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In the battle between a virus and its host, innate immunity serves as the first line

of defense protecting the host against pathogens. The antiviral actions start with the

recognition of pathogen-associated molecular patterns derived from the virus, then

ultimately turning on particular transcription factors to generate antiviral interferons

(IFNs) or proinflammatory cytokines via fine-tuned signaling cascades. With dengue

virus (DENV) infection, its viral RNA is recognized by the host RNA sensors, mainly

retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and toll-like receptors. DENV

infection also activates the cyclic GMP-AMP synthase–stimulator of interferon genes

(cGAS–STING)-mediated DNA-sensing pathway despite the absence of a DNA stage in

the DENV lifecycle. In the last decade, DENV has been considered a weak IFN-inducing

pathogen with the evidence that DENV has evolved multiple strategies antagonizing

the host IFN system. DENV passively escapes from innate immunity surveillance and

also actively subverts the innate immune system at multiple steps. DENV targets

both RNA-triggered RLR–mitochondrial antiviral signaling protein (RLR–MAVS) and

DNA-triggered cGAS–STING signaling to reduce IFN production in infected cells. It also

blocks IFN action by inhibiting IFN regulatory factor- and signal transducer and activator

of transcription-mediated signaling. This review explores the current understanding of

how DENV escapes the control of the innate immune system by modifying viral RNA

and viral protein and by post-translational modification of cellular factors. The roles of the

DNA-sensing pathway in DENV infection, and how mitochondrial dynamics participates

in innate immunity are also discussed.

Keywords: dengue virus, interferon, RLR–MAVS, cGAS–STING, mitochondrial dynamics

Dengue virus (DENV) hijacks the host’s cellular machinery and accesses cell resources in multiple
ways to accomplish its lifecycle. Cellular immune signaling then turns on various cascades to fight
back when the host cell senses this invading pathogen. Therefore, DENV confronts a series of
challenges at each step of its lifecycle from virus entry to the release of mature virion. To counteract,
DENV not only passively hides to escape the immune surveillance but also directly targets immune
mediators to block the antiviral signaling transduction (1–3).

In this review, we discuss how the host cell activates innate immunity in response to DENV
infection and the strategies DENV uses to evade the innate immune system. We illustrate the main
theme of this article in Figure 1 and summarize the DENV antagonism (Table 1) described in
the text.
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FIGURE 1 | The interplay between dengue virus (DENV) and the interferon (IFN) system. (A) The viral proteins encoded by DENV genome are shown. (B) The positive

signalings/pathways are illustrated with black arrows, and the antagonistic pathways are in red. Refer to the main text for details. vRNA, viral RNA; NTPase,

nucleoside triphosphatases; MTase, methyltransferase; RdRp, RNA-dependent RNA polymerase; RIG-I, retinoic acid-inducible gene I; MDA5, melanoma

differentiation-associated protein 5; CARD, caspase activation and recruitment domain; Ub, ubiquitin; MAVS, mitochondrial antiviral signaling protein; sfRNA,

subgenomic flavivirus RNA; TRIM25, tripartite motif protein 25; MFN, mitofusin; STING, stimulator of interferon genes; MITA, mediator of IRF3 activation; NF-κB,

nuclear factor kappa B; NEMO, NF-κB essential modulator; TBK1, TANK binding kinase-1; IKKα/β/ε, IκB kinase alpha/beta/epsilon; IRF, interferon regulatory factor;

IFN, interferon; IFNAR, IFN-α/β receptor; STAT, signal transducer and activator of transcription; ISG, IFN-stimulated gene; Jak1, Janus kinase 1; Tyk2, tyrosine kinase

2; UBR4, ubiquitin protein ligase E3 component n-recognin 4; XRN1, 5′-3′ exoribonuclease 1.

BRIEF MOLECULAR VIROLOGY OF DENV

DENV belongs to the genus Flavivirus of Flaviviridae and is
the leading cause of mosquito-borne viral diseases. The DENV
virion harbors a messenger-sense, single-stranded RNA (ssRNA)
genome that contains a 5′ cap but lacks a 3′ poly-A tail. The
DENV invasion starts with cell-surface attachment and receptor

binding. After internalization, the nucleocapsid is uncoated,

and the virus genome then releases to the cytoplasm. The

DENV RNA genome is similar to cellular mRNA, translating

a polyprotein precursor in a cap-dependent manner. Viral

and cellular proteases then process the polyprotein into three

structural proteins (capsid [C], precursor membrane [prM],
and envelope [E]) and seven non-structural (NS) proteins
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TABLE 1 | Summary of dengue virus (DENV) factors antagonizing the interferon (IFN) system.

