
cirrhosis, chronic hepatitis C infection, and non-alcohol-associated fatty liver disease. We used a machine learning compu-
tational approach to demonstrate that gene expression data generated from either liver tissue or blood samples can be used to
discover a small set of gene biomarkers for effective diagnosis of these liver diseases.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Liver disease is responsible for 2 million deaths worldwide
annually, ranking as one of the leading causes of death in the
world.1 Alcohol-associated hepatitis (AH) is one of the deadliest
liver diseases.2 Other liver disorders such as alcohol-associated
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cirrhosis (AC), chronic HCV infection, and non-alcohol-
associated fatty liver disease (NAFLD) are less deadly but are
more widespread. Distinguishing between various alcohol-
associated and non-alcohol-associated liver diseases typically
requires multiple lab tests that often culminate in liver biopsy.3

The diagnosis is further complicated because factors that pro-
mote liver disease, such as viral hepatitis, obesity, and alcohol
misuse, may overlap. Distinguishing AH and AC may be espe-
cially difficult and is thus an area of unmet clinical need. Pres-
ently, liver biopsy is regarded as the gold standard for confirming
liver disease diagnosis and staging fibrosis severity. This
approach has several limitations, such as procedural risk of
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internal bleeding, high cost, and patient dissatisfaction. While
various clinical parameters, blood panels, and imaging tests have
been used to supplement liver biopsy, they are not sufficiently
effective to fully replace liver biopsy.4 Development of a liquid
biopsy that is as accurate as liver biopsy for diagnosis of liver
disease would improve quality of patient care and reduce
healthcare costs. This process relies on identifying effective
blood-based diagnostic biomarkers.

Development of liquid biopsies using blood-based bio-
markers holds great promise when used with genomic data. For
example, one recent study on epigenetic universal cancer bio-
markers utilized DNA methylation markers.5 While the field is
expanding, many of the clinically used blood-based biomarkers
are cancer-specific.6 There is a shortage of effective diagnostic
blood-based biomarkers for liver diseases. Presently many of
the established biomarkers for liver disease are proteins found
in blood serum such as albumin.7 Circulating microRNAs such
as miR-122 and miR-155 have also been identified as diagnostic
biomarkers for a range of liver diseases.7 Several previous
studies have established that gene expression profiling of pe-
ripheral blood mononuclear cells (PBMCs) can be used to
characterize HBV, HCV, and primary biliary cholangitis.8–11

Serum markers have been used to distinguish between
alcohol-associated and non-alcohol-associated liver diseases
using several machine learning (ML) models.12 Liver tissue gene
expression in combination with clinical parameters has been
used to establish prognosis in patients with AH and HCV-
related early-stage cirrhosis.13,14

In this study, we chose to analyze gene expression in PBMCs
for a variety of reasons. PBMCs can be extracted from a blood
sample, pelleted and flash frozen, and provide ample material for
RNA sequencing (RNA-seq). The differences in gene expression of
PBMCs have been shown to reflect disease state. Additionally, we
also characterized gene expression of liver tissue. The liver tissue
served as a benchmark against which PBMCs could be compared,
since pathology of liver tissue is currently the standard for dis-
tinguishing between liver diseases.

We were primarily interested in distinguishing between AH
and AC, which may have similar clinical presentations. To
establish the robustness of our models in discriminating be-
tween inflammatory liver diseases, we further sought to
Table 1. Study population demographics (PBMCs).

AH CT

(n = 38) (n = 20)

Age, mean ± SD 47.3 ± 11.5 35.9 ± 15.6
MELD, mean ± SD 25 ± 3.8 7.3 ± 2.6
Maddrey’s DF, mean ± SD 52.6 ± 20.7 2.4 ± 8.1
BMI, mean ± SD 30 ± 6.2 27 ± 3.5
Sex, n (%)

Female 1 (2.6%) 8 (40.0%)
Male 37 (97.4%) 12 (60.0%)

Ethnicity, n (%)
Hispanic 25 (65.8%) 8 (40.0%)
NHW 10 (26.3%) 0 (0.0%)
Black 2 (5.3%) 2 (10.0%)
Other 1 (2.6%) 10 (50.0%)

Source SCAHC SCAHC

AC, alcohol-associated cirrhosis; AH, alcohol-associated hepatitis; CT, healthy controls; D
NF, non-alcoholic fatty liver disease; NHW, non-Hispanic White; SCAHC, Southern Cali
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distinguish alcohol-associated liver diseases from non-alcohol-
associated liver diseases, such as NAFLD and HCV. Therefore,
we have trained ML models to differentiate between these liver
diseases and healthy controls. As part of the classification pro-
cess, we have also identified effective diagnostic gene
biomarkers.

