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Land transpiration-evaporation partitioning errors
responsible for modeled summertime warm bias in
the central United States
Jianzhi Dong 1,2,4✉, Fangni Lei3 & Wade T. Crow 1✉

Earth system models (ESMs) from the Coupled Model Intercomparison Project Phase 6

(CMIP6) experiment exhibit a well-known summertime warm bias in mid-latitude land

regions – most notably in the central contiguous United States (CUS). The dominant source

of this bias is still under debate. Using validated datasets and both coupled and off-line

modeling, we find that the CUS summertime warm bias is driven by the incorrect partitioning

of evapotranspiration (ET) into its canopy transpiration and soil evaporation components.

Specifically, CMIP6 ESMs do not effectively use available rootzone soil moisture for sum-

mertime transpiration and instead rely excessively on shallow soil and canopy-intercepted

water storage to supply ET. As such, expected summertime precipitation deficits in CUS

induce a negative ET bias into CMIP6 ESMs and a corresponding positive temperature bias

via local land-atmosphere coupling. This tendency potentially biases CMIP6 projections of

regional water stress and summertime air temperature variability under elevated CO2

conditions.
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G lobal warming leads to an increased risk of local hydro-
climate extremes, e.g., heatwaves1–3, droughts4–7, and
floods8–10. Earth System Models (ESMs) are commonly

applied to project such risks11–14. However, retrospective ESMs
are often biased with regard to regional screen-level air tem-
perature (T2m)—particularly during mid-latitude summer
(June–July–August or JJA)15. Understanding the process-level
source of T2m bias has been a priority for the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experiment16. Due to
the importance of mid-latitude JJA conditions for food
production17, resolving this bias would significantly benefit the
credibility of ESM projections as the basis for climate adaptation
strategies. Positive JJA T2m bias is most notable in the central
contiguous United States (CUS) and remains a persistent feature
there in both coupled ESMs and numerical weather prediction
models—even after multiple generations of model
development15,18.

The CUS JJA warm bias is potentially attributable to either
ESM atmosphere or land surface modeling errors, and the
dominant contributor to such bias is still under debate. For
instance, most ESMs cannot capture the summer nocturnal pre-
cipitation (P) peak in CUS, which can result in negatively biased
JJA P19. Such diurnal P bias is potentially attributable to the
incorrect representation of convective-system propagation20–22

and the low-level jet in the CUS23–25. Errors in these processes
also lead to underestimated shallow cumulus cloud cover and
overestimated net shortwave solar radiation (Rs)18. The net
impact of negatively biased P and positively biased Rs eventually
yields excessive surface sensible heating26,27 and an evapo-
transpiration (ET) deficit18,26,28,29. Based on this line of reason-
ing, attention has generally been focused on isolating atmospheric
sources for the CUS JJA warm bias.

However, even in the absence of bias in atmospheric variables,
internal shortcomings in ESM land surface physics can sig-
nificantly impact the surface partitioning of sensible and latent
heat flux30 and, by extension, JJA T2m levels through local land-
atmosphere coupling. In off-line land surface models (LSMs),
employing different soil moisture (SM) stress functions can lead
to relative ET differences of up to 50%31,32. Likewise, the tran-
spiration component of ET is particularly sensitive to the repre-
sentation of lateral soil water flow between model grid cells33 and/
or groundwater dynamics34. Due to their general inability to
represent these processes, LSMs tend to overestimate the inci-
dence of water-limited ET regimes35—and therefore overestimate
T2m when applied in a coupled ESM36,37.

As mentioned above, a low bias in ET can be attributed to
either atmospheric (e.g., negatively biased P18) or land (e.g., an
over-coupled SM–ET relationship32) modeling errors. Previous
studies have not disentangled competing atmospheric and land-
modeling errors and, as such, have not isolated the key factor(s)
controlling the CUS warm bias in ESMs. Although experiments
involving off-line LSM simulations are helpful in identifying land-
based biases, their findings cannot be directly transferred to
coupled ESMs—since the relative importance of atmospheric and
land-modeling errors is unknown, and land biases tend to be
attenuated after considering land-atmosphere feedbacks38.
Therefore, the conclusive attribution of the CUS JJA warm bias is
challenged by the complex relationship between the land and the
atmosphere.

