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Abstract
Both pulmonary tuberculosis (PTB) and intestinal helminth infection (IHI) affect millions of

individuals every year in China. However, the national-scale estimation of prevalence predic-

tors and prevalencemaps for these diseases, as well as co-endemic relative risk (RR) maps

of both diseases’ prevalence are not well developed. There are co-endemic, high prevalence

areas of both diseases, whose delimitation is essential for devising effective control strate-

gies. Bayesian geostatistical logistic regression models including socio-economic, climatic,

geographical and environmental predictors were fitted separately for active PTB and IHI

based on data from the national surveys for PTB and major human parasitic diseases that

were completed in 2010 and 2004, respectively. Prevalencemaps and co-endemic RRmaps

were constructed for both diseases by means of Bayesian Kriging model and Bayesian

shared component model capable of appraising the fraction of variance of spatial RRs shared

by both diseases, and those specific for each one, under an assumption that there are unob-

served covariates common to both diseases. Our results indicate that gross domestic product

(GDP) per capita had a negative association, while rural regions, the arid and polar zones

and elevation had positive association with active PTB prevalence; for the IHI prevalence,

GDP per capita and distance to water bodies had a negative association, the equatorial and

warm zones and the normalized difference vegetation index had a positive association. Mod-

erate to high prevalence of active PTB and low prevalence of IHI were predicted in western

regions, low to moderate prevalence of active PTB and low prevalence of IHI were predicted

in north-central regions and the southeast coastal regions, and moderate to high prevalence

of active PTB and high prevalence of IHI were predicted in the south-western regions. Thus,

co-endemic areas of active PTB and IHI were located in the south-western regions of China,

which might be determined by socio-economic factors, such as GDP per capita.
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Author Summary

Pulmonary tuberculosis (PTB) and intestinal helminth infections (IHI) are infectious dis-
eases of poverty, and both diseases affect millions of individuals every year in China. How-
ever, a neglected topic for both diseases is their co-endemicity, which mostly occurs in
poor areas. This is the first time the co-endemicity of PTB and IHI and their risk factors
have been explored by means of a Bayesian geostatistical logistic regression model, a
Bayesian Kriging model and a Bayesian shared component model, based on data from the
national surveys. Our results indicate that active PTB and IHI prevalence are associated
with economic and ecological indices, both individually and collectively, with different dis-
ease spectra in different ecosystems. Additionally, we find that the south-western regions
of China are the largest clustering areas for prevalence of both diseases, where socio-eco-
nomic factors, such as GDP per capita may be common risk factors. Both socio-economic
factors and epidemiological patterns relevant to control strategies for active PTB and IHI
are illustrated clearly in this study, so we have reason to believe that they are essential for
devising effective control strategies and should be considered in the control programs for
both diseases.

Introduction
Pulmonary tuberculosis (PTB) and intestinal helminth infection (IHI) are still widespread in
China. Both diseases are associated with poverty and both seriously impact on people’s health.
The latest national epidemiological survey for PTB was conducted in 2010 and showed that the
active PTB prevalence was 459 per 100,000 among those above 15 years old[1]. The latest
national survey for major human parasitic diseases, conducted 2001–2004 reported a total of
26 species of helminth with an overall rate of 21.7%. The most common helminth infections
found were Ascaris lumbricoides (12.5%), hookworm (5.7%), Trichuris trichiura (4.2%), Clo-
norchis sinensis (0.6%) and Taenia spp. (0.1%)[2].

A syndemic, i.e. an aggregation of two or more diseases in a population, in which there is
some level of biological interaction could be at work with respect to PTB and IHI[3]. For
instance, there are indications that IHI may be one of the risk factors for the development of
active PTB in addition to human immunodeficiency virus infection (HIV)[4] and aggravation
of TB was seen after Opisthorchis infection[5,6]. Another study reported a possible link
between IHI and dysfunction of the protective immune response to Bacillus Calmette Guérin
(BCG) vaccine[7]. These findings may have important implications for the strategy to control
PTB and IHI in China, which has a high burden of TB and parasitic infections.

There have been only two studies about both diseases in China, one of which provided the prev-
alence maps of PTB without prevalence predictors, and the other provided the prevalence maps of
soil-transmitted helminths using data from different surveys[8,9]. Prevalence predictors and the
geographical distributions of these diseases have not been documented at the same time using uni-
formly-collected data; nor has joint spatial analysis of both diseases been presented. Therefore, it is
felt to be essential to explore local variations in active PTB and IHI with the aim of detecting joint
clustering of both diseases using the latest national surveys with uniform approaches.

Materials and Methods

Ethics statement
This study was approved by the Ethics Review Committee (ERC) of China CDC and ERC of
National Institute of Parasitic Diseases, China CDC. All the data were got from databases or
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yearbooks, not involved in individuals. Therefore, the informed consent was not necessary in
this study.