DENV

factors

Target

pathway

Actions References

sfRNA RNA-sensing Binds to TRIM25 to inhibit viral RNA recognition by RIG-I (4, 5)

NS2A IFN induction Antagonizes the phosphorylation of TBK1 and RIG-I-induced IRF3 (6)

IFN signaling Inhibits IFN-triggered antiviral actions (7)

NS2B DNA-sensing Targets cGAS for degradation (8)

NS2B3 DNA-sensing Cleaves STING through protease-dependent manner (9, 10)

IFN induction Interacts with IKKε to mask part of its kinase domain to prevent the

phosphorylation of IRF3

(11)

Mitochondrial

dynamics

Cleaves MFN1 and MFN2 to modulate the MFN-mediated host antiviral

defense

(12)

NS3 RNA-sensing Competes with RIG-I for 14-3-3ε binding to block RIG-I activation (13)

NS4A RNA-sensing Translocates to mitochondrion-associated endoplasmic reticulum

membranes to prevent the binding between RIG-I and MAVS.

(14)

IFN induction Blocks TBK1 activation (6)

IFN signaling Inhibits of IFN-triggered gene expressions (7)

NS4B IFN induction Antagonizes the phosphorylation of TBK1 and RIG-I-induced IRF3 (6)

IFN signaling Inhibits STAT1 phosphorylation and transcriptional activation (7)

NS5 RNA-sensing Catalyzes DENV genomic RNA 2’-O methylation mimicking cellular mRNA (15)

IFN signaling Binds and degrades STAT2 (16–18)

sfRNA, subgenomic flaviviral RNA; TRIM25, tripartite motif protein 25; RIG-I, retinoic acid-inducible gene-I; TBK1, TANK binding kinase-1; IRF, interferon regulatory factor; STAT, signal

transducer and activator of transcription; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; IKKε, IκB kinase epsilon; MFN, mitofusin; MAVS, mitochondrial

antiviral signaling protein.

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). After that,
viral RNA is replicated by the viral RNA-dependent RNA
polymerase NS5 in the replication complex. Structural proteins
are assembled with the DENV RNA genome in the endoplasmic
reticulum (ER) and then transmitted to the Golgi apparatus.
Ultimately, the mature and infectious virions are secreted
into the extracellular space and await the next round of
infection (19, 20).

DENV has evolved many strategies to minimize its exposure
in vitro because the virus is membrane-enveloped and is liable
to dysfunction in vitro. Thus, DENV uses the mosquito, the
natural syringe, as the vector to preserve, replicate, and transmit
itself. Natural feeding of human blood containing DENV viral
RNA more than 5 log10-copies/ml seems sufficient to transmit
all serotypes of DENV from human to the primary mosquito
vector Aedes aegypti (21). Therefore, the period of human DENV
infectiousness to the A. aegypti mosquitoes may vary between
viral serotypes but concentrates on the days when a patient
develops illness/fever (22). Despite the presence of a protein
D7 capable of inhibiting DENV in mosquito saliva (23), the
bites with mosquito saliva increase DENV dissemination into the
mammalian host (24, 25).

DENV takes advantage of the mammalian host machinery
for replication, but the immune system can detect and attack
this invading pathogen. In the last decade, DENV has been
considered a weak interferon (IFN)-inducing pathogen (26, 27),
with the knowledge that DENV has evolved multiple strategies
to antagonize the host IFN system (1–3, 28). Understanding
how DENV escapes the control of innate immunity may
shed some light on the complicated pathogenesis of DENV
infection.

