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Background. Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited
due to lack of approved drugs. Methods. Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD
plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet
for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The
treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT)
and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and
accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the path-
ogenesis of NAFLD were determined by western blotting. Results. Mice fed with four weeks of MCD diet displayed elevated serum
levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe
liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks.
Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were
suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver
mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions. Treatment with Si-Wu-Tang improves MCD diet-induced
NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for
clinical application in treating NAFLD.

1. Background consumption, long-term use of a steatogenic medication, or

monogenic hereditary disorders [1-3]. NAFLD encompasses
Nonalcoholic fatty liver disease (NAFLD) is defined as the a broad spectrum of conditions, from simple steatosis (re-
presence of >5% hepatic steatosis (either by histology or  ferred to as nonalcoholic fatty liver (NAFL)), through
imaging techniques); there must be lack of secondary causes  nonalcoholic steatohepatitis (NASH), to fibrosis, and ulti-
of hepatic fat accumulation, such as significant alcohol mately cirrhosis and hepatocellular carcinoma (HCC) [4, 5].
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Moreover, NAFLD is associated with higher risks of severe
extrahepatic diseases, such as cardiovascular diseases [1-3].
The global prevalence of NAFLD is estimated to be ap-
proximately 24-25%, and the pooled overall nationwide
prevalence of NAFLD is estimated to be 29.2% in China
[2,6,7]. Therefore, it is urgent to discover novel strategies for
treating NAFLD.

A number of traditional Chinese medicinal formulas
provide the promising sources to develop alternative and
complimentary medicines for NAFLD therapy and pre-
vention [8-11]. Si-Wu-Tang, a traditional Chinese medicinal
formula, including Rehmanniae Radix (Shu Di Huang),
Angelica Radix (Dang Gui), Paeoniae Radix (Bai Shao Yao),
and Chuanxiong Rhizoma (Chuan Xiong), has been shown
to improve the antioxidant level and positively regulate the
lipid profile, liver function, and skin integrity and texture in
healthy adults [12]. This traditional Chinese medicinal
formula was first recorded in Xian Shou Li Shang Xu Duan
Mi Fang (K \WIRIBVHEEMTHE ST Y) by Lin Daoren in China
Tang Dynasty. Si-Wu-Tang has been traditionally used for
treating gynecological diseases, such as relief of menstrual
irregularity, dysmenorrhea, uterine bleeding, climacteric
syndrome, and other estrogen-related diseases, since it is
recorded in the official Chinese medicine classics Tai Ping
Hui Min He Ji Ju Fang ({ RFFEEMFI/FF%Y) in China
Song Dynasty [13-20].

By the basic theory of Traditional Chinese Medicine, Si-
Wu-Tang is a blood-building decoction (Chinese Medical
Concept: Bu-Xue/4M0) to improve a deficiency of blood (Il
EE) [13, 21-23]. The animal studies indicated that Si-Wu-
Tang has strong abilities to improve blood deficiency in-
duced by radiation [21, 24, 25], or cyclosphosphamide [26],
or the compound methods of bleeding, starved feeding, and
exhausting [27]. Mechanistically, Si-Wu-Tang improved
hematopoietic function of bone marrow by modulating
apoptosis, proliferation, and differentiation-related genes
expression in haematopoietic stem/progenitor cell [26],
alleviated disorders of carbohydrate and lipid metabolisms,
disorders of immune function, and the damage of mito-
chondria and lymphocyte observed in blood deficiency
animal models [21, 28, 29]. Si-Wu-Tang administration
before irradiation reduced the frequency of radiation-in-
duced apoptosis in crypt of intestine [22] and alleviated
intestinal inflammatory processes and protected against
intestinal mucosa injury [25]. However, its effects on
NAFLD are not clear.