Data processing
The dataset of active PTB prevalence was obtained from the 2010, national TB epidemiological
survey[1], which included 176 survey sites with 252,940 participants across the country. In
addition to the national survey sites, the provinces of Shandong, Henan, Guangdong, Hainan,
Sichuan, Gansu, Ningxia and Xinjiang used the same protocol for extra, provincial survey sites
including a total of 151 provincial survey sites with 210,877 participants. Therefore, active PTB
prevalence of total 327 survey sites including national and provincial levels were analyzed in
this study (Fig 1A). In the survey, chest X-ray was performed on all subjects, and smear micros-
copy and culture of sputum specimens were carried out on all subjects who showed symptoms
of PTB or an abnormal chest X-ray result[1].

Overall prevalence of IHI is infection with any helminth species. The dataset on overall
prevalence of IHI was obtained from the national epidemiological survey for major human par-
asitic diseases conducted from 2001 to 2004[2], which included 687 survey sites with 343,500
participants across the country that were analyzed in this study (Fig 1B). In the survey, the
Kato-Katz technique for stool specimens was used to examine the eggs of intestinal helminths,
the test tube filter paper culture method was used to identify Ancylostoma duodenale and Neca-
tor americanus and examine other nematode larvae, and the adhesive cellophane anal swab
method was used to examine the eggs of Enterobius vermicularis and Taenia spp. During the
fecal examinations, eggs or larvae of other parasites other than the above mentioned parasites
were also recorded. The survey showed that major intestinal helminths were Ascaris lumbri-
coides, hookworm, Trichuris trichiura, Clonorchis sinensis and Taenia spp.

Proxies of socio-economic, climatic, geographical and environmental factors were extracted
as covariates from different readily accessible sources, as shown in Tables 1 and 2. The gross
domestic product (GDP) per capita, population density and urban extents with a binary indica-
tor of urban/rural extent were included in the analysis to capture influences of social develop-
ments and human activities on both diseases[8,10–13]. Climate zones consisting of equatorial,
arid, warm, snow and polar zones, precipitation, air temperature and land surface temperature
(LST) for day and night were used to reflect impacts of climatic factors on both diseases
[8,10,11,14–20], among which air temperature was only included in the analysis of active PTB
[19], and LST only in the analysis of IHI[8,11,14–16,18]. Elevation and water bodies were
applied to the evaluation of relationships between geographical factors and both diseases[8–
11,14–18], among which Euclidean distances from survey sites to water bodies were only
included in the analysis of IHI[8,11,14–16]. Vertical columnar density (VCD) of nitrogen diox-
ide (NO2), VCD of sulfur dioxide (SO2), concentration of particulate matter of 2.5 microme-
ters (PM2.5), soil moisture and normalized difference vegetation index (NDVI) were used to
assess influences of environmental factors on both diseases[8,10,11,14,15,17–19,21,22], among
which VCD of NO2, VCD of SO2 and PM2.5 concentration were only included in the analysis
of active PTB[19,21,22], and soil moisture and NDVI only in the analysis of IHI
[8,10,11,14,15,17,18]. GDP per capita and population density were obtained from the Chinese
annual, full-text database, and other data were downloaded from websites providing free geos-
patial data products. All of the collected covariates for more than one year were averaged.
Maps of all covariates can be seen in Fig 2.

All survey sites as well as supporting data for each diseases were converted into feature ESRI
datasets (ESRI Inc., Redlands, CA, USA) and then further converted into ESRI raster datasets
as needed. All data were processed with ArcGIS 10 (ESRI).
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Fig 1. Survey sites and the observed prevalence across P. R. China (A. for active pulmonary tuberculosis; B. for intestinal helminth infection).

doi:10.1371/journal.pntd.0004580.g001
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Bayesian geostatistical logistic regression modeling
The spatial variations in prevalence of active PTB and IHI were modeled using Bayesian geos-
tatistical logistic regression models. The method used is a combination of the logistic regression
model and Bayesian Kriging model, which can be used for the analysis of geo-referenced bino-
mial data, e.g., disease prevalence where the outcome variable is bounded between zero and
one[23]. The modeling process describes the variability in the outcome variable as a function
of the explanatory variables with the addition of a stochastic spatial effect to model the residual
spatial autocorrelation. Exponentiation of the model parameters provides the odds ratio (OR)
for each covariate which indicates the power and direction of relationships between the explan-
atory and outcome variables. Detailed descriptions of the structure of the Bayesian geostatisti-
cal logistic regression models and the process of model assessment are described in the
additional file: S1 Text.

Markov chain Monte Carlo (MCMC) simulation was used to estimate the univariate and
multivariate model parameters by geoRglm package of R statistical software (R version 3.0.2,
the R Foundation for Statistical Computing). Following a burn-in of 100,000 iterations, the
chain was run for a further 500,000 iterations, with every 100th iteration thereafter stored,
resulting in a total of 5,000 samples from the posterior distributions, and the convergence was
assessed by the Brooks and Roberts diagnostics[24]. The median values from the posterior dis-
tribution and their 95% Bayesian credible intervals (CI) were calculated and exponentiated to
ORs and their respective uncertainty measures.

Table 1. Sources for proxies of socio-economic, climatic, geographical and environmental factors.