Like most individual biomedical research studies, ours was
limited to a small number of participant samples due to the high
costs of recruitment, sequencing, data storage, and data analysis.
The gene expression data is also inherently highly dimensional.
Datasets that contain more features than samples are difficult to
classify. Therefore, it was crucial in our study to use statistical
and ML techniques tailored for handling small sample and large
feature sizes. In addition to identifying useful PBMC-based
diagnostic biomarkers of liver diseases, our secondary goal was
to evaluate multiple bioinformatic pipelines in the context of
analyzing small sample size RNA-seq data. Special focus was
given to feature selection, wherein, we compared several
different feature selection approaches. Overall, our ML pipeline
demonstrated excellent classification performance across the
liver diseases using both liver tissue and PBMCs.
Materials and methods
Study population
This study was primarily conducted using biospecimens
collected from participants enrolled by the Southern California
Alcoholic Hepatitis Consortium (SCAHC). The protocol was
approved by the IRB, and informed written consent was obtained
from all participants. The liver tissue from participants with AC,
NAFLD, HCV, and healthy controls were obtained from the liver
tissue cell distribution system (LTCDS) at University of Minne-
sota. Participant demographics are outlined in Tables 1 and 2. We
summarized the age, MELD (model for end-stage liver disease)
score, Maddrey’s discriminant function, BMI, sex, and ethnicity of
our study population. As expected, the NAFLD group had the
highest mean BMI, while the AH group had the highest mean
MELD and Maddrey’s discriminant function scores.

The biospecimens consisted of 137 PBMC samples and 67 liver
tissue (LV) samples. The liver diseases represented were encoded
with 2 letter symbols (as presented in the tables and figures) as
PBMC samples

AC NF HP

(n = 40) (n = 20) (n = 19)

54.5 ± 9.7 52.2 ± 14.9 58.9 ± 7.4
13.4 ± 5.8 8.9 ± 4 8.9 ± 2.8
21.1 ± 19.1 7.7 ± 14.1 6.7 ± 7.1
30.4 ± 5.1 36.5 ± 6 29.6 ± 5.9

0 (0.0%) 4 (20.0%) 8 (42.1%)
40(100.0%) 16 (80.0%) 11 (57.9%)

25 (62.5%) 9 (45.0%) 10 (52.6%)
13 (32.5%) 7 (35.0%) 4 (21.1%)

1 (2.5%) 2 (10.0%) 5 (26.3%)
1 (2.5%) 2 (10.0%) 0 (0.0%)
SCAHC SCAHC SCAHC

F, discriminant function; HP, HCV infection; MELD, model for end-stage liver disease;
fornia Alcoholic Hepatitis Consortium.
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Table 2. Study population demographics (Liver).

Liver tissue samples

AH CT AC NF HP

(n = 32) (n = 8) (n = 8) (n = 10) (n = 9)

Age, mean ± SD 43.3 ± 11.3 55.4 ± 4.3* 54.2 ± 6.9* 56.8 ± 11.6 56.8 ± 7.6
MELD, mean ± SD 25.1 ± 5.7 NA NA 28 ± 5.9* 27.2 ± 7.5*
Maddrey’s DF, mean ± SD 52.3 ± 22.1 NA NA NA NA
BMI, mean ± SD 29.4 ± 5.9 NA NA NA NA
Sex, n (%)

Female 3 (9.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Male 29 (90.6%) 7 (87.5%) 5 (62.5%) 10 (100.0%) 9 (100.0%)

Ethnicity, n (%)
Hispanic 25 (78.1%) NA 0 (0.0%) 0 (0.0%) 1 (11.1%)
NHW 5 (15.6%) NA 4 (50.0%) 7 (70.0%) 5 (55.5%)
Black 1 (3.1%) NA 0 (0.0%) 1 (10.0%) 2 (22.2%)
Other 1 (3.1%) NA 0 (0.0%) 0 (0.0%) 0 (0.0%)