The changes in diet, gut microbiome and the sedentary
lifestyle-associated behavior, and the genetic or epigenetic
backgrounds that determine relative susceptibility to
NAFLD, lead to increased metabolic substrate delivery to the
liver and activation of systemic inflammatory changes,
causing insulin resistance [30, 31]. These changes drive
increased circulating inflammatory cytokines to induce
hepatocellular oxidative stress or endoplasmic reticulum
stress and modify cell-cell crosstalk, resulting in cell injury or
death, inflammation, fibrogenesis and genomic instability
that predispose to cirrhosis and HCC [4, 30, 31]. Therefore,
inflammation, insulin resistance, oxidative stress, and cell
death are implicated in the pathogenesis of NAFLD. Among
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the above pathogenesis, TLR4-mediated innate immune
signaling plays an essential role in the development of
NAFLD. TLR4 is involved in the pathogenesis of fructose-
induced, high-fat and high-cholesterol diet-induced, or
methionine- and choline-deficient (MCD) diet-induced
hepatic steatosis in mice [32-35]. Recent studies indicated
that liver localization of lipopolysaccharides (LPS), which is
the ligand of TLR4, is increased in both human and the
experimental NAFLD mice model [36]. Mechanistically,
TLR4-induced JNK phosphorylation and their downstream
Caspase-8 activation contribute to the pathogenesis of
NAFLD [37-49]. Therefore, hepatocyte-specific Caspase-8
knockout ameliorates the development of MCD diet-in-
duced NASH by modulating liver injury and attenuates
alcoholic hepatic steatosis in mice [39, 50]. Moreover,
Caspase-8 activation can lead to the cleavage of gasdermin D
(GSDMD) [51-53]. Cleaved-GSDMD forms membrane
pores that lead to cytokine release and/or programmed lytic
cell death, called pyroptosis [54]. GSDMD plays a key role as
a pyroptosis executor in the pathogenesis of NASH by
regulating lipogenesis, promoting proinflammatory cyto-
kines secretion, exacerbating NF-kB activation, thus directly
or indirectly facilitating liver fibrosis and lipogenesis [55].
Therefore, these innate immune signaling pathways are the
essential drug targets for treating NAFLD.

Si-Wu-Tang has strong anti-inflammatory and anti-
oxidative effects [12, 13, 17, 56-60]; it can improve carbo-
hydrate and lipid metabolisms in blood deficiency animal
models [21, 28, 29] and positively regulate the lipid profile
and liver function in healthy adults [12]. Based on these, we
speculated that Si-Wu-Tang might have therapeutic effect on
NAFLD. If exists, we will further investigate whether the
novel inflammatory and cell death mechanisms of NAFLD
discussed above are involved in its protective effects.

2. Methods

2.1. Preparation of Si-Wu-Tang. The drug composition of Si-
Wu-Tang (41 g) was according to Tai Ping Hui Min He Ji Ju
Fang (the official Chinese medicine classics in China Song
Dynasty) and the recent literatures [14, 17, 20, 26, 28,
29, 61, 62] (Table 1). The four plant materials prepared in
ready-to-use forms were bought from DaShenLin Phar-
maceutical Group Co., Ltd. (Guangzhou, China). They were
identified according to the first volume of the Chinese
Pharmacopoeia 2015 edition by Wang Yonggang, an asso-
ciate professor in Guangdong Engineering and Technology
Research Center for Quality and Efficacy Reevaluation of
Post-Market Traditional Chinese Medicine, Sun Yat-sen
University (Guangzhou, China). The voucher specimens of
Shu Di Huang (no. 2019-BL-016), Dang Gui (no. 2019-BL-
017), Bai Shao Yao (no. 2019-BL-018), and Chuan Xiong (no.
2019-BL-019) were deposited in Biofeedback Laboratory,
Xinhua College of Sun Yat-sen University (Guangzhou,
China).

The quality standards of the four plant materials of Si-
Wu-Tang conformed to the Chinese Pharmacopoeia 2015
edition. The prescription of Si-Wu-Tang was based on the
clinical application method in Department of Traditional
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TaBLE 1: The formula of Si-Wu-Tang (according to Tai Ping Hui Min He Ji Ju Fang (the official Chinese medicine classics in China Song

Dynasty) and references [17] and [20]).

Chinese name Scientific name (family) Place of origin Harvest Weight
season (g)

Shu Di H'uang (B &, Root of Rehmannia glutmosa Libosch Henan, China  Autumn 15

Rehmanniae) (Scrophulariaceae)

Dang Gui (Z!3, Angelicae) Root of Angelica sinensis Diels (Umbelliferae) Gansu, China Late Autumn 10

Bai Shao Yao (HZ%J%4, Paeoniae) Root of Paeonia lactiflora Pall (Paeoniaceae) Anhui, China Summer 10

. ) Rhizome of Ligusticum chuanxiong Hortorum Sichuan,
Chuan Xiong (JII&, Chuanxiong) (Umbelliferae) China Summer 6

Chinese Medicine, The Third Affiliated Hospital, Sun Yat-
sen University (Guangzhou, Guangdong, China), and the
previously described methods [14, 20, 26, 28, 29, 61-63].
Briefly, the dried prescriptions of Si-Wu-Tang (2x,82g)
were soaked in 200 ml distilled water for 30 minutes. Then,
they were decocted twice with boiling water in a pot made of
purple clay with an automatic liquid heater (HuFu Hardware
Factory, Chaozhou, Guangdong, China), and they were
condensed to 82 ml. Thus, the concentration of Si-Wu-Tang
was 1 g/ml (dried herb weight/solution), which was filtered
and stored at 4°C before use [20, 29]. Si-Wu-Tang solution
was prepared every 3 days.