Data name Data
period

Temporal
resolution

Spatial
resolution

Website of data source

GDP per capita 2010 NA County-level http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD

Population density 2010 NA County-level http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD

Urban extents 1990–
2000

NA 1 km http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents

Climate zones 1976–
2000

NA 15km http://koeppen-geiger.vu-wien.ac.at/shifts.htm

Precipitation 2001–
2010

Monthly 50km http://cdc.cma.gov.cn/dataSetLogger.do?changeFlag=dataLogger

Air temperature 2001–
2010

Monthly 50km http://cdc.cma.gov.cn/dataSetLogger.do?changeFlag=dataLogger

LST for day and
night

2001–
2010

Monthly 1km http://www.gscloud.cn/listdata/showinfo_new.shtml?from=&id=336

Elevation 2000 NA 90m http://www.geodata.cn/Portal/metadata/viewMetadata.jsp?id=100101-11220

Water bodies 2000 NA NA http://www.geodata.cn/Portal/metadata/viewMetadata.jsp?id=100101-15

VCD of NO2 2001–
2010

Monthly 25km http://www.geodata.cn/Portal/metadata/viewMetadata.jsp?id=210093-10246

VCD of SO2 2004–
2010

Monthly 25km http://www.geodata.cn/Portal/metadata/viewMetadata.jsp?id=210093-10249

PM2.5
concentration

2001–
2010

Annual 50km http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-
2001-2010

Soil moisture 1950–
1999

NA 50km http://www.sage.wisc.edu/atlas/maps.php?datasetid=
23&includerelatedlinks=1&dataset=23

NDVI 2001–
2010

Monthly 1km http://www.gscloud.cn/listdata/showinfo_new.shtml?from=&id=345

GDP, gross domestic product; LST, land surface temperature; VCD, vertical columnar density; NO2, Nitrogen dioxide; SO2, sulfur dioxide; PM2.5,

Particulate matter of 2.5 micrometers; NDVI, normalized difference vegetation index; NA, not applicable.

doi:10.1371/journal.pntd.0004580.t001
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Due to convergence and mixing problems when including all of the covariates in the multivar-
iate model, each of the explanatory variables in Tables 1 and 2 was examined independently
using a univariate model. All covariates significantly associated with the prevalence of active PTB
or IHI (i.e., the 95% Bayesian CI for the OR did not include the value 1) in the univariate model
were selected for the multivariate parameter estimation to eliminate the collinearity of covariates.
Any covariates that were non-significant in the multivariate model were discarded from the final
model through inspection of the regression parameters and 95% Bayesian CIs[25].

We tried many cut-points of each continuous variable in the univariate model to find which
cut-point is significant. For example, we tried cut-points of 25%, 50% and 75% to observe the P
value in the model. If no significance, we continued to try cut-points of 12.5%, 37.5%, 62.5%
and 87.5%. If also no significance, we continued to narrow the range. If all the cut-points were
no significant, the variable was removed.

Using the geoRglm package of R statistical software, Bayesian Kriging was employed to pro-
duce each smooth prevalence map of active PTB and IHI. A 10 ×10 km spatial resolution pre-
diction grid was created at the national-scale, containing covariate values at each prediction
location (grid cell). Samples from the predictive distribution for each prediction location were
generated using the above MCMC algorithm given the explanatory variables at each grid cell,
and the convergence was assessed by the Brooks and Roberts diagnostics[24]. The posterior

Table 2. Overview of prevalence and relevant factors for the survey sites of active pulmonary tuberculosis and intestinal helminth infection.

Variable Type Active pulmonary tuberculosis (N = 327) Intestinal helminth infection
(N = 687)

Median Interquartile range Median Interquartile range

Prevalence Continuous 414 / 100,000 222–710 / 100,000 10.0% 2.4–27.9%

GDP per capita (RMB Yuan) Continuous 18,634 11,718–33,079 19,734 12,366–34,026

Population density (people / km2) Continuous 502 186–1,064 454 172–772

Urban extents† Categorical

Rural 167 51.10% 437 63.70%

Urban 160 48.90% 250 36.30%

Climate zones† Categorical

Equatorial 3 0.90% 14 2.00%

Arid 56 17.10% 62 9.00%

Warm 214 65.40% 477 69.50%

Snow 54 16.50% 132 19.20%

Polar 0 0.00% 2 0.30%

Precipitation (mm) Continuous 64.3 41.5–96.0 80.5 46.3–119.2

Air temperature (°C) Continuous 14.1 8.7–16.7 NA NA

LST for day (°C) Continuous NA NA 21.8 20.2–23.8

LST for night (°C) Continuous NA NA 12.3 6.6–14.7

Elevation (m) Continuous 161 37–848 118 28–546

Distance to water bodies (m) Continuous NA NA 6000 2000–12767

VCD of NO2 (Dobson unit) Continuous 0.22 0.07–0.56 NA NA

VCD of SO2 (Dobson unit) Continuous 0.29 0.16–0.48 NA NA

PM2.5 concentration (μg / m3) Continuous 32.8 18.8–46.4 NA NA

Soil moisture (mm) Continuous NA NA 84.0 31.3–113.6

NDVI Continuous NA NA 0.54 0.43–0.64

†, n and %; GDP, gross domestic product; LST, land surface temperature; VCD, vertical columnar density; NO2, Nitrogen dioxide; SO2, sulfur dioxide;