THE CONCEPT OF IFN SYSTEM IN INNATE
IMMUNITY

Innate immunity specifies particular pattern recognition
receptors (PRRs) to distinguish pathogen-associated molecular
patterns (PAMPs) of invading pathogens, including both RNA
and DNA viruses. The aberrant nucleic acid species in the
cytoplasm, such as double-stranded RNA (dsRNA) in the
endosome, cytoplasmic DNA and 5′-triphosphorylated RNA,
are the unique viral PAMPs that activate corresponding PRRs
(29, 30). Once activated, the sensor hands over the signal to its
adaptor proteins, which then recruit kinases to phosphorylate
transcription factors and ultimately turn on the production of
antiviral IFNs and proinflammatory cytokines. The secreted
type-I/III IFNs bind to their receptors IFNAR1/2, which
activates Janus kinase (Jak)–Signal transducer and activator of
transcription (STAT)-mediated signaling and leads to generation
of antiviral proteins encoded in IFN-stimulated genes (ISGs)
(31, 32). Various antiviral proteins interfere with steps of the viral
lifecycle. For example, ribonuclease L (RNase L) is encoded by an
ISG that degrades viral RNA to inhibit DENV replication (33).
To counteract the host antiviral actions, DENV evolves strategies
targeting various steps of the whole defense system, from
sensing of the foreign DNA/RNA to the induction, signaling,
and manipulation of IFN system. We categorized these various
strategies by the stages of IFN system and discussed them below.

THE RNA SENSING PATHWAY

Camouflage is the first strategy to keep DENV away from
the alarm bell of innate immunity. Similar to cellular mRNAs,
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DENV genomic RNA is capped at the 5′-end. Cellular mRNA
is posttranscriptionally capped at the 5′-end comprising a N-7
methylguanosine and one or two 2’-Omethylnucleotides (34, 35).
Thus, viral RNA lacking 2′-O methylation will be recognized
as non-self RNA that elicits innate immunity (35–38). DENV
NS5 contains methyltransferase activity that catalyzes both N-7
and 2′-O methylations sequentially (39–41). The DENV lacking
2′-O-methyltransferase activity elicits a significant early innate
immune response in host cells and thus replicates with a lower
viral load than the wild-type (15). Therefore, DENV hides and
stays under the radar in host cells.

DENV enters host cells by receptor-mediated endocytosis, and
its RNA is released to the cytosol for translation and replication.
The localization of DENV-derived dsRNA is important for
recognition by PRRs. By electron tomography analysis, the
cytosolic DENV dsRNA was detected in DENV-induced vesicles
derived from ER membrane (42). These vesicles quarantine
DENV dsRNA from the cytosolic RNA sensors in a digitonin-
resistant membrane structure until 72 h postinfection (43).
However, these viral RNA species, when leaked to the cytosol,
also become targets for several PRRs, including melanoma
differentiation-associated protein 5 (MDA5) and retinoic acid-
inducible gene-I (RIG-I) in the cytoplasm and toll-like receptor
(TLR)-3 in the endosome. These PRRs are essential for host
defense surveillance, which synergistically recognizes DENV
RNA and then initiates IFN induction (44–46). MDA5 and
RIG-I are similar RNA helicases expressed in most cell types.
Both contain two caspase activation and recruitment domains
(CARDs) at the N-terminus for antiviral signaling initiation.
After viral RNA binds to the C-terminal helicase domain,
the CARD domain of RIG-I/MDA5 then interacts with the
CARD domain of their downstream adaptor, mitochondrial
antiviral signaling protein (MAVS) (a.k.a. IPS-1/VISA/Cardif)
(47–50). This CARD–CARD interaction clusters MAVS for
a signaling cascade, which is required for inducing IFN to
establish an antiviral state (49). Actually, RIG-I and MDA5
recognize different RNA structures even though they share
a high degree of functional and structural homology. MDA5
mainly recognizes long dsRNA or web-like RNA aggregates,
whereas RIG-I preferentially senses short dsRNA and single-
stranded uncapped RNA with a tri- or di-phosphate at the
5′-end (51–53). These species/forms of RNA differ from self-
RNA in the cytoplasm and can be detected in DENV-infected
cells (44, 54). Even though RIG-I or MDA5 alone is sufficient
to potentiate DENV-induced IFN-induction signaling, RIG-I
and MDA5 together trigger a higher level of IFN induction.
Therefore, overexpressing RIG-I or MDA5 can suppress DENV
replication; silencing of RIG-I and MDA5 contributes to DENV
RNA replication and virus production (44). Because RIG-I and
MDA5 share the same adaptor MAVS, lack of MAVS impairs IFN
induction in DENV-infected cells (54–56).