Fortunately, recent advances in remote sensing (RS) have sig-
nificantly improved the accuracy of retrieved land variables39–42.
New statistical approaches are also available that provide
unbiased estimates of land-atmosphere coupling strength using
(relatively) noisy RS retrievals43. In addition, newly available off-
line LSM simulations forced with observed meteorological
observations, but utilizing the same land physics as

CMIP6 simulations, can help separate land and atmospheric
contributions to CMIP6 T2m biases44. Utilizing these advances,
we investigate JJA T2m biases within the latest CMIP6 ESMs for
the CUS region and identify key variables/processes that control
CMIP6 air temperature bias and model-to-model variance.

Our results demonstrate that the CUS JJA warm bias in CMIP6
ESMs is attributable to the incorrect partitioning of ET into its
canopy transpiration and soil evaporation components. This
partitioning bias between different ET components is related to
the inadequate utilization of available rootzone SM (RZSM) for
ET in ESMs. As a result, CMIP6 ESMs are disproportionally
impacted by seasonal variations in P and generate negatively
biased summertime ET estimates that propagate into a warm JJA
bias via local land-atmosphere coupling. Biased land partitioning
of transpiration versus evaporation also tends to yield over-
estimated JJA temperature variability under future elevated CO2

conditions.

Results
This section separates potential sources of the warm CUS JJA bias
and quantifies their relative importance. Specifically, we consider:
(1) a Rs-dominant hypothesis where a positive bias in Rs intro-
duces a corresponding positive T2m bias via excessive surface
sensible heating associated with depleted RZSM; (2) a
P-dominant hypothesis where a negative bias in P directly leads
to underestimated RZSM and excessive surface sensible heat flux;
and (3) a land-dominant hypothesis where incorrect land physics
yield a negative bias in JJA ET that outweighs the impact of P and
Rs biases. Since modeled T2m bias is most evident in 2-m sum-
mertime daily maximum temperature (Tmax)27, we focus on the
analysis of Tmax bias. Given that ET estimates from FluxCOM45

have the least absolute bias among available ET reference pro-
ducts relative to ground-based flux-tower observations (Supple-
mentary Fig. 1), they are applied here as an ET reference.

Consistent with previous CMIP3 and CMIP5 analyses15,18,
retrospective coupled CMIP6 results demonstrate a warm Tmax
bias in the CUS region (Fig. 1a) that extends into southern
Canada. Spatial comparisons show that 72.7% of CUS grid cells
with significant Tmax warm biases also contain significant
negative ET biases.

The net impact of large-scale temperature advection is a rela-
tively small contributor to total diurnal heating of the lower
atmosphere in the CUS region (see Supplementary Fig. 2). In
addition, the hypothesis that the Tmax bias is dominated by ESM
errors in temperature advection is inconsistent with simple sur-
face water balance considerations (see Section 3 of the supporting
information). As a result, this study focuses on the role of local
processes.

Rs-dominant hypothesis. As expected, Fig. 1c shows that CMIP6
Rs estimates have a clear positive bias throughout the CUS region.
Overestimated Rs can potentially yield negatively biased ET via
the depletion of RZSM. However, if this mechanism is truly the
dominant source of JJA ET and Tmax biases, CMIP6 ESMs
should predict excessively low RZSM during JJA—irrespective of
whether the Rs impact on RZSM is inter- or intra-seasonal in
nature. To evaluate this possibility, we compare seasonal trends in
2000–2014 CMIP6 JJA RZSM estimates to comparable results
from a dense SM network in Oklahoma (see the green triangle in
Fig. 1a)—an area where at least two-thirds of CMIP6 ESMs
demonstrate significant biases in Tmax and ET (Fig. 1a, b). As
shown in Fig. 1g, CMIP6 ESMs encompass the observed RZSM
seasonal cycle and there is no evidence of biased RZSM depletion
during JJA. Likewise, paired T-test results based on an additional
27 sparse SM in-situ sites in the CUS region also demonstrate that
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the difference of CMIP6- and observation-based May-JJA RZSM
drying rate is statistically insignificant (at p= 0.95 confidence
level, Supplementary Fig. 3). Figure 1h further evaluates potential
RZSM deficits from a water balance perspective. It shows that the
total (negative) ET bias is substantially stronger than the
accompanying negative P bias—which illustrates that CUS JJA
water availability (i.e., P-ET) is generally overestimated in CMIP6
ESMs. Therefore, from both a RZSM and water balance per-
spective, there is no support for the hypothesis that a positive bias
in Rs induces a dry JJA RZSM bias. The lack of an apparent bias
in CMIP6 RZSM estimates suggests that observed Tmax and ET
biases cannot be explained via a JJA RZSM deficit in the CMIP6
ESMs. These results also argue against any hypothesis invoking
excessive springtime model RZSM depletion due to intra- or
inter-seasonal land and/or atmosphere modeling errors, e.g.,
biases in snow albedo modeling46 or excessive spring drying due
to phenological changes47.