2.2. The Methionine- and Choline-Deficient (MCD) Diet-In-
duced NAFLD Animal Model and Treatment Protocol.
Male C57BL/6] mice were purchased from Guangdong
Medical Laboratory Animal Center (Foshan, Guangdong,
China). Mice aged about 8-10 weeks were used in this study.
All animals were housed in a temperature-controlled animal
facility with a 12-hour light-dark cycle and allowed to obtain
rodent chow and water ad libitum. All animals received
humane care, and all animal procedures were approved by
the Institutional Animal Care and Use Committee of Sun
Yat-sen University (no. 2018-057), and these conformed to
the Principles of Laboratory Animal Care formulated by the
National Institutes of Health guide for the care and use of
Laboratory animals (NIH Publications no. 8023, revised
1978) [64].

Mice were randomly assigned to three groups: Control
group (n=10), MCD group (n=10), and MCD plus Si-Wu-
Tang group (n=10). As previously revealed [65], mice in
MCD group and MCD plus Si-Wu-Tang group were ad
libitum fed with a methionine- and choline-deficient diet
(MCD; MD12052, Mediscience Ltd., Yangzhou, China) for
four weeks to induce NAFLD. Mice in Control group were
ad libitum fed with an identical diet sufficient in methionine
and choline (MCD control; MD12051, Mediscience Ltd.,
Yangzhou, China) for four weeks. The histologic evidence
shown that there was significant hepatic steatosis in mice fed
with the MCD diet for 7, 10, or 14 days [66-70]. Therefore, in
order to investigate whether Si-Wu-Tang has the therapeutic
effect on MCD diet-induced NAFLD, mice in MCD plus Si-
Wu-Tang group were daily given Si-Wu-Tang from the 15th
day at 16:00-17:00 for two weeks. As previously described
[20, 28, 29, 61, 62], mice received Si-Wu-Tang at the dose of
1 ml per 100 g body weight (1 g/100 g body weight) orally by

gastric gavage (without fasting). On 29th day, the mice were
fasted for four hours before sample collection.

2.3. Measurement of Serum ALT and AST Concentrations.
Blood samples were collected by cardiac puncture after the
mice were euthanized. Samples were allowed to sit for 30
minutes at room temperature for coagulation [71]. Then,
they were centrifuged at 3000 rpm at 4°C for 10 minutes, and
the supernatant serum was collected and stored at —80°C
until analysis [71]. The serum levels of alanine amino-
transferase (ALT) and aspartate transaminase (AST) were
analyzed by an automatic blood chemistry analyzer
(HITACHI 7600, Tokyo, Japan) in the Department of
Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-
sen University.

2.4. Histopathology Analysis. After collecting blood samples,
livers were harvested for observing histological alterations by
hematoxylin and eosin (H&E) staining and Oil Red O
staining as previously revealed [65, 72]. Briefly, liver sections
embedded in paraffin were stained with H&E, and Oil Red O
(Sigma, #00625) staining was performed in frozen liver
sections prepared in Tissue-Tek® optimum cutting tem-
perature (O.C.T.) compound (Sakura, #4583). H&E sections
were graded for hepatic steatosis as previously described
[73, 74]. Briefly, steatosis was scored and the severity was
graded, based on the percentage of the total area affected,
into the following categories: 0 (<5%), 1 (5-33%), 2
(>33-66%), and 3 (>66%) [73, 74].

2.5. Western Blotting. The antibody against TLR4 (#sc-
293072) was from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). The antibodies against c-Jun NH,-terminal ki-
nase (JNK) (#9252S), p-JNK (#9255S) and Caspase-8
(#9746S), anti-rabbit IgG HRP-linked antibody (#7074S),
and anti-mouse IgG HRP-linked antibody (#7076S) were
from Cell Signaling Technology (Danvers, MA, USA). The
antibody against GSDMD (#ab219800) was from Abcam
(Cambridge, UK). Glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) antibody (#MB001) was from Bioworld
Technology (Qixia District, Nanjing, China).