The protein level of both RIG-I and MDA5 can be further
enhanced by IFN (57), so activation of the RIG-I-MAVS pathway
forms a positive feedback loop against DENV infection. In
the context of RIG-I activation, the ubiquitin ligase tripartite
motif protein 25 (TRIM25) binds to and adds lysine-63 (K63)-
linked polyubiquitin at the CARD domain of RIG-I (58–60). The

mitochondrial-targeting chaperone protein 14-3-3ε stabilizes the
interaction between TRIM25 and RIG-I, thus facilitating K63-
linked ubiquitination of RIG-I, which results in MAVS activation
(61).

Because ubiquitination and translocation of RIG-I are both
required for MAVS activation, DENV evolves strategies to
antagonize this step and thus prevents RIG-I-mediated IFN
responses. In DENV-infected cells, the uncappedDENV genomic
RNA can be digested from the 5′- to 3′-end by the cellular
exoribonuclease 1 (XRN1) leaving the incomplete degradation
product subgenomic flaviviral RNA (sfRNA) (62). The DENV
sfRNA binds to TRIM25, whose binding capacity depends on
the sfRNA sequence, thus dampening ubiquitination-mediated
RIG-I activation (4, 5). Moreover, DENV NS3 protease contains
a 14-3-3ε protein-binding motif RxEP; the binding of these
proteins prevents the activated RIG-I from moving from cytosol
to mitochondria. Thus, infection of a recombinant DENV,
with the RxEP motif replaced by KIKP, triggered a high IFN
response that inhibited DENV replication (13). Also, DENV
NS4A colocalizes and interacts with MAVS in mitochondrion-
associated ER membranes where RIG-I relays the signal to
MAVS. The TM3 domain of DENV NS4A is responsible for
binding MAVS and thus prevents the association of RIG-I and
MAVS (14). Therefore, DENV can disrupt the RIG-I–MAVS
interaction directly to suppress IFN production.

In addition to the RIG-I–MAVS pathway, TLR3 and TLR7
are important for recognizing DENV RNA in the endosome.
TLR7 senses ssRNA with G- and U-rich sequences (63), whereas
TLR3 recognizes dsRNA derived from DENV replication (64).
Although, both TLRs are involved in producing a type I IFN
response during DENV infection, TLR3 is more effective than
TLR7 in IFN induction and DENV inhibition (64). TLR7 also
mediates a virus-specific humoral immune response for DENV
clearance: administration of combined TLR3 and TLR7 agonists
could decrease DENV replication and increase the anti-DENV
humoral response in macaques (65). Even though, the direct
modulation of TLRs by DENV infection remains to be seen,
DENV has been shown to block TLR-mediated antiviral signaling
by targeting downstream immune mediators, IκB kinase epsilon
(IKKε) and TANK-binding kinase-1 (TBK1) (6, 11).

THE DNA SENSING PATHWAY

Despite the absence of a DNA stage in the DENV lifecycle,
DENV infection still activates the DNA-sensing pathway. The
cellular DNA should be located in the nucleus or mitochondria.
Presence of a DNA molecule in the cytoplasm is thus expected
to trigger innate immune responses, such as inflammation and
IFN production (66). Cyclic GMP-AMP synthase (cGAS) is a
cytosolic DNA sensor that synthesizes cGAMP, a non-canonical
cyclic dinucleotide, in response to DNA stimuli (67, 68). cGAMP
is a secondmessenger that binds and activates the adaptor protein
encoded in the gene tmem173, namely, stimulator of IFN genes
(STING) [a.k.a. mediator of IRF3 activation (MITA), or ER IFN
stimulator (ERIS)] (69–71). Human STING is a transmembrane
protein located on ER membrane and shares 81% similarity (68%
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identity) with its murine ortholog MPYS (72). After stimulation,
STING is dimerized and then translocated to a perinuclear site
where it forms a punctate structure and interacts with TBK1
for activating IFN regulatory factors (IRFs) (70, 71). In addition
to activating IRFs and producing IFN, STING activation also
triggers NF-κB signaling that leads to the production of pro-
inflammatory cytokines (73, 74).