Source SCAHC LTCDS LTCDS LTCDS LTCDS

The ethnicity and sex percentages may not add up to 100% due to missing data.
AC, alcohol-associated cirrhosis; AH, alcohol-associated hepatitis; CT, healthy controls; DF, discriminant function; HP, HCV infection; LTCDS, liver tissue cell distribution
system; MELD, model for end-stage liver disease; NF, non-alcoholic fatty liver disease; NHW, non-Hispanic White; SCAHC, Southern California Alcoholic Hepatitis Consortium.
* Missing age for 3 AC participants, MELD for 2 NF participants, and MELD for 4 HP participants.
follows: alcohol-associated hepatitis (AH), alcohol-associated
cirrhosis (AC), NAFLD (NF), chronic HCV (HP), and healthy con-
trols (CT). All PBMC and liver tissue samples were collected from
distinct participants except for 19 participants with AH that
provided both sample types. Most of the AC participants within
the SCAHC study were expected to be in-patients with decom-
pensated cirrhosis. The inclusion and exclusion criteria can be
found in the supplementary materials. Best efforts were made
during recruitment of the AH and non-AH groups within the
SCAHC study to match based on age, sex, and ethnicity. Severity-
based matching was not possible due to small sample size.

Sample collection
The blood samples and liver biopsies from participants with AH
were collected before starting treatment. Blood samples from all
other groups were collected at entry into the study. PBMCs were
freshly isolated from the blood samples by Ficoll-Histopaque (GE
Healthcare) gradient centrifugation, flash frozen, and then stored
in a liquid nitrogen tank. The AH biopsy sample was placed in a
cryovial containing RNAlater (Invitrogen) and flash frozen in
liquid nitrogen. The liver tissue samples for healthy controls, AC,
NALFD, and HCV conditions were obtained from University of
Minnesota LTCDS.

Sample data preprocessing
RNA sequencing and alignment
Several samples were removed prior to use in our study, due to
poor read quality.15 The trimmed, filtered, and decontaminated
reads were aligned to the hg38 (GRCh38 assembly) human
reference genome using STAR 2.6.016 with default settings
(STARCQ), and annotated with Ensembl release 91 (Dec 2017).

Partitioning samples into 4 data sets
We divided our data into 4 datasets, which we refer to as follows:
LV 2-Way, LV 3-Way, LV 5-Way, and PBMC 5-Way. LV 2-Way
included liver tissue samples from participants with AH (n =
32) and healthy (n = 8) conditions. The LV 3-Way included liver
tissue from participants with AH (n = 32), healthy (n = 8), and AC
(n = 8) conditions. The LV 5-Way included liver tissue from
participants with AH (n = 32), healthy (n = 8), AC (n = 8), NAFLD
JHEP Reports 2022
(n = 10), and HCV (n = 9) conditions. The PBMC 5-Way included
PBMC samples from participants with AH (n = 38), healthy (n =
20), AC (n = 40), NAFLD (n = 20), and HCV (n = 19) conditions.

Validation dataset
We validated our liver tissue ML models using the GSE142530
dataset.17 This dataset contained liver tissue RNA-seq data from
participants with AH (n = 10), healthy (n = 12), and AC (n = 6)
conditions. We utilized the counts data that had been generated
with DESeq2 and deposited in GEO.18 Publicly available RNA-seq
gene expression data from PBMCs was not available for the
conditions in our study, and therefore, only the liver tissue
datasets were validated using independent data.

Analysis of gene expression data
For each sample and workflow within our data, standard frag-
ments per kilobase of exon model per million reads mapped
(FPKM) values were directly extracted from the corresponding
alignment results (BAM files) using the Cuffquant utility of the
Cufflinks suite (release 2.2.1).19 The FPKM counts were then
further normalized using Cuffdiff geometric normalization. The
RNA-seq counts were transformed using ln(1+count) formula.
This transformation greatly reduced count variance and
improved classification accuracies (Fig. S1 and Fig. S2). The
validation dataset counts generated by DESeq2 were presum-
ably normalized using DESeq2’s default median of ratios
method, which is equivalent to Cuffdiff’s geometric normali-
zation. These counts were also transformed using ln(1+count)
formula.