Coupled and off-line (with the same land physics but
observation-corrected meteorological forcing data, denoted as
CMIP6_OFL) CMIP6 simulations are compared to further
examine the Rs-dominate hypothesis. Rs and ET relative

differences between the CMIP6 and CMIP6_OFL cases (Fig. 1i)
suggest that the overestimation of Rs in the coupled
CMIP6 simulations generally increases JJA ET via increased
atmospheric ET demand—a tendency that overwhelms any
potential decrease in ET related to RZSM depletion. Therefore,
there is no indication that a positive Rs bias (present in the
CMIP6 simulations—but corrected for in CMIP6_OFL) is
contributing to the negative JJA ET bias seen in Fig. 1b.

P-dominant hypothesis. Spatial analysis is useful for examining
the (second) potential hypothesis that underestimated P is the
dominant source of ET and Tmax biases. Figure 1d illustrates that
significant JJA P bias is concentrated in the southern CUS.
However, in the northern CUS (i.e., roughly the northern third of
the black box in Fig. 1a) and areas of southern Canada (i.e., the
red box in Fig. 1a), regional Tmax and ET biases persist (at levels
up to 3 °C and 20W/m2, respectively) in the absence of any
significant P bias (compare Fig. 1a, d).

Likewise, if a negative P bias is the primary contributor to the
ET deficit and warm Tmax bias, summertime drying trends in

Fig. 1 Spatial distribution and temporal evolution of CMIP6 biases. 2000–2014 CMIP6 biases within JJA (June-July-August): Tmax (2-m summertime
daily maximum temperature, a), evapotranspiration (ET, b), net shortwave radiation (Rs, c), precipitation (P, d), Global Land Evaporation Amsterdam
Model (GLEAM) evaluated transpiration (T) to ET ratio (T/ET, e) and soil moisture—ET coupling strength (SECS, f) estimates. Dotted grids indicate that
two-thirds of individual Earth System Model (ESM) biases are consistent in sign (in (a)–(d) and (f)) or two-thirds of ESMs are 0.3 lower than GLEAM-
based T/ET (in (e)). g Monthly mean CMIP6 (Coupled Model Intercomparison Project Phase 6) RZSM (rootzone soil moisture) estimates compared to a
dense soil moisture network (OBS) within the state of Oklahoma (see the green triangle in part a). The thin and thick blue lines represent individual ESMs
and their multi-model medians, respectively. h June–July–August (JJA) CMIP6 P and ET biases averaged across 15 CMIP6 ESMs. Error bars denote their
inter-model standard deviations. i The mean difference of CMIP6 and CMIP6_OFL (CMIP6 off-line simulations) based Rs, P, and ET estimates for three
individual ESMs during both March-April-May (MAM) and JJA. Error bars represent the range of CMIP6 and CMIP6_OFL differences. All ET bias results
use FluxCOM as a baseline reference; however, no qualitative change is found when a different ET reference is used instead (see Supplementary Fig. 4).
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CUS RZSM should be overestimated by the CMIP6 ESMs.
Instead, as discussed above, no significant CMIP6 CUS JJA RZSM
drying biases can be identified based on independent compar-
isons to either in-situ RZSM measurements or P-ET observations
(see Fig. 1g, h). This suggests that observed CUS ET and Tmax
biases are unlikely to originate from underestimated P. This
finding holds even when intra-seasonal P bias (i.e., the lagged
impact of a spring P deficit on summer ET via long-term SM
memory) is considered (Supplementary Fig. 4).