PM2.5, Particulate matter of 2.5 micrometers; NDVI, normalized difference vegetation index; NA, not applicable.

doi:10.1371/journal.pntd.0004580.t002
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Fig 2. Spatial distributions of covariates across P. R. China (A. gross domestic product [GDP] per capita; B. population density; C. urban extents;
D. climate zones; E. precipitation; F. air temperature; G. land surface temperature for day; H. land surface temperature for night; I. elevation; J.
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medians, lower and upper limits of 95% Bayesian CIs, and posterior standard errors from the
predictive distributions were extracted to give predicted prevalence and uncertainty estimates at
all locations. Based on the predicted prevalence and population density in each grid cell of the
smooth prevalence map, we calculated average prevalence of each county and then created a fea-
ture ESRI dataset of prevalence by county for both diseases using ArcGIS software. The Natural
Breaks (Jenks) method was used to classify the predicted values and their standard errors.

Validation of predicted prevalence of active PTB and IHI was undertaken by randomly sam-
pling 15% of total survey sites as validation set and running the model using the remaining 85%
survey sites (training set) and validating the model with the validation set[26]. The accuracy of
the prediction was determined in terms of sensitivity and specificity and by the area under curve
(AUC) of a receiver-operating characteristic (ROC) curve[27], where the predicted values were
compared to the observed values dichotomized at prevalence thresholds of� 20% to assess dis-
criminatory performance of predictions[28]. As a general rule, an AUC between 0.5 and 0.7 indi-
cates a poor discriminative capacity; 0.7–0.9 indicate a reasonable capacity; and> 0.9 indicate a
very good capacity[29]. Moreover, we computed the percentage of test locations with the
observed disease risk falling inside 95% Bayesian CI of the predicted posterior distribution, and
the predictive mean error (ME) between the observed prevalence πi

obs and the predicted preva-
lence πi

pre at location i, whereME = ∑i = 1 (πi
obs -πi

pre) / n (i = 1, . . ., n) [8,17,30].

Bayesian shared component modeling
Using the GeoBUGS package, version 1.4.3 of the WinBUGS software (Medical Research
Council and Imperial College of Science, Technology and Medicine, UK), the above feature
ESRI dataset of prevalence by county was used to fit a Bayesian shared component model to
jointly analyze the spatial variations of both diseases’ prevalence with common latent risk fac-
tors. We assumed that the county-specific relative risks (RRs) of both diseases’ prevalence
depend on a shared latent component common to active PTB and IHI, plus additional latent
components specific to each disease[31]. These latent components act as surrogates for unmea-
sured risk factors of prevalence that affect both or only one of the diseases respectively[31].
Detailed descriptions of the structure of the Bayesian shared component model and the process
of model assessment are described in the additional file: S2 Text.

Statistical inference of the Bayesian shared component model was made by using the same
MCMC algorithm as for the Bayesian geostatistical logistic regression model, and the conver-
gence was assessed using the Brooks and Roberts diagnostics[24]. For this model, the propor-
tion of variability explained by each component for both disease datasets was derived from the
empirical variances[32]. The fitting of various models is measured with the deviance informa-
tion criterion (DIC); the lower the DIC, the better the model fit[33]. Many studies indicated
that Bayesian shared component model was superior in terms of goodness of fit, compared
with the individual modeling of diseases[32,34–36]. Therefore, we did not compare goodness
of fit between the Bayesian shared component model and other relevant models in this study.

Results

Data summaries
It can be seen in Table 2 that the median (interquartile range [IQR]) prevalence were 414 /
100,000 (222–710 / 100,000) and 10.0% (2.4–27.9%) for active PTB from 327 survey sites and

water bodies; K. vertical columnar density [VCD] of nitrogen dioxide [NO2]; L. VCD of sulfur dioxide [SO2]; M. concentration of particulate matter
of 2.5 micrometers [PM2.5]; N. soil moisture; O. normalized difference vegetation index [NDVI]).

doi:10.1371/journal.pntd.0004580.g002
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IHI from 687 survey sites, respectively. The geographical distribution of survey sites and the
observed prevalence for each disease are shown in Fig 1. The median (IQR) or proportion of
socio-economic, climatic, geographical and environmental covariates for survey sites of both
diseases are listed in Table 2 and maps of the spatial distribution of all covariates used in Bayes-
ian geostatistical logistic regression model are provided in Fig 2.

Univariate parameter estimation
In the univariate Bayesian geostatistical logistic regression model, GDP per capita, population
density, urban extents, climate zones, elevation, VCD of NO2 and PM2.5 concentration were
significantly correlated with active PTB prevalence, which can be seen in Table 3. Similarly, in
the univariate spatial regression model, GDP per capita, urban extents, climate zones, LST for
day, LST for night, NDVI and distance to water bodies were significantly correlated with preva-
lence of IHI, which can be seen in Table 4.