Because DENV is an RNA virus without a DNA stage in
its lifecycle, the roles of the DNA-sensing pathway in DENV
infection were ignored until DENV protease NS2B3 was found to
cleave human STING but not its murine ortholog MPYS (9, 10).
Thus, murine MPYS is more competent than human STING
in suppressing DENV replication. Even though STING is not
essential for IFN production stimulated by a dsRNA analog (73),
STING is involved in both DNA and RNA pathogen-sensing
pathways. STING can interact with RIG-I and MAVS to enhance
the antiviral response (69, 70), which may suggest a crosstalk
between viral RNA- and DNA-sensing pathways (75). Therefore,
the possibility that DENV may target the DNA-sensing pathway
to subvert innate immunity seems logical.

Stimulation of double-stranded DNA but not dsRNA analog
enhances the interaction between DENV protease and STING,
which then contributes to DENV protease-mediated STING
cleavage (10). Therefore, the presence of DNA in cytosol upon
DENV infection may contribute to DENV pathogenesis. The
release of both genomic and mitochondrial DNA (mtDNA)
has been proposed to activate the STING signaling pathway in
DENV-infected cells (10). Indeed, aberrant DNA signal appears
in cytosol and co-localizes with cGAS upon DENV infection,
with the DNA signal resulting from the release of mtDNA
rather than genomic DNA (8). Moreover, DENV NS2B mediates
cGAS degradation dependent on autophagy–lysosome pathway
to avoid IFN production (8). Even though the requirement of
mtDNA in the DENV-activated cGAS–STING pathway remains
unclear, the roles of mtDNA in DENV pathogenesis are of
interest.

THE IFN INDUCTION PATHWAY

After RNA/DNA recognition, both RIG-I–MAVS and cGAS–
STING pathways recruit and activate the IKKε/TBK1 and
IKKα/β/γ complexes (3). These kinases activate transcription
factors, such as NF-κB and IRFs, to turn on IFN mRNA
expression (29). Regardless of the multiple strategies used to
antagonize RNA/DNA recognition, DENV also subverts this IFN
induction step to minimize the antiviral response in infected cells
(27, 76).

Although DENV protease activity is required to cleave and
block STING signaling, the protease structure itself is able to
inhibit IKKε kinase activity. By interacting with the N-terminus
of IKKε, NS2B3 masks part of the kinase domain of IKKε to
prevent the S386-phosphorylation of IRF3 (11). Despite the
presence of two NS2B3-putative cleavage sites within IKKε,
neither catalytic nor inactivated NS2B3 protease affects the
protein level of IKKε (11). Therefore, DENV protease is able
to counteract IFN induction via both catalysis-dependent and

-independent mechanisms, with the wild-type DENV protease
more competent than the protease-dead mutant. Moreover,
DENV NS2A and NS4B regulate innate immune responses by
inhibiting TBK1/IKKε-directed downstream signaling instead
of targeting MAVS or STING directly (6). Thus, both NS2A
and NS4B antagonize IRF3 phosphorylation resulting from
the activation of RIG-I, MDA5, MAVS, TBK1 ,or IKKε.
Only NS4A of DENV1 but not those of DENV2 or DENV4
blocks TBK1 activation (6), which suggests that DENV1
contains an additional regulatory mechanism against innate
immunity.

THE IFN SIGNALING PATHWAY

DENV uses various strategies as described above to prevent
the production of IFN by infected cells. Nevertheless, the
secreted IFN actively binds to the heterodimeric IFN receptor,
IFNAR1/2, which ultimately turns on the expression of
many antiviral proteins against DENV infection. After IFN
binding, the IFNAR-associated tyrosine kinases Jak1 and tyrosine
kinase 2 (Tyk2) undergo autophosphorylation, which then
activates downstream transcription factors, mainly STAT1 and
STAT2, by phosphorylation. The phosphorylated STATs form a
heterotrimeric complex with IRF9, called IFN-stimulated gene
factor 3 (ISGF3), which translocates to the nucleus and awakens
ISGs to fight against the virus (32, 77, 78). Meanwhile, STAT1
is also modified by the K48-linked conjugation of ubiquitins
(79), which tags STAT1 for degradation and shuts off an
antiviral response. Accordingly, removing these ubiquitins by the
deubiquitinating enzyme USP13 increases the stability of STAT1
proteins and potentiates a stronger IFN-mediated antiviral
response against DENV infection (80).