Figure 2a provides additional insight into the impact of a P
deficit on CMIP6 ET bias. To isolate inter-month and inter-
model Rs variability, monthly ET are normalized by monthly Rs
averages (and denoted as ETr) to reflect the fraction of Rs
converted into ET. The sensitivity (i.e., slope) of ETr to P seen in
the CMIP6 ESMs is substantially higher than the observed
relationship—meaning that land models imbedded in
CMIP6 simulations are biased in their surface energy flux
partitioning for a given monthly P. As a result of this enhanced
sensitivity, the observed bias in CMIP6 ETr increases as P
seasonally decreases from June to August in the CUS. The
magnitude of this sensitivity bias indicates that, although
increased P can alleviate the ETr and Tmax biases, it cannot
entirely remove the CUS warm/dry bias in a physically plausible
manner. For instance, the regression line of CMIP6-based P and
ETr suggests that to achieve observed ETr levels without
modifying CMIP6 land surface physics requires an average of
~60 mm/month additional P, which is 44% higher than observed
P. Notably, this finding is also qualitatively reflected in
CMIP6_OFL simulations based on relatively unbiased meteor-
ological forcing (Fig. 2b).

The above analyses demonstrate that CMIP6 ET bias, and the
associated excessive sensitivity of ETr to P, is primarily
attributable to land-modeling errors that cannot be addressed
solely through the correction of P bias. Although the ETr-P
relationship varies across different ESMs, our findings are
applicable to individual ESMs, except for MRI-ESM2-0, which
generally exhibits the smallest ET and Tmax biases across all
ESMs (Supplementary Fig. 6).

Land-dominant hypothesis. Above, we demonstrate that CUS
JJA Tmax and ET biases are poorly explained by corresponding
biases in P and Rs—leading to the hypothesis that errors in land
physics dominate the CUS warm/dry JJA bias in
CMIP6 simulations. According to the gauge-based CPC pre-
cipitation and FluxCOM datasets, CUS JJA ET is 29% higher than
P—suggesting that a substantial amount of JJA ET is supplied
from RZSM accumulated during the spring. This leads us to the
hypothesis that, due to their biased land physics, CMIP6 land
models do not effectively use available RZSM storage for JJA
transpiration (T)—which subsequently leads to negatively biased
ET and eventually translates into positively biased Tmax via local
land-atmosphere coupling. As such, insufficient use of RZSM
ensures that CMIP6 ESMs overestimate T water stress and rely
excessively on soil evaporation to supply ET (i.e., a negative bias
in T/ET), which eventually yields a warm Tmax bias. The nega-
tive bias of CMIP6-estimated T/ET over the CUS regions is
identifiable from three independent perspectives.

First, direct comparisons against GLEAM-based T and ET data
confirm that CMIP6 ESMs generally underestimate T/ET bias in
the CUS region (Fig. 1e)—reflecting the general inability of ESMs
to capture the complex interactions of vegetation, RZSM48 and
climate over dry-wet transitional zones (Supplementary Fig. 7). It
should be noted that the negative bias in T/ET for most ESMs
exceeds 0.3 in the CUS region. Therefore, although GLEAM-
based T/ET estimates undoubtably contain their own biases, our
finding that CMIP6 generally underestimates CUS T/ET is
qualitatively robust unless the GLEAM T/ET bias exceeds 0.3.

Second, as noted above, CMIP6-modeled ETr is overly
sensitive to seasonal P variations (Fig. 2a), and this excess
sensitivity cannot be attributed to meteorological forcing biases
(Fig. 2b). From water balance considerations, the positive bias in
ETr to P sensitivity suggests that CMIP6-estimated ET relies
excessively on P-related fast water storages (e.g., surface SM and
canopy-intercepted water storage) and does not adequately
represent the summertime use of deeper RZSM storage for T.
In this way, the land surface errors illustrated in Fig. 2b ensure
that, even accurately represented, JJA deficits in P will lead to an
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Fig. 2 Sensitivity of CMIP6-modeled ET to reduced precipitation. a Observed and CMIP6 (Coupled Model Intercomparison Project Phase 6) modeled
CUS (central contiguous United States) monthly mean ETr (calculated as the ratio of evapotranspiration (ET) and net shortwave ration (Rs), or ET/Rs) as a
function of monthly mean precipitation (P) during 2000–2014 June–July–August (JJA) periods. The large open red circle in (a) captures the intersection of
the extrapolated CMIP6 regression line with the monthly mean-observed ETr line. Part (b) is same as (a) but for 3-model-averaged (EC-Earth3-Veg, IPSL-
CM6A-LR and MIROC6) CMIP6 (denoted as CP) and CMIP6_OFL (CMIP6 off-line simulation, denoted as OFL) results. ET values are based on FluxCOM
estimates; however, no qualitative change is found when a different ET reference is used instead (see Supplementary Fig. 5).
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exaggerated reduction in JJA CMIP6 ET estimates. Therefore,
among all three hypotheses considered here, only the land-
dominant hypothesis (i.e., that land physics errors in CMIP6 lead
to underestimated T/ET) is consistent with the observed positive
JJA P-ET bias (Fig. 2).