Multivariate parameter estimation
In the multivariate Bayesian geostatistical logistic regression model, four variables finally
retained significant correlation with active PTB prevalence, which can be seen in Table 3,
where GDP per capita> 18,400 RMB Yuan had a protective effect on active PTB prevalence
(OR = 0.82 [95% Bayesian CI = 0.69–0.98]), and rural regions, the arid and polar zones and
elevation> 100 m had significantly increased risk effects on active PTB prevalence (OR = 1.31
[95% Bayesian CI = 1.08–1.58], OR = 1.32 [95% Bayesian CI = 1.01–1.74] and OR = 1.29 [95%
Bayesian CI = 1.02–1.66], respectively).

Similarly, in the multivariate spatial regression model, four variables finally retained signifi-
cant correlation with prevalence of IHI, which can be seen in Table 4, where GDP per
capita> 19,400 RMB Yuan had a protective effect on prevalence of IHI (OR = 0.77 [95%

Table 3. Posterior summaries (median and 95%Bayesian CI) of the geostatistical model parameters for active pulmonary tuberculosis.

Variable Estimate of univariate model† Estimate of multivariate model†

GDP per capita (RMB Yuan) � 18,400 1.00 1.00

> 18,400 0.73 (0.62–0.87) 0.82 (0.69–0.98)

Population density (people / km2) � 500 1.00

> 500 0.67 (0.57–0.81)

Urban extents Urban 1.00 1.00

Rural 1.49 (1.28–1.75) 1.31 (1.08–1.58)

Climate zones Equatorial, warm temperate & snow 1.00 1.00

Arid & polar 1.44 (1.08–1.91) 1.32 (1.01–1.74)

Elevation (m) � 100 1.00 1.00

> 100 1.55 (1.21–1.99) 1.29 (1.02–1.66)

VCD of NO2 (Dobson unit) � 0.19 1.00

> 0.19 1.33 (1.03–1.70)

PM2.5 concentration (μg / m3) � 33 1.00

> 33 1.39 (1.10–1.76)

Range (km) NA 333 (70–842)

Sill NA 0.92 (0.35–3.50)

Nugget NA 0.35 (0.29–0.43)

†, regression coefficients are provided as odds ratios; GDP, gross domestic product; VCD, vertical columnar density; NO2, Nitrogen dioxide; PM2.5,

Particulate matter of 2.5 micrometers; NA, not applicable.

doi:10.1371/journal.pntd.0004580.t003
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Bayesian CI = 0.62–0.95]), as did distance to water bodies> 2,000 m (OR = 0.78 [95% Bayesian
CI = 0.63–0.95]), and the equatorial and warm zones and NDVI> 0.61 had significantly
increased risk effects on prevalence of IHI (OR = 1.72 [95% Bayesian CI = 1.12–2.64] and
OR = 1.24 [95% Bayesian CI = 1.03–1.52], respectively).

Model validation results
For Bayesian geostatistical logistic regression models, an AUC for predicting active PTB preva-
lence was 0.79 (95% CI = 0.65–0.92) and an AUC for predicting prevalence of IHI was 0.87
(95% CI = 0.79–0.96), which indicated a moderately good predictive performance. Moreover,
within 95% Bayesian CI, the spatial regression models were able to correctly estimate 84.7%
and 94.4% for prevalence of active PTB and IHI, respectively. The MEs for predictive preva-
lence of active PTB and IHI were 90 / 100,000 and 1.1% respectively, which suggested that the
models slightly underestimated prevalence of active PTB and IHI.

Spatial predictions
The predicted prevalence surface of active PTB from the final spatial regression model is illus-
trated in Fig 3A, 3B and 3C illustrate the lower and upper limits of 95% Bayesian CI for the pre-
diction. High prevalence of active PTB (� 900 / 100,000) was predicted in large areas of two
provinces including Tibet and Xinjiang and the juncture of four provinces including Guangxi,
Sichuan, Guizhou and Yunnan. Low prevalence (� 391/100,000) was predicted in most of the
south-eastern coastal-line areas, eastern areas of three provinces including Liaoning, Jilin and
Heilongjiang, and the juncture of four provinces including Inner Mongolia, Shaanxi, Gansu
and Ningxia. Moderate prevalence (392-899/100,000) was predicted between areas of low and
high prevalence.

Table 4. Posterior summaries (median and 95%Bayesian CI) of the geostatistical model parameters for intestinal helminth infection.