Western blotting was performed as we have previ-
ously described [64]. The proteins were transferred to
polyvinylidene fluoride membranes (Millipore, Bedford,
MA, USA), which were incubated with primary and
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TaBLE 2: The body weight of mice at baseline and after treatment with SWT.
Group Body weight (0 week) Body weight (4th week)
Control 24.70+£0.82 26.03+0.89"""
MCD 25.00+0.82 16.97 +0.62
MCD +SWT 24.90 £0.57 18.64 +0.38""
SWT, Si-Wu-Tang; n=10, *** p <0.001 vs. MCD or MCD + SWT; ### p <0.001 vs. MCD.
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FIGURE 1: Si-Wu-Tang decreased MCD diet-induced elevated serum ALT and AST levels. (a) Serum ALT levels in three groups. (b) Serum
AST levels in three groups. SWT, Si-Wu-Tang; ALT, alanine aminotransferase; AST, aspartate transaminase; n=10, ***p <0.001 vs.

Control; ### p <0.001 vs. Control or MCD.

secondary antibodies by standard techniques. The en-
hanced chemiluminescence (ChemiDoc XRS + System,
Bio-Rad, Hercules, CA, USA) was used to accomplish
immunodetection.

2.6. Statistical Analysis. Data were expressed as mean + SD.
Statistical analyses were performed by one-way analysis of
variance (ANOVA) followed by Bonferroni’s post-hoc test or
by Kruskal-Wallis test followed by Dunn’s post-hoc test. A
value of p <0.05 was considered as significantly different. All
statistical analyses were performed using GraphPad Prism 5.0.

3. Results

3.1. The Effects of Si-Wu-Tang on Body Weight in MCD Diet-
Fed Mice. It has been well known that MCD diet can induce
body weight loss in mice [75]. Therefore, we measured the
body weight of mice at the beginning and at the end of the
experiment. As shown in Table 2, there was no difference in
the body weight of mice from these three groups at the
beginning. After feeding with four weeks of MCD diet, the
body weight decreased significantly in MCD group
(p <0.001 vs. Control) and in MCD plus Si-Wu-Tang group
(p <0.001 vs. Control). Moreover, two weeks of Si-Wu-Tang
treatment improved the loss of body weight (p <0.001 vs.
MCD) (Table 2).

3.2. Si-Wu-Tang Improved Liver Damage in Mice Fed with a
MCD Diet. In order to investigate whether Si-Wu-Tang has
the protective effects on liver damage induced by MCD diet,

we determined the serum levels of ALT and AST, which
are markers of liver damage. Compared with Control
group, mice fed with a MCD diet for four weeks resulted
in a major increase in serum ALT (319.2+39.4 U/L vs.
13.8+5.7U/L, p<0.001) and AST (247.2+20.2U/L vs.
62.4+10.3U/L, p<0.001) levels (Figures 1(a) and 1(b)).
Two weeks of Si-Wu-Tang treatment decreased serum
ALT (139.2+48.6 U/L vs. 319.2+39.4 U/L, p<0.001) and
AST (149.4+353U/L vs. 247.2+20.2U/L, p<0.001)
levels when compared with MCD group (Figures 1(a) and
1(b)). However, the ALT and AST levels in MCD plus Si-
Wu-Tang group were still higher than those in Control
group (p<0.001) (Figures 1(a) and 1(b)). Therefore, the
observation that the serum levels of ALT and AST in MCD
plus Si-Wu-Tang group were lower than those in the MCD
group indicate a protective effect of Si-Wu-Tang against
liver damage.

3.3. Si-Wu-Tang Alleviated Liver Steatosis in Mice Fed with a
MCD Diet. Similar to that in humans with NASH, the
characteristic pathology of MCD diet-fed mice revealed
macrovesicular lipid accumulation [76, 77]. Oil Red O
staining displayed that MCD diet induced severe lipid
droplet accumulation in the liver, which was alleviated by Si-
Wu-Tang treatment (Figure 2(a)). Similarly, H&E staining
showed that there were hepatic lipid accumulation as clear
macrovacuoles, and the increased steatosis grade scores
indicated that MCD diet induced severe liver steatosis; all
these were improved by treatment with two weeks of Si-Wu-
Tang (Figures 2(b)-2(d)). Thus, Si-Wu-Tang improved liver
steatosis in mice fed with a MCD diet.
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FIGURE 2: Si-Wu-Tang improved MCD diet-induced liver steatosis. Liver histology was evaluated by Oil Red O staining (a), H&E staining

((b) 100%; (c) 400*), and the steatosis grade scores (d) in three groups. SWT, Si-Wu-Tang; n=10, *** p <0.001 vs. Control; # Pp<0.05 vs.
MCD.