Finally, CMIP6 T/ET bias can also be illustrated using RS-
retrieved SM–ET coupling strength (SECS, i.e., the debiased
Spearman correlation between weekly ET and surface SM RS
retrievals, see “Methods”). As mentioned above, soil evaporation
is controlled mainly by near-surface SM levels, while T is
determined by slower-varying RZSM. Therefore, if total ET is
dominated by soil evaporation (i.e., a low T/ET ratio), ET
temporal dynamics will be highly consistent with that of surface
SM—resulting in large (positive) SECS values32. Indeed, Fig. 1f
shows that CMIP6 ESMs exhibit a clear positive SECS bias in the
CUS that is spatially co-located with a negative bias in T/ET
(Fig. 1e). This, again, supports our hypothesis that CMIP6
projections rely excessively on shallow surface SM to support
CUS JJA ET and, as a result, underestimate JJA T/ET and ET
while overestimating SECS.

Inter-model relationship between T/ET and Tmax warm bia-
ses. The above analysis confirms that CMIP6 T/ET estimates are
biased low in the CUS region—suggesting that seasonal JJA P
deficits will excessively reduce ET (see also Fig. 2) and positively
bias Tmax in the CMIP6 ESMs. This hypothesis is supported by
Fig. 3, which demonstrates that the magnitude of the JJA Tmax
bias in individual CMIP6 ESMs is strongly anti-correlated with
mean JJA T/ET values (Fig. 3d). Regression results in Fig. 3d
suggest that a T/ET value of 0.70 is required to achieve unbiased
Tmax estimates. In contrast, 11 out of 15 CMIP6 ESMs estimate
CUS summertime T/ET to be less than 0.60 (Fig. 3d).

Inter-model partial correlations (see “Methods”) between
Tmax and P and Rs are both lower than 0.40 and significantly
less than their full-rank equivalents (Fig. 3e). This implies that the
direct contribution of P and Rs bias to Tmax bias is relatively
small. Likewise, the inter-model partial correlation of Tmax and
ET biases is approximately zero—meaning that its contribution to
Tmax variability is mainly from compounding land/atmospheric
factors. In strong contrast, the very small difference between the
sampled full (0.78 ± 0.11) and partial correlation (0.71 ± 0.21)
between T/ET and Tmax biases implies that CMIP6 Tmax bias is
due predominately to the land surface’s direct regulation of T/ET
partitioning.

These statistical findings are consistent with coupled/off-line
model comparisons (Fig. 3f) illustrating that T/ET and SECS
biases in off-line simulations (with relatively unbiased meteor-
ological forcing data) are larger than corresponding biases in
coupled ESMs. Once again, this implies that CMIP6 T/ET and
SECS biases originate from errors in land physics and do not
simply reflect the passive propagation of atmospheric biases
through the land component of an ESM.

Discussion
A notable CUS summertime (JJA) warm-and-dry bias persists in
the latest generation of CMIP6 ESMs (Fig. 1). Due to strong land-
atmosphere coupling in the CUS region49, differentiating the
relative importance of atmospheric- and land-modeling errors for
this bias is challenging. As a result, the dominant factors con-
trolling the CUS JJA warm bias in CMIP6 ESMs remain unclear.
Here, we provide multiple independent lines of evidence that
highlight the dominant role of land model errors—particularly
biases related to T/ET partitioning. Note that the contribution of
T/ET bias to local land-atmosphere coupling has not been
explicitly identified, or compensated for, in recent ESM versions.

This may explain why CUS CMIP Tmax biases have persisted
across generations of model development.