Variable Estimate of univariate model† Estimate of multivariate model†

GDP per capita (RMB Yuan) � 19,400 1.00 1.00

> 19,400 0.77 (0.62–0.96) 0.77 (0.62–0.95)

Urban extents Urban 1.00

Rural 1.21 (1.04–1.42)

Climate zones Arid, snow & polar 1.00 1.00

Equatorial & warm 1.68 (1.04–2.63) 1.72 (1.12–2.64)

LST for day (°C) � 24 1.00

> 24 1.56 (1.13–2.15)

LST for night (°C) � 12 1.00

> 12 1.55 (1.02–2.39)

NDVI � 0.61 1.00 1.00

> 0.61 1.33 (1.12–1.60) 1.24 (1.03–1.52)

Distance to water bodies (m) � 2,000 1.00 1.00

> 2,000 0.78 (0.63–0.97) 0.78 (0.63–0.95)

Range (km) NA 328 (164–492)

Sill NA 3.41 (3.00–4.31)

Nugget NA 0.34 (0.30–0.43)

†, regression coefficients are provided as odds ratios; GDP, gross domestic product; LST, land surface temperature; NDVI, normalized difference

vegetation index.

doi:10.1371/journal.pntd.0004580.t004
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Similarly, the predicted prevalence surface of IHI from the final spatial regression model is
illustrated in Fig 4A, 4B and 4C illustrate the lower and upper limits of 95% Bayesian CI for the
prediction. High prevalence of IHI (� 27.62%) was predicted in large areas of nine provinces
including Fujian, Jiangxi, Hubei, Hunan, Guangxi, Hainan, Chongqing, Sichuan and Guizhou.
Low prevalence (� 7.06%) was predicted in large areas of 11 provinces including Beijing, Tian-
jin, Hebei, Shanxi, Inner Mongolia, Liaoning, Shanghai, Jiangsu, Shandong, Henan and Xin-
jiang. Moderate prevalence (7.07–27.61%) was predicted between areas of low and high
prevalence.

For prevalence of both active PTB and IHI, the high prediction uncertainties were correlated
with high prevalence areas, which can be seen in the additional file: S1A and S1B Fig,
respectively.

Shared component estimation of relative risks
The shared component of RRs for active PTB and IHI derived from Bayesian shared compo-
nent model is shown in Table 5 and Fig 5. The shared term captured 28.8% (95% CI = 26.5–
30.9%) of the total spatial variation in active PTB, among which 75.1% (95% CI = 63.0–81.2%)
was spatially correlated. The shared term captured 69.9% (95% CI = 63.9–74.5%) of the total
spatial variation in IHI, among which the same proportion as active PTB (75.1% [95%
CI = 63.0–81.2%]) was spatially correlated. Most striking is a large cluster with higher estima-
tion of the shared component (RR> 1.0) in 12 provinces including Anhui, Fujian, Jiangxi,
Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou and Yunnan.
The prediction uncertainties of shared component can be seen in the additional file: S2A Fig.

Disease-specific components estimation of relative risks
The disease-specific components of RRs for active PTB and IHI derived from Bayesian shared
component model are shown in Table 5 and Figs 6 and 7. One disease-specific term captured
71.2% (95% CI = 69.1–73.5%) of the total spatial variation in active PTB, among which 99.9%
(95% CI = 99.8–100.0%) was spatially correlated. The other captured 30.1% (95% CI = 25.5–
36.1%) of the total spatial variation in IHI, among which 83.7% (95% CI = 73.1–86.7%) was
spatially correlated. The disease-specific component for active PTB had a distinct spatial pat-
tern with higher estimation (RR> 1.2) in large areas of seven provinces including Guangxi,
Sichuan, Guizhou, Yunnan, Tibet, Qinghai and Xinjiang and the juncture of three provinces
including Henan, Hunan and Shaanxi, as shown in Fig 6. The disease-specific component for
IHI presented a different spatial pattern with higher estimation (RR> 1.0) in large areas of 12
provinces including Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Hainan,
Chongqing, Sichuan, Guizhou and Yunnan and sparse areas of the remaining provinces, as
shown in Fig 7. The prediction uncertainties of disease-specific components can be seen in the
additional files: S2B and S2C Fig.

Discussion
Although the control of both TB and IHI have progressed in China[37,38], there still are mil-
lions of new cases of each disease every year. Syndemics of active PTB and IHI may signifi-
cantly inhibit host immune systems, increase antibacterial therapy intolerance and even alter
the protective immune response to vaccination against TB[39], underlining the importance of

Fig 3. Spatial distributions of active pulmonary tuberculosis across P. R. China (A. posterior medians of prevalence; B. posterior lower limits of
95% Bayesian credible intervals [CI] of prevalence; C. posterior upper limits of 95% Bayesian CI of prevalence).

doi:10.1371/journal.pntd.0004580.g003
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exploring co-endemic areas. However, there are few model-based, nation-wide predictive
infection risk maps for active PTB and IHI in China[8,9]. The estimation of prevalence predic-
tors at the national level and presentation of predictive prevalence maps for active PTB and
IHI, as well as co-endemic RR maps of both diseases’ prevalence, are new and accurate as the
investigations are based on two recent, national surveys using uniform diagnostic approaches
[1,2].