3.4. Si-Wu-Tang Inhibited Hepatic TLR4-JNK Signaling in
Mice Fed with a MCD Diet. Immune/inflammatory dys-
functions play important roles in the pathogenesis of
NAFLD. Based on the anti-inflammatory effects of Si-Wu-
Tang, therefore, we investigated that whether the protective
effects of Si-Wu-Tang on NAFLD were related to TLR4
expression. TLR4 was increased in the liver of mice fed with
a MCD diet, while it was reduced by two weeks of Si-Wu-
Tang treatment (Figures 3(a) and 3(b)). Subsequently, we
examined JNK activation in liver. MCD diet increased he-
patic JNK phosphorylation, while JNK activation in liver was
inhibited by Si-Wu-Tang (Figures 4(a) and 4(b)).

3.5. Si-Wu-Tang Suppressed Hepatic Caspase-8-GSDMD
Signaling in Mice Fed with a MCD Diet. As we have men-
tioned above, the Caspase-8-GSDMD signaling pathway is
essential in the pathogenesis of NAFLD/NASH. Therefore,
we investigated whether Si-Wu-Tang could modulate Cas-
pase-8-GSDMD signaling in liver. As shown in Figure 5, the
expressions of hepatic full length Caspase-8 and the Cas-
pase-8 active fragment p18 were increased in mice fed with a
MCD diet; Si-Wu-Tang suppressed the expression of full
length Caspase-8 in liver and decreased the Caspase-8 active
fragment pl8 levels (with no statistical significance).
Moreover, the expression of GSDMD and cleaved-GSDMD
were increased in liver of mice fed with a MCD diet; all these
were inhibited by Si-Wu-Tang treatment (Figure 6).

4. Discussion

The high global or nationwide prevalence of NAFLD un-
derscores the urgent need for effective and safe therapy.
However, there are no medications approved by the U.S.
Food and Drug Administration (FDA) or European Med-
icines Agency for the treatment of NAFLD or NASH [78].
Here, we reported that Si-Wu-Tang has the therapeutic
potential for NAFLD.

The MCD diet-induced NAFLD animal model is very
reproducible, in which animals rapidly develop the clinical
pathologies from macrovesicular steatosis to hepatic fibrosis
[76]. Mechanistically, choline or methionine stimulates the
synthesis of phosphatidylcholine and increases the cellular
phosphatidylcholine levels, which is required for the se-
cretion of very-low-density lipoprotein (VLDL) and its
deficiency induces lipid accumulation in the liver [76, 79].
The methionine-deficient diet induces mitochondrial
S-adenosyl-L-methionine (SAM) and glutathione (GSH)
depletion due to perturbing mitochondrial membrane dy-
namics associated with decreased phosphatidylcholine/
phosphatidylethanolamine ratio [76, 80]. Moreover, MCD
diet impairs mitochondrial -oxidation and induces cyto-
chrome P450 2E1 (CYP2E1) expression; ROS produced by
CYP2E1 w-oxidation, coupled with the depletion of hepatic
antioxidants (e.g., reduced SAM and GSH), amplify oxi-
dative damage, thus inducing steatohepatitis [81-85]. In this
study, we established the MCD diet-induced NAFLD mice
model and found that two weeks of Si-Wu-Tang treatment
alleviated MCD diet-induced elevated serum ALT and AST

Evidence-Based Complementary and Alternative Medicine

TLRE e s e S D D G0 0 e e iy B9 B0

GAPDH “-m

MCD
(a)

Control MCD + SWT

0.8 —

TLR4/GAPDH

MCD
(b)

MCD + SWT

Control

FIGure 3: Si-Wu-Tang reduced MCD diet-induced hepatic TLR4
expression. (a) Representative western blot of TLR4 and GAPDH.
(b) Quantification of TLR4 expression to GAPDH expression. SWT,
Si-Wu-Tang; n=4-5, **p <0.01 vs. Control; ##p <0.01 vs. MCD.

levels and improved liver steatosis, supporting the hepatic
protective effects of Si-Wu-Tang.