Negative T/ET biases in CMIP6 ESMs have direct implications
for projected water cycle and climate change under elevated CO2

conditions. First, both the magnitude and sign of projected runoff
changes are determined by ESM T/ET levels50. In addition,
underestimated T/ET ensures that CMIP6 projections rely
excessively on canopy-interception and surface SM storage states
to supply JJA ET flux and, therefore, overestimate JJA air tem-
perature rise due to their relative neglect of T51. Likewise, the
inability to fully leverage RZSM storage (to supply JJA ET) sug-
gests that CMIP6-projected Tmax is overly sensitive to normal
seasonal and inter-annual variations in both P and Rs36,37. This
hypothesis is supported by high-emission-scenario (SSP585)
CMIP6 projections, which show that (ESM-specific) relative
2020–2050 JJA Tmax monthly variability with respective to P and
Rs is highly sensitive to mean T/ET levels (Fig. 3g).

Based on these findings, addressing land model errors reg-
ulating T/ET partitioning should be a key priority for reducing
CMIP6 regional uncertainties and biases. The simplistic repre-
sentation of agricultural trends in historical ESM simulations may
lead to the underestimation of ecosystem productivity/biomass
and, therefore, T/ET in the CUS region. However, spatially
consistent negative biases in CMIP6-estimated leaf area index
(LAI) are not identified in the CUS region (Supplementary
Fig. 8). In addition, increasing LAI has only a limited impact on
removing T/ET bias in the CUS32. Therefore, underlying ESM T/
ET error is most likely attributable to shortcomings in ESM
representation of land surface water and energy balance pro-
cesses. These shortcomings potentially include: inadequate root-
zone soil water storage capacity in agricultural areas52, neglected
lateral water flux between ESM grid cells33,34, neglected irrigation
processes53, the incorrect representation of soil evaporation32 and
structural uncertainties in stomatal conductance modeling54.
Resolution of any of these issues could, in principle, increase the
physical realism of soil water extraction by vegetation roots for
JJA T. The exact land source of T/ET bias is likely to be model-
specific. However, recent work illustrates that LSM T/ET bias
sources can be distinguished, and effectively addressed, via the
joint consideration of RS retrievals and off-line land modeling32.
Such land-based approaches are key for reducing uncertainties in
ESM projections of climate and water cycle change.

Methods
CMIP6 model data. Monthly mean screen-level (2 m) daily maximum air tem-
perature (Tmax), net shortwave radiation (Rs), precipitation (P), rootzone SM (i.e.,
soil water content (m3/m3) of the top 50 cm soil layer, vertically integrated from
CMIP6 SM profile estimates; RZSM) and evapotranspiration (ET) time series are
taken from 15 historical CMIP6 ESM simulations (see Table S1 for model details)
between 1 January 2000 to 31 December 2014 and resampled onto a 1-degree
spatial grid via bilinear interpolation. Likewise, daily surface SM (i.e., soil water
depth for the top 10 cm of the soil column) and ET from the same period and set of
ESMs, are averaged into weekly mean values (to be consistent with the temporal
resolution of SECS inputs, see below) and resampled onto a 1-degree spatial grid to
provide model-specific estimates of surface SM versus ET coupling strength (SECS,
see below for details). Resulting model-specific SECS maps are then averaged across
all 15 ESMs to represent CMIP6-mean SECS. Finally, CMIP6 projections during
2020–2050 based on high-emission scenario (SSP585) results are collected from ten
available ESMs (see Table S1) and used to examine inter-annual variability in
future climate projections. Key CMIP6 ESM results based on multi-model means
versus medians are mutually consistent (Supplementary Figs. 9 and 10).

Off-line LSM simulations (denoted as CMIP6_OFL) are collected from the
CMIP6 “Land-hist” dataset55. CMIP6_OFL simulations use the same underlying
land physics as coupled historical CMIP6 simulations. However, their
meteorological and radiative forcing data are instead derived from observational
datasets compiled by the third Global Soil Wetness Project (GSWP356,57). GSWP3
land forcing data are generated by the dynamic downscaling of the 20th Century
Reanalysis product58 and bias corrected using ground observations55. To date, only
the EC-Earth-Veg3, IPSL-CM6A-LR, and MIROC6 ESMs have contributed CMIP6
Land-hist simulations containing the entire suite of data products required for our
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analysis. Tmax, Rs, P, SM, and ET estimates acquired from Land-hist versions of
these three ESMs are processed using the resampling procedure described above.