Several viral proteins of DENV are involved in suppressing
the IFN-induced signaling. In the presence of IFN, the DENV
NS2A, NS4A, and NS4B proteins were found to enhance the
replication of an IFN-sensitive recombinant reporter Newcastle
disease virus, whereas only DENV NS4A and NS4B significantly
reduced the expression of a reporter gene driven by IFN-
sensitive response element (7). The NS4B was found to inhibit
IFN-induced STAT1 phosphorylation and nuclear translocation,
which impairs the transcriptional activity of ISGF3 to turn on
antiviral genes (7). Moreover, DENV NS5 can bind to and
inhibit the transcription factor STAT2 activated by IFN treatment
(16, 17). DENV NS5 recruits the host factor UBR4 to suppress
human but not murine STAT2 via the proteasomal degradation
pathway (18). Because conjugation of small ubiquitin-like
modifier (SUMO) stabilizes DENV NS5 protein to maintain its
biological functions, SUMOylation is required for NS5-mediated
antagonism of IFN signaling (81).

MANIPULATION OF IFN SYSTEM BY
MITOCHONDRIAL DYNAMICS

The roles of mitochondria in innate immunity were largely
unknown until strong antiviral activity was detected by
overexpressing the mitochondrial protein MAVS (47–50).
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Mitochondria move along the cytoskeleton and continuously
undergo fusion and fission, which results in the diverse
morphology of each mitochondrion (82, 83). MAVS forms
prion-like aggregates upon activation (84), which also leads
mitochondria to become aggregated in cells overexpressing
MAVS (55). Therefore, manipulation of mitochondrial
dynamics may regulate antiviral activity in response to virus
infection. Indeed, overexpression of the mitochondrial fusion
mediator mitofusin 1 (MFN1) rather than MFN2 resulted in
a higher-order aggregation of mitochondria that facilitated
IFN-induction signaling (12). In contrast, MAVS-mediated
IFN-induction signaling was dampened in cells harboring highly
fragmented mitochondrial morphology, either by overexpressing
a dominant-negative MFN1 (12, 85) or by administration of a
chemical disrupting mitochondrial membrane potential (MMP)
(86). To manipulate mitochondria toward fragmentation, the
virus may suppress fusion or enhance fission. Even though
DENV infection triggers MMP disruption (55), which may result
in fragmentation of mitochondria (87), the DENV protease
NS2B3 alone is sufficient to cleave both MFNs and manipulate
mitochondrial morphology (12). Cleavage of both MFN1
and MFN2 suppresses MFN-mediated mitochondrial fusion
processes and interferes in MAVS-mediated signalings, such
as IFN and cell death induction (12). Hence, mitochondria
may serve as platforms transmitting the IFN-induction signal,
so that aggregated mitochondria help form a more operative
signosome by tethering related molecules with each other. A
seemingly conflicting report showed that DENV NS4B induces
mitochondria elongation and thus restricts the RIG-dependent
IFN response (88). This notion is also consistent with the
scenario that disrupted mitochondrial fusion or misassembled
signosome leads to disturbed IFN-induction signaling in
DENV-infected cells.

CONCLUSIONS

With DENV infection, disease symptoms range from
asymptomatic, classical dengue fever to life-threatening dengue
hemorrhagic fever and severe dengue shock syndrome. The
diverse disease symptoms result from a complicated interaction
between DENV and the host. Innate immunity helps the host
fight against infection by eliminating DENV and regulating
follow-up immune responses. The non-canonical functions of
DENV proteins and DENV-derived sfRNA in antagonizing the
IFN system further damage infected cells in the battle between
DENV and its host. DENV may defeat the host immunity
at first line of defense. The seesaw of DENV-inducing and -
antagonizing innate immunity in the initial state of infection may
contribute to the DENV pathogenesis at some later time. Recent
evidence shows that both viral and cellular factors are involved
in the host responses upon DENV infection. Therefore, we
highlight critical regulatory mechanisms of innate immunity by
showing how DENVmanipulates it. Notwithstanding unfinished
puzzles, antiviral applications derived from all these studies are
anticipated.
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