Classification and feature selection architecture
Overview of classification and feature selection pipeline
The classification and feature selection pipeline process flow is
visualized in Fig. 1. Feature selection was performed on each
training set using differential expression (DE) and information
gain (IG) methods. The DE and IG feature selection methods are
referred to as filter feature selection methods.20 DE feature se-
lection was performed using Cuffdiff, while the IG feature se-
lection was implemented using scikit-learn (version 0.23.2+)
package’s implementation of IG algorithm.21
3vol. 4 j 100560



Nested cross validation (NCV):
Perform feature selection

Classify with logistic regression, k-nearest
neighbors, support vector machine

Inner loop (k = 5):
Tune hyper-parameters

Outer loop (k = 5): Evaluate

Merge training set
features and perform

gene enrichment
analysis

Best
gene
set

Evaluate
ML performance

metrics

Validate in
independent
dataset (liver)

Filter outlier features

Normalized and log-
transformed RNA-seq counts

Initial phase of feature selection: Differential
expression and information gain

Fig. 1. Diagram outlining the flow of processes in the machine learning
feature selection and classification pipeline. ML, machine learning; RNA-seq,
RNA sequencing.
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Regardless of the feature selection method used, once the
features were selected, the classification process was similar. The
classifiers were evaluated using k-fold nested cross-validation (k
outer and inner = 5). The feature selection was performed inside
of inner and outer loops of nested cross-validation. The classifi-
cation performance was primarily evaluated using confusion
matrices, overall, and per-class accuracies. The features selected
in the outer loop of nested cross-validation were merged
together to form the candidate gene set, if they appeared in at
least 4 out of 5 training sets. The resulting candidate gene sets
were then evaluated using gene enrichment analysis. A combi-
nation of feature size, overall accuracy, per-class accuracies, and
gene enrichment analysis were then used to pick a best gene set
for each dataset. In the case of liver tissue datasets, the best gene
sets were then further evaluated in an independent validation
dataset. We used Python 3.7+ for all ML analysis, and all of the
classifiers were implemented in scikit-learn package. The power
size calculation was performed in R.
JHEP Reports 2022
ML classifiers
The ML analysis for all 4 of our datasets was performed and was
reported in this study using logistic regression (LR), k-nearest
neighbors (kNN), and support vector machine (SVM) classifiers.
The corresponding hyper-parameters used during grid search
can be found in the codebase.

In silico biological validation and best gene selection
The genes selected during feature selection were computation-
ally evaluated for biological relevance using gene enrichment
analysis via Enrichr with pathway, tissue, and disease Enrichr
libraries.22 The resulting hits were filtered using an adjusted p
value cut-off of 0.05 and regular expression matching. The terms
used for pathways regular expression matching included names
of various immune system pathways. The terms used for tissue
regular expression matching included names of various cell
types that comprise blood and liver tissues. The terms used for
disease regular expression matching included the conditions
within this study (AH, AC, NAFLD, HCV) along with a few other
liver and blood disorders.

To compare the in silico biological relevance of many
different gene sets, we devised a simple tallying system to
count the number of hits within pathway, tissue, and disease
libraries that passed the adjusted p value cut-off and regular
expression matching. For each of the 4 datasets, we identified a
gene set (Box 1) that exhibited both high classification accuracy
and highly relevant in silico biological validation results using
Enrichr. We have also provided the fold changes of the best
genes for Liver 5-Way and PBMC 5-Way datasets (Tables S6
and S7).

Additionally, we evaluated the best gene sets for Liver 5-Way
and PBMC 5-Way datasets using Ingenuity Pathway Analysis
(IPA), gene set-enrichment analysis (GSEAPreranked), and blood
transcription module (BTM) analysis (BloodGen3Module)
tools.23–25 Blood transcription module analysis was performed
with the PBMC 5-Way dataset only, since this method is specific
to blood-based samples. Notably, this technique was recently
utilized to analyze RNA-seq data from PBMCs to predict response
to corticosteroid therapy in patients with AH.26 Since these tools
utilize different knowledgebases and statistical methods, they
provided complementary pathway annotations. The methods
and results for these tools are provided in the supplementary
information.

Independent test dataset validation
After the best gene set was selected for each of our 3 liver tissue
datasets, the independent validation dataset was utilized as
follows. The ML classifier that performed best with the selected
gene set was trained on the entirety of the corresponding liver
dataset (i.e., LV 2-Way, LV 3-Way, or LV 5-Way), using only the
best genes selected for that dataset. The hyper-parameters for
this classifier were selected by performing a regular cross-
validation over the entirety of the corresponding liver dataset.
The trained model was then tested in the independent dataset.
While the PBMC 5-Way model could not be tested in an inde-
pendent dataset set due to lack of appropriate public data, the
methods prior to the independent dataset evaluation were the
same for both liver and PBMC tissues. Therefore, we are confi-
dent that the PBMC genes identified in this study will have
reasonable generalization. Additionally, the PBMC dataset had
twice as many samples available for training and testing as the
liver dataset, thereby also strengthening confidence in the best
4vol. 4 j 100560



Box 1. Best gene sets for Liver 2-Way, Liver 3-Way, Liver 5-Way, and PBMC 5-Way datasets.