RS-based SECS map. Soil moisture-evapotranspiration coupling strength (i.e.,
SECS) is estimated based on the approach outlined in Lei et al.59. Specifically, we
quantify SECS as the squared-rank correlation between warm-season (July to
August for areas north of 35.5°N and May to October otherwise) RS-based surface
SM and ET time series. Note that all RS retrievals contain random errors that tend
to negatively bias RS-based SECS values. To correct for this spurious bias, triple
collocation is used to estimate the error variance of each SM and ET product using
three independent SM (or ET) datasets. These estimated SM (or ET) error var-
iances are subsequently used to correct the original RS-based SECS estimates and
generate unbiased global SECS maps. Key input datasets for the SECS map include
the: passive European Space Agency Climate Change Initiative SM product;60

Advanced Scatterometer SM product61; Atmosphere Land Exchange Inverse ET
product based on both thermal infrared imagery41 and Ka‐band brightness
temperature62 and SM and ET products acquired from four different off-line
Global Land Data Assimilation System LSMs63. According to the temporal reso-
lution of the input RS products, the SECS map is estimated based on weekly ET
and SM averages.

These RS-based, SECS estimates are then compared to comparable diagnostic
statistics sampled directly from the CMIP6 and CMIP6_OFL weekly surface SM
and ET products to estimate ESM SECS bias. To maximize the generality of our
coupled and off-line modeling comparisons, SM–ET correlations based on
reanalysis systems (denoted as “SECS_RA”) from the National Centers for
Environmental Prediction (NCEP), Global Modeling and Assimilation Office
(GMAO), National Center for Atmospheric Research (NCAR) and European
Centre for Medium-Range Weather Forecasting (ECMWF) centers are also
collected from a previous analysis38.

Given historical variations in the availability and quality of RS products, the
SECS benchmark is based on SM and ET retrievals collected between 2007 and
2014—instead of the 2000 and 2014 historical period used for CMIP6 results.
However, Supplementary Fig. 11 demonstrates that CMIP6-estimated SECS values
sampled from the two periods are highly consistent.

Reference datasets. Gauge-based 0.25-degree, daily, screen-level Tmax and P
analyses are collected from the Climate Prediction Center (CPC) from 2000 to
2014. Given the high spatial density of rain gauges within CONUS, CPC
observations are ideal for independently quantifying CMIP6 Tmax and P biases.
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Fig. 3 Analysis of inter-model CMIP6 variability. Inter-model variability of spatially averaged 2000–2014 June-July-August (JJA) 2-m summertime daily
maximum temperature (Tmax) biases as a function of: evapotranspiration (ET, a), net shortwave radiation (Rs, b), precipitation (P, c) biases and modeled
transpiration to ET ratio, (T/ET, d) within the CUS (central contiguous United States, see Fig. 1 for geolocations). e The full-rank correlation and partial-rank
correlation of Tmax bias with T/ET, P, Rs and ET biases, where error bars represent the standard deviation of a 1500-member bootstrapping analysis. f The
spatial-temporal mean of CUS T/ET and SECS (soil moisture—ET coupling strength) values from three CMIP6 Earth System Models (EC-Earth3-Veg,
IPSL_CM6A-LR and MIROC6) and four reanalysis systems based on coupled and off-line modeling. Error bars in (f) capture the inter-model range of
variables for each model group. g Normalized high-emission scenario (SSP585) projected 2020–2050 detrended JJA monthly Tmax standard deviations
(see Methods) as a function of JJA T/ET.
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The ERA5 shortwave solar radiation product is known to be superior to other
existing estimates64. Therefore, the ERA5 0.25-degree, hourly Rs reanalysis product
between 2000 and 2014 is used as a reference dataset for all CMIP6 Rs simulations.