Recently, Bayesian geostatistical analysis was extensively applied to the prediction of para-
sitic diseases, such as schistosomiasis[40–43], malaria[26,30,44–47], leishmaniasis[48], soil-
transmitted helminth infections[8,10,11,14–18], lymphatic filariasis[47,49], but so far there are
only few applications to the prediction of TB[50–53]. In addition, Bayesian geostatistical meth-
ods have almost exclusively been focused on spatial modeling of a single disease. Here, Bayes-
ian geostatistical techniques was shown to support separate and joint spatial analysis of two
different infections, i.e. active PTB and IHI. The approach used in our analysis identified
important predictors related to active PTB and IHI. Model validation suggested moderately
good predictive ability of our final models according to the validation results that AUCs of pre-
diction were 0.79 and 0.87 and proportions of the observed prevalence correctly predicted
within 95% Bayesian CI were 84.7% and 94.4% for active PTB and IHI, respectively. Our final
models demonstrated similar, superior predictive performance compared to other studies
[8,10,14,16–18]. The MEs (90 / 100,000 and 1.1% for active PTB and IHI, respectively) in this
study indicated a slight underestimation of prevalence, which had also been observed in other
studies[8,14,17,43]. Therefore, we believe that our predictions provided stable and reliable
information about the prevalence of both diseases.

Our results indicated that GDP per capita and population density had negative association
with active PTB prevalence in the univariate model, while rural regions, arid and polar zones,
elevation, VCD of the NO2 and PM2.5 concentrations showed positive associations. No other
study presented all these predictors at a time previously[12,19–22]. Although all these

Fig 4. Spatial distributions of intestinal helminth infection across P. R. China (A. posterior medians of prevalence; B. posterior lower limits of 95%
Bayesian credible intervals [CI] of prevalence; C. posterior upper limits of 95% Bayesian CI of prevalence).

doi:10.1371/journal.pntd.0004580.g004

Table 5. Posterior summaries (median and 95%Bayesian CI) of the shared component model parame-
ters by disease.

Parameter Active pulmonary tuberculosis Intestinal helminth infection

Variance components

Shared component 0.068 (0.059–0.076) 0.577 (0.536–0.605)

Unstructured 0.014 (0.011–0.020) 0.123 (0.101–0.151)

Spatial 0.043 (0.033–0.048) 0.370 (0.256–0.438)

Specific component 0.167 (0.163–0.172) 0.250 (0.203–0.304)

Unstructured 0.000 (0.000–0.000) 0.041 (0.038–0.046)

Spatial 0.167 (0.162–0.172) 0.207 (0.123–0.270)

Fraction of total variations

%Shared component 28.8 (26.5–30.9) 69.9 (63.9–74.5)

%Unstructured 24.9 (18.8–37.0) 24.9 (18.8–37.0)

%Spatial 75.1 (63.0–81.2) 75.1 (63.0–81.2)

%Specific component 71.2 (69.1–73.5) 30.1 (25.5–36.1)

%Unstructured 0.1 (0.0–0.2) 16.3 (13.3–26.9)

%Spatial 99.9 (99.8–100.0) 83.7 (73.1–86.7)

doi:10.1371/journal.pntd.0004580.t005
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Fig 5. Spatial distributions of the shared component between active pulmonary tuberculosis and intestinal helminth infection across P. R. China
(A. posterior medians of relative risks; B. posterior lower limits of 95% Bayesian credible intervals [CI] of relative risks; C. posterior upper limits of
95% Bayesian CI of relative risks)

doi:10.1371/journal.pntd.0004580.g005
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predictors showed association with active PTB prevalence in the univariate model, results of
the multivariate model showed that only GDP per capita, urban extents, climate zones and ele-
vation still retained association with active PTB prevalence, which may suggest that these four
predictors had greater impact on active PTB prevalence than other predictors in China. How-
ever, other studies showed that there was a negative correlation between altitude and TB preva-
lence[54–57]. In this study, the positive correlation between altitude and active PTB prevalence
possibly indicated that the risk effects of other factors overwhelmed the protective effect of alti-
tude[58].

It is indisputable that socio-economic development can inhibit the transmission of various
diseases including IHI[8,18,42,48] and our findings were consistent with an earlier study in
China[8]. We also found that GDP per capita and distance to water bodies had a negative asso-
ciation with prevalence of IHI in the univariate model, while rural regions, the equatorial and
warm zones, LST for day and night and NDVI had a positive association. Despite that all these
factors are correlated with the prevalence of IHI in the univariate model, only GDP per capita,
climate zones, NDVI and distance to water bodies still retained correlation with prevalence of
IHI in the final multivariate model. This may suggest that these four factors had a greater
impact on the prevalence of IHI than other factors in our study.

Our predictive prevalence maps for active PTB and IHI presented geographical distribution
patterns, which were consistent with previously released maps of both diseases[8,9]. Unsurpris-
ingly, there were obviously different geographical distribution patterns of prevalence between
active PTB and IHI. For example, moderate to high prevalence of active PTB was predicted in
western regions of the country where only low IHI prevalence was predicted; low to moderate
prevalence of active PTB was predicted in the more northern parts of China and the south-east-
ern, coastal regions where low prevalence of IHI was predicted; moderate to high prevalence of
active PTB was predicted in the south-western regions where high prevalence of IHI was
predicted.

The shared component explains the fraction of total variation in spatial RRs for each disease
in the shared component model. In this study, for IHI about 70% of the total between-area var-
iation in risk was captured by the shared component, while for active PTB about 29% of the
total between-area variation in risk was captured by the shared component. This suggests that
the shared component had a slightly weaker association with risk of active PTB than with risk
of IHI. Although there was a difference between the fractions of both diseases, the shared com-
ponent still represented the joint prevalence. The spatial analysis of joint prevalence of active
PTB and IHI showed that a large cluster of both diseases was found to be located in the south-
western regions of the country, which was consistent with the overlapping areas of high preva-
lence based on separate predictive maps of both diseases. These findings proved the accuracy
and reliability of the shared component model used in this study.