AKR1B10, FITM1, KRT23, MMP7, MT1M, PLA2G2A, PPP1R1A, SCTR, TREM2.

AKR1B10, C15orf52, CFTR, CREB3L3, CXCL6, CYP2A7, CYP2B6, DBNDD1, EEF1A2, EPS8L1, FAM198A, FCGR3B, FCN3, FITM1, 
GPC3, GPNMB, HAMP, HAO2, IGSF9, KRT23, LCN2, LYZ, MMP7, MT1G, PLA2G2A, PPP1R1A, RGS1, S100A8, SCTR, STAG3, 
TMEM132A, TREM2, VCAN.

AC025259.3, AKR1B10, ATF3, CYP2A7, CYP2B6, DOCK7, DUSP1, EPS8L1, GADD45B, GADD45G, GSTA2, HBA2, IFI6, IFI27, IFI44L, 
IFITM1, IGFBP1, IGHV3-23, ISG15, KRT7, KRT23, LINC01554, MMP7, MT1G, MT1M, MUC1, MUC6, NR4A1, OASL, PLA2G2A, PPP1R1A, 
RGS1, S100A8, SAA2-SAA4, SCTR, SERHL2, SLC2A3, SPINK1, SYT8.

AHSP, ALAS2, ALPL, ANXA3, AQP9, ATF7IP2, AZU1, BCAT1, C1QA, C1QB, CAMP, CCR2, CD180, CEACAM3, CEACAM8, CHI3L1, 
CRISP3, CTSG, CXCL5, CXCR1, DEFA3, DEFA4, DSC2, DYSF, ELANE, FCGR3B, FFAR2, FLVCR2, FPR2, GTF2IRD2B, HBD, HBM, 
HBQ1, HP, IFITM3, IGHG3, IGHG4, IGKV1-12, IGKV1-39, IGKV1D-13, IGLC3, IGLV3-10, KCNJ15, LCN2, LTF, MME, MMP8, MPO, MPZL2, 
NLRC4, NRP1, ORM1, OSBPL10, PGLYRP1, PLA2G4C, PRRG4, PTK7, RAB10, RETN, RNASE2, RNASE3, S100B, S100P, SC5D, 
SIGLEC6, SLC25A37, SLPI, TCF7L2, TLR8, TMEM144, TMEM150B, TMEM170B, TNFSF10, VSIG4, ZNF683.

Liver 2-Way

Liver 5-Way

Liver 3-Way

PBMC 5-Way
PBMC gene set. For additional details regarding methods, please
refer to the supplementary methods and CTAT table.
Results
Classification of LV 2-Way (AH vs. Healthy)
We developed many of our approaches described in the Methods
section while first analyzing the binary dataset of AH vs. healthy
samples. The task of distinguishing between AH and healthy
samples proved simple, with accuracy as high as 100% depending
on feature size, classifier, and feature selection methods. Based
on their classification performance and runtime in the LV 2-Way
dataset we chose to use LR, kNN, and SVM classifiers for the
remaining datasets. The gene sets produced via various feature
selection and outlier filtering strategies were also computation-
ally evaluated for biological relevancy using Enrichr (Table S18).
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We selected the best gene set for our LV 2-Way dataset and then
validated it in the independent test dataset. Using the best gene
set of only 9 genes, we attained 97% classification accuracy
within the LV 2-Way dataset, and 95% accuracy in the validation
dataset, as visualized using confusion matrices (Fig. 2). Heatmaps
of the RNA-seq counts per condition as an average and for each
replicate show that the 2 conditions are very distinct from each
other in both our LV 2-Way dataset and the independent dataset
(Fig. 2). The best gene set for each of the 4 datasets is shown in
Box 1.
Classification of LV 3-Way (AH vs. Healthy vs. AC)
Having successfully distinguished between AH and healthy
samples with high accuracy, we proceeded to the more difficult
multiclass classification task of discriminating between multiple
liver diseases at once. Our classifiers peaked around 90% overall
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Fig. 3. Confusion matrices and RNA-seq count heatmap corresponding to the best gene set of LV 3-Way dataset. (A) Confusion matrix for classification of LV
3-Way dataset using best gene set identified by filter feature selection. (B) RNA-seq count heatmap of best LV 3-Way gene set averaged per condition. (C)
Confusion matrix for classification of AH, AC, and CT samples within independent validation dataset. (D) RNA-seq count heatmap of best gene set within in-
dependent validation dataset (AH, AC, and CT) averaged per condition. AC, alcohol-associated cirrhosis; AH, alcohol-associated hepatitis; CT, healthy controls; LV,
liver tissue; RNA-seq, RNA sequencing.
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accuracy within our LV 3-Way dataset (Table S19). We identified
the best gene set by examining the accuracies and in silico bio-
logical validation scores of each gene set produced by various
feature selection configurations (Table S19 and S20). The top
Enrichr hits for the LV 3-Way dataset are shown in Table S21.
Using the best gene set comprised of 33 genes, we attained 90%
overall accuracy in the LV 3-Way dataset (via nested cross-
validation) and 82% overall accuracy in the independent valida-
tion dataset. The confusion matrices and the heatmaps of RNA-
JHEP Reports 2022
seq counts corresponding to the best gene set within LV 3-Way
and the independent validation datasets are displayed in Fig. 3.