Flux-tower observations have limited spatial coverage within the CUS region
(Supplementary Fig. 1). However, compared with flux-tower observations, ERA5
and FluxCOM ET estimates generally have a lower bias than other existing ET
reference products (Supplementary Fig. 1). Therefore, the daily, 0.5-degree
FluxCOM ET (RS+METEO) product41, available from 2001 to 2010, is used as a
reference for CMIP6 ET evaluations. In FluxCOM, machine learning techniques
are trained to capture ET time series with multi-source RS data at 224 global flux-
tower sites. Note that FluxCOM ET estimates are not based on water balance
considerations and are therefore assumed to be relatively independent of
corresponding CMIP6 ET estimates. However, the FluxCOM ET reference data is
only available from 2001 to 2010, which does not perfectly match our CMIP6
historical period (2000 to 2014). To examine the sensitivity of CMIP6 ET bias
results to ET product selection, and exact historical sampling period, key results are
duplicated using 2000 to 2014 ERA5 ET results as an alternative ET reference (see
Supplementary Fig. 4). Although ER5 is a model-based product, its SM estimates
are adjusted to match screen-level air temperature and humidity observations via
data assimilation. Hence, ERA5-based ET estimates do not suffer from the same
CUS summertime ET biases afflicting ESMs52—see Supplementary Fig. 1.

The 0.25-degree Global Land Evaporation Amsterdam Model (GLEAM)
product has been frequently applied in diagnostic T/ET studies47,65. Therefore, this
study uses T/ET estimates based on the 2000–2014 monthly GLEAM product as a
reference benchmark. Naturally, GLEAM-based T/ET estimates are not free from
error. Therefore, the potential impact of GLEAM reference bias on our findings is
discussed in the “Results” section above.

In-situ profile observations from the United States Department of Agriculture
Agricultural Research Service (USDA ARS) Little Washita watershed network are
collected and vertically averaged into bulk (surface to 50 cm) RZSM values.
Watershed-scale RZSM values are based on spatial averaging of point-scale RZSM
estimates acquired from ~20 sensors scattered across the Little Washita watershed
to minimize SM spatial representativeness errors66. The USDA ARS Little Washita
network is located in an area of the CUS region where CMIP6 ESMs demonstrate
significant JJA Tmax and ET biases (see Fig. 1a, b). In addition, point-scale sparse
SM profile observations across the CUS region are also collected from the
International Soil Moisture Network (ISMN)67 and used to further evaluate CMIP5
ESM RZSM estimates. Following manual quality control conducted for a previous
study40, 27 such sites with consistent SM profile observations are available across
the CUS region with coverage between 2000 and 2014. Evaluation results based on
these sparse sites are shown in Supplementary Fig. 3.

Partial correlation analysis. Partial correlation analysis is applied to disentangle
the inter-model contributions of land and atmospheric errors to Tmax bias. The
partial correlation of Tmax and T/ET (denoted as PT/ET), for example, treats P, Rs,
and ET as holding variables to statistically isolate their impact. As such, PT/ET
reflects only land physics impacts on Tmax via T/ET. Therefore, the difference
between PT/ET and the full-rank T/ET versus Tmax correlation captures the impact
of atmospheric errors, i.e., if Tmax is entirely controlled by P and Rs, PT/ET will be
zero. In contrast, if T/ET is dominated by land errors, PT/ET will equal the full-rank
correlation of T/ET and Tmax. Analogous partial correlation analysis is also per-
formed to derive the partial correlation of Tmax with ET, P and Rs. For simplicity,
we focus only on absolute correlation coefficients.

Normalized air-temperature variability. Land impacts on projected JJA daily
Tmax variability (captured by monthly JJA standard deviations during the 2020–2050
period, denoted as σTmax) are examined. To isolate the impact of seasonal and long-
term trends, detrended anomalies are used. Additionally, σTmax is normalized by the
variability of detrended P and Rs variability (i.e., normalized Tmax variability,
σTmax;N ¼ σTmax

σPσRs
) to reflect the sensitivity of Tmax variability to P and Rs variability.

Data availability
The CMIP6 data are available at: https://www.wcrp-climate.org/wgcm-cmip/wgcm-
cmip6. ISMN soil moisture data are available at: https://ismn.geo.tuwien.ac.at/en/.
FluxCOM and GLEAM ET data can be found at: http://www.fluxcom.org/CF-Download/
and https://www.gleam.eu/, respectively. CPC data are available at https://psl.noaa.gov/
data/gridded/data.unified.daily.conus.html. ERA5 data can be found at: https://
www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The processed data for
CMIP6 evaluation are available at: https://zenodo.org/record/5745862.YafAD7pOk2w.

Code availability
Codes for data processing, evaluation and visualization are available at: https://
zenodo.org/record/5745862.YafAD7pOk2w.
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