The shared component model makes the assumption that there are unobserved covariates
that display a spatial structure common to both diseases[31]. The analysis results of the sepa-
rate multivariate model for active PTB and IHI in our study showed that proxies of socio-eco-
nomic and climatic factors were simultaneously associated with prevalence of both diseases.
The socio-economic factors had the same effects on prevalence of both diseases, while the cli-
matic factors showed the opposite effect including positive correlation between the arid and
polar zones and active PTB and positive correlation between the equatorial and warm zones
and IHI. Therefore, we inferred that socio-economic factors such as GDP per capita were the

Fig 6. Spatial distributions of the specific component for active pulmonary tuberculosis across P. R. China (A. posterior medians of relative risks;
B. posterior lower limits of 95% Bayesian credible intervals [CI] of relative risks; C. posterior upper limits of 95% Bayesian CI of relative risks)

doi:10.1371/journal.pntd.0004580.g006
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Fig 7. Spatial distributions of the specific component for intestinal helminth infection across P. R. China (A. posterior medians of relative risks; B.
posterior lower limits of 95% Bayesian credible intervals [CI] of relative risks; C. posterior upper limits of 95% Bayesian CI of relative risks).

doi:10.1371/journal.pntd.0004580.g007

Fig 8. Summarization of relationships between impact factors and spatial patterns of prevalence individually and collectively associated with
active pulmonary tuberculosis and intestinal helminth infection in P. R. China.

doi:10.1371/journal.pntd.0004580.g008
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main unobserved covariates that determined the co-endemic patterns of active PTB and IHI
because they were common to both diseases. Moreover, we also observed that the spatial pat-
tern of disease-specific component for active PTB were similar to the distribution of urban
extents, climate (arid and polar) zones and elevation in maps, which may indicate that they
represented additional risk factors only relevant to active PTB but not to IHI. Similarly, the
spatial pattern of disease-specific component for IHI were similar to the distribution of climate
(equatorial and warm) zones, NDVI and distance to water bodies in maps, which may indicate
that these factors were the additional risk factors only relevant to IHI but not to active PTB (see
Fig 8).

All the covariates used in this study were extracted from different accessible sources. Hence,
the accuracy and spatial resolution were diverse, possibly influencing the capture of disparities
of covariates across the country at uniform scale[10]. For example, although precipitation, air
temperature, VCD of SO2 and soil moisture were captured in other studies[8,10,17–21], we
did not find them in our study. One possible reason is that data quality of these factors affected
the capture of the model, while another possible reason is that these factors really had no asso-
ciation with both diseases. Additionally, both diseases and covariates had high heterogeneity at
the national-scale, but we did not divide these data into three or more groups to present the
variations in the Bayesian geostatistical logistic regression equation due to limitations of com-
puting power. Furthermore, the shared component model assumes that the shared and specific
component are independent, which ignores the possibility of interaction between the real
covariates[31]. In view of these limitations, although we believe that our findings provide a use-
ful approximation for both diseases, we caution against over-interpretation of our findings.

In conclusion, our study simultaneously provided prevalence predictors and predictive
prevalence maps for active PTB and IHI as well as co-endemic RR maps of both diseases’ prev-
alence at the national scale. We found that co-endemic areas of active PTB and IHI were
located in the south-western regions of China, which may be determined by socio-economic
factors such as GDP per capita. Moreover, disease-specific distributions of active PTB may be
determined by exclusive factors including urban extents, the arid and polar zones and eleva-
tion, while disease-specific distributions of IHI may be determined by exclusive factors includ-
ing the equatorial and warm zones, NDVI and distance to water bodies. We believe that our
estimations provide a valuable assessment of separate and co-endemic situations of active PTB
and IHI, therefore we hope that this first effort will contribute useful information to plan syn-
demic control strategies in co-endemic areas. Additionally, the combination of Bayesian geos-
tatistical techniques in this study provided a new avenue for exploring high prevalence areas of
multi-disease syndemics and to understand their interactions at the macro-scale.

Supporting Information
S1 Text. Bayesian geostatistical logistic regression modeling.
(DOC)

S2 Text. Bayesian shared component modeling.
(DOC)

S1 Fig. Spatial distributions of posterior standard error of prevalence across P. R. China (A.
for active pulmonary tuberculosis; B. for intestinal helminth infection).
(TIF)

S2 Fig. Spatial distributions of posterior standard error of relative risks across P. R. China (A.
for the shared component between active pulmonary tuberculosis and intestinal helminth
infection; B. for the specific component for active pulmonary tuberculosis; C. for the specific

Co-endemicity of Tuberculosis and Helminthiasis in China

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004580 April 18, 2016 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004580.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004580.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004580.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004580.s004


component for intestinal helminth infection).
(TIF)
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