Classification of LV 5-Way (AH vs. Healthy vs. AC vs. NAFLD vs.
HCV)
The LV 5-Way dataset was the most complex liver tissue dataset
in the study. While AH and healthy groups were generally clas-
sified with high accuracy, the remaining conditions proved to be
more challenging to appropriately classify (Fig. 4). The classifiers
6vol. 4 j 100560
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Fig. 4. Confusion matrices and RNA-seq count heatmaps corresponding to the best gene set of LV 5-Way dataset. (A) Confusion matrix for classification of LV
5-Way dataset using best gene set identified by filter feature selection. (B) RNA-seq count heatmap of best LV 5-Way gene set averaged per condition. (C)
Confusion matrix for classification of AH, AC, and CT samples within independent validation dataset. (D) RNA-seq count heatmap of best gene set within in-
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chronic HCV infection; LV, liver tissue; NF, non-alcohol-associated fatty liver disease; RNA-seq, RNA sequencing.
peaked at around 90% overall accuracy within the LV 5-Way
dataset (Table S22). We identified the best gene set using a
combination of classification performance and in silico biological
validation metrics (Tables S22 and S23). For the annotations of
the best gene set for LV 5-Way, the top hits using Enrichr are
shown in Table S24, IPA in Table S28, and GSEA in Table S30.
Using the best gene set comprised of 39 genes, we attained 91%
overall accuracy within the LV 5-Way dataset (via nested cross-
validation) and 64% overall accuracy in the validation dataset.
JHEP Reports 2022
While the overall classification accuracy in the independent
dataset was lower than in the LV 3-Way testing, this was ex-
pected since the LV 5-Way gene set was based on 2 additional
liver diseases (NAFLD and HCV), which were not present in the
independent dataset. Notably, there were no samples from the
independent dataset that were misclassified as NAFLD or HCV.
The confusion matrix and the heatmap of RNA-seq counts cor-
responding to the best gene set within LV 5-Way and the inde-
pendent validation datasets are shown in Fig. 4.
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Classification of PBMC 5-Way (AH vs. Healthy vs. AC vs. NAFLD
vs. HCV)
Having achieved high classification accuracies in liver datasets,
we broadened the scope of our study by applying these same ML
models and strategies to our PBMC dataset. The classifiers tested
peaked at 75% overall accuracy (Table S25). We identified the
best gene set using a combination of classification performance
and in silico biological validation metrics (Tables S25 and S26).
For the annotations of the best gene set for PBMC 5-Way, the top
hits using Enrichr are shown in Table S27, IPA in Table S29, GSEA
in Table S31, and BloodGen3Module in Table S32. Using the best
gene set comprised of 75 genes, we attained 75% overall accuracy
in PBMC 5-Way dataset (via nested cross-validation). Because we
could not obtain public RNA-seq data from PBMCs for several of
our liver diseases, we could not validate the PBMC genes and
JHEP Reports 2022
classification performance in an independent data set. However,
since the methods used to identify the best gene set were
identical for both liver and PBMC datasets, we are confident of
our results. The confusion matrix and the heatmap of RNA-seq
counts corresponding to this gene set are shown in Fig. 5.
Discussion
To the best of our knowledge, this is the first study to utilize ML
approaches with liver tissue and PBMC gene expression data to
distinguish among several alcohol-associated and non-alcohol-
associated liver diseases simultaneously with overall classifica-
tion accuracies above 75%. Optimization of gene feature selection
played a key role in attaining high accuracies. We have also
identified gene signatures that were enriched for various
8vol. 4 j 100560