TLR4 innate immune axis plays an essential role in the
pathogenesis of NAFLD, and modulating TLR4 expres-
sion and its related signaling pathways have the beneficial
effect on NAFLD [32-36, 86, 87]. Genetically, TLR4 de-
ficiency improved NAFLD in mice models [32-34].
Transmembrane BAX inhibitor motif-containing 1
(TMBIM1), which is a multivesicular body (MVB) reg-
ulator, protected against NAFLD in mice and monkeys by
targeting the lysosomal degradation of TLR4 [87]. In this
study, the increased expression of hepatic TLR4 in
NAFLD mice was inhibited by Si-Wu-Tang. Besides LPS,
the release of high-mobility group boxl (HMGBI1) from
hepatocytes can also combine with TLR4, thus contrib-
uting to the development of NAFLD by inducing
JNK activation [34, 37, 38]. Si-Wu-Tang reduced MCD
diet-induced hepatic JNK phosphorylation. Therefore, Si-
Wu-Tang alleviated MCD diet-induced NAFLD in part via
inhibiting TLR4-JNK signaling.

Stimulation of TLR4 or JNK can also induce Caspase-8
activation [40-48]. Caspase-8 activation is the characteristic
of murine and human alcoholic liver disease (ALD), defi-
ciency of Caspase-8 in hepatocyte (Casp8“"Pa°®¢) gllevi-
ated steatosis and reduced hepatic triglyceride and free fatty
acid (FFA) content in ALD mice model [50]. Moreover,
MCD feeding triggered steatosis, hepatic lipid storage, and
accumulation of FFA in wild-type livers, which were sig-
nificantly reduced in Casp8“"P*°V* animals [39]. There-
fore, hepatocyte Caspase-8 is critical for the pathogenesis of
steatohepatitis, drugs targeting Caspase-8 might be a
plausible treatment for NAFLD/NASH [39]. In our study,
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FIGURE 5: Si-Wu-Tang modulated MCD diet-induced hepatic Caspase-8 expression and activation. (a) Representative western blot of full
length Caspase-8, cleaved-Caspase-8 p18, and GAPDH. (b) Quantification of full length Caspase-8 expression to GAPDH expression. (c)
Quantlﬁcatlon of cleaved-Caspase-8 p18 expression to GAPDH expression. SWT, Si-Wu-Tang; n=4-5, * p <0.05 vs. Control; ** p < 0.01 vs.
Control; # p <0.01 vs. MCD.

the MCD diet-triggered hepatic Caspase-8 expression was Recently, two independent studies indicated that Cas-
inhibited by two weeks of Si-Wu-Tang treatment, which  pase-8 activation mediated by TLR4 resulted in cleavage of
indicated that Caspase-8 is a drug target for Si-Wu-Tangin =~ GSDMD, leading to pyroptosis [51, 52]. GSDMD and its
treating NAFLD. pyroptosis-inducing fragment GSDMD-N were upregulated
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FIGURE 6: Si-Wu-Tang reduced MCD diet-induced hepatic GSDMD expression and activation. (a) Representative western blot of GSDMD,
cleaved-GSDMD, and GAPDH. (b) Quantification of GSDMD expression to GAPDH expression. (¢) Quantification of cleaved-GSDMD
expression to GAPDH expression. SWT, Si-Wu-Tang; n=4-5, *p <0.05 vs. Control; *** p <0.001 vs. Control; ## p<0.01 vs. MCD.

in liver tissues of human NAFLD/NASH; MCD diet-fed
GSDMD ™'~ mice exhibited decreased severity of steatosis
and inflammation compared with wild type littermates [55].
In our study, the expression of hepatic GSDMD and cleaved-
GSDMD were increased in the NAFLD mice model induced
by feeding with a MCD diet. The elevated hepatic GSDMD
and cleaved-GSDMD levels were inhibited by Si-Wu-Tang,
which indicated that Si-Wu-Tang can target GSDMD to
alleviate NAFLD. Therefore, the protective effect of Si-Wu-
Tang on NAFLD was involved in suppressing Caspase-8-
GSDMD signaling.

Our study confirmed the therapeutic effect of Si-Wu-
Tang on MCD diet-induced NAFLD in mice in part via
modulating innate immune signaling. However, we only
analyzed the TLR4-JNK signaling and Caspase-8-GSDMD
signaling pathways; other essential innate immune signaling
pathways involved in NAFLD, the expression of inflam-
matory cytokines, and the key genes involved in hepatic
lipids metabolism are not assessed.

5. Conclusions

Our present study indicated that Si-Wu-Tang alleviates
MCD diet-induced NAFLD in mice in part via inhibiting

TLR4-JNK signaling and Caspase-8-GSDMD signaling. In
conclusion, Si-Wu-Tang may have potential for clinical
application in treating NAFLD.
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