inflammation and metabolism pathways, which thus show
promise as diagnostic biomarkers for the liver diseases included
in the study.

We found that the use of feature selection was one of the
most crucial components of successful classification. The feature
space of a typical RNA-seq experiment consists of thousands of
genes. While exploring every possible subset of genes is
computationally infeasible, we found that it was crucial to
experiment with at least a small number of intelligently selected
gene subsets. The filter feature selection proved to be the most
effective and runtime efficient approach. While DE and IG filters
attained similar classification accuracies, the DE filter resulted in
more biologically relevant gene sets. The choice of ML classifier
had minor impact on classification accuracy with LR, kNN, and
SVM classifiers proving to be most effective for our datasets.

The outlier feature removal proved useful toward establishing
adequate in silico biological relevance. Small sample size RNA-
seq datasets are typically noisy and highly impacted by batch
effects. RNA-seq data also often contains many aberrantly
expressed non-coding genes. The removal of these genes resul-
ted in gene signatures with more biologically relevant terms. In
addition to using Enrichr for in silico biological validation, we
also performed pathway analysis of best gene signatures for the
5-Way datasets using IPA, GSEA, and BTM analysis software,
which highlighted relevant pathways in these gene sets on
pairwise comparison basis (Tables S28–S32).

Using the best gene signature identified in the PBMC 5-Way
dataset (AH, Healthy, AC, NAFLD, HCV), we examined signifi-
cantly enriched pathways with IPA for each pairwise comparison.
The significantly enriched pathways mainly fell into 2 categories:
iron homeostasis and immune system processes. Iron homeo-
stasis pathways included heme biosynthesis, tetrapyrrole
biosynthesis, and erythropoietin signaling. Iron homeostasis is
one of the principal liver functions, while most of the functional
iron in the body is stored in hemoglobin within red blood cells.
Large amounts of iron are recycled from senescent erythrocytes
by macrophages.27 Chronic liver disease has been extensively
linked to iron deficiency anemia.28 Therefore, it would be ex-
pected that PBMCs demonstrate altered expression of genes that
play crucial roles in iron homeostasis in patients with chronic
liver diseases. Erythropoietin plays a crucial role in regulation of
erythropoiesis and has been shown to ameliorate fatty liver
disease in animal models.29 Immune system processes included
signaling pathways (e.g., TREM1, IL-8, IL-17A, B cell receptor, and
acute phase), complement system, and agranulocyte adhesion
and diapedesis. TREM1 expression in resident and infiltrating
immune system cells promotes inflammation during the course
of liver disease.30 The IL-8 signaling pathway is enriched by
differential expression of the CXCR1 gene within the PBMC 5-
Way dataset. Altered expression of CXCR1 in circulating mono-
cytes of patients with cirrhosis has previously been estab-
lished.31 Increased expression of IL-17A within a range of
immune cells has previously been shown to be an indicator of
chronic liver disease.32 In addition to pathway analysis with IPA,
we also performed GSEA and BTM analyses of the PBMC 5-Way
best gene signature. The most enriched GSEA pathways per
pairwise comparison reflected immune response and homeo-
static processes (Table S31). Differentially enriched BTMs pri-
marily involved immune response, inflammatory response,
oxygen transport, and hemopoiesis (Table S32). Thus, the results
of the GSEA and BTM analyses provided additional confirmation
JHEP Reports 2022
of the IPA analysis, and insights into the directionality of the
enriched pathways. While alterations in the expression of im-
mune and inflammatory genes in PBMCs due to liver diseases
were expected, it was intriguing that the expression levels of
these genes could be used to differentiate between these diverse
liver diseases.

Pathway analysis of the Liver 5-Way dataset identified many
pathways related to metabolism, biosynthesis, and degrada-
tion. For example, when comparing disease groups in the liver
dataset (AH, AC, NAFLD, HCV) to healthy controls, some
commonly and significantly enriched pathways involved
degradation of bupropion, methylglyoxal, tryptophan, acetone,
nicotine, and melatonin. Retinoate, retinol, and estrogen
biosynthesis pathways were also highly enriched. Abnormal
estrogen metabolism due to liver disease has been established
previously.33 Abnormal vitamin A metabolism has been heavily
implicated in liver disease, especially NAFLD.34,35 The retinoate
and retinol pathways were enriched by differential expression
of aldo-keto reductase family 1 member B10 (AKR1B10).
AKR1B10 has been reported as an effective biomarker of
advanced liver fibrosis and liver cancer.36,37 The pregnane X
receptor activation pathway was also highly enriched across
many pairwise comparisons and has been implicated in chronic
liver disease.38 The pairwise comparisons involving AH and AC
conditions were enriched for ethanol degradation pathways39

by differential expression of CYP2A7 in our gene signature.
Changes in expression of CYP2A genes in liver tissue have been
linked with NAFLD and alcohol-associated liver disease.40

These enriched pathways and genes suggest that alterations
in the liver’s ability to degrade and synthesize these com-
pounds may be related to the liver diseases in the study.

Both PBMC 5-Way and LV 5-Way datasets were enriched for
several common immune system pathways, such as: inhibition
of matrix metalloproteases (MMPs), macrophage migration
inhibitory factor regulation of innate immunity, and interferon
signaling pathways. As reported by IPA, these pathways were
enriched by MMP8, PLA2G4C, and IFITM3 genes, respectively, in
the PBMC 5-Way dataset. In the LV 5-Way dataset, these path-
ways were enriched by MMP7, PLAG2GA, and a combination of
IFITM1, IFI6, and ISG15 genes, respectively. Genes in the MMP
family have been established as key actors in liver regeneration
and fibrosis.41 PLA2G4C has been reported to play a role in HCV
replication.42 Interferon genes have long been implicated in both
HCV and viral infections broadly.43 As expected, the interferon
signaling pathway had higher enrichment in pairwise compari-
sons involving HCV in both the PBMC and liver tissue datasets.

We further analyzed the gene expression data from the 19
participants with AH who donated both liver tissue and PBMCs.
We identified several genes and gene families that were similarly
up- or downregulated within both AH sample types, when
compared with healthy controls (Table S34, Fig. S12-S14). The
genes fell into 4 groups: interferon (IFITM1, IFI44L), MMP (MMP7,
MMP8, MMP14), iron homeostasis (SLC25A37, SLC11A1), and tu-
mor necrosis factor (TNFS10, TNFRSF21, TNFSF13B) genes. Notably,
these findings are similar to our results when comparing the best
gene sets across 5-Way PBMCs and 5-Way LV datasets. The
similarities in directionality of gene expression between liver
and PBMC samples lend credence to using blood-based bio-
markers for AH.

While we achieved excellent classification performance and
the identification of biologically relevant gene signatures, there
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were several limitations to our study. Use of independent
datasets is crucial in ML and biomarker discovery, however, we
could not find any publicly available data on gene expression in
PBMCs attained from individuals with AH or AC. Therefore, only
our liver tissue dataset results could be independently validated
at this time. A larger study with more samples is necessary to
validate the biomarkers identified. Our classification perfor-
mance could also be improved with the use of more advanced
feature selection methodologies such as multi-objective genetic
algorithms.44

In conclusion, our machine learning approach using gene
expression data from PBMCs and liver tissue was effective at
distinguishing among multiple liver diseases and healthy con-
trols. Additionally, our models were able to distinguish between
JHEP Reports 2022
clinically similar alcohol-associated liver conditions, such as AH
and AC. Notably, the AC group for our PBMC samples included
both recently drinking and abstinent individuals with AC. AC in
patients reporting recent drinking is especially difficult to
distinguish from AH clinically, which further demonstrates the
utility of this study. While the gene expression data from liver
tissue had better classification performance than that of PBMCs,
the attainment of liver biopsy is difficult and not standard of care
at many healthcare facilities. PBMCs from blood samples, on the
other hand, can be easily attained and stored. Based on the
outcome of this study, we have demonstrated that blood-based
biomarkers from gene expression can be utilized with machine
learning methods for the diagnosis of liver disease, paving the
way toward the clinical application of liquid biopsy.
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