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Abstract

Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of
variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust
therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design
strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational
drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence
(AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead
drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger
biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs,
the advantages and disadvantages of these strategies and discussions of future developments.
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Introduction
The emerging coronavirus disease 2019 (COVID-19) is
a disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which has structural sim-
ilarities with SARS-CoV-1 and poses a massive crisis to
global public health. SARS-CoV-2 can be spread through
air droplets, etc. [1]. Due to the high infection rate of
COVID-19, a dramatic increase occurred in terms of case
and death numbers. As of 10 June 2021, there were 174
061 995 confirmed cases and 3 758 560 deaths, according
to the World Health Organization.

Vaccines are considered one of the most effective
methods to help human society return to normal. Several
vaccines have been authorized for emergency use.
Although vaccines have produced very positive effects
in many countries, they still face several significant
challenges. Studies have reported that a small number
of patients presented with venous thrombosis and
thrombocytopenia after receiving the first dose of the
SARS-CoV-2 vaccine against COVID-19 [2–5]. Moreover,
the vaccine protection effect is not 100%. For example,

the efficacy of the two whole-virus inactivated vaccines
designed by the China National Biotech Group Company
Limited on symptomatic COVID-19 cases was 72.8% and
78.1% in the third phase, separately [6, 7]. The last and
most important concern is whether the vaccines are still
effective against the emerging SARS-CoV-2 variants. At
present, delta has quickly become the dominant SARS-
CoV-2 variant. Research suggests that vaccines offer
slightly reduced protection against delta, and vaccinated
people with breakthrough infections can spread the delta
variant [8, 9]. Whether vaccines can effectively slash the
spread of delta remains unknown.

Drug development is another important way to defend
against viruses. Drug repositioning has been a critical
direction in the field of drug research. In recent months,
researchers have searched for drugs to treat COVID-19
by finding new therapeutic targets and discovering often
unknown relationships among apparently distant dis-
eases. However, most drugs, such as remdesivir, dexam-
ethasone and hydroxychloroquine, fail to display efficacy
in treating COVID-19 [10].
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The design of exclusive therapeutic drugs is a trend
from the perspective of structural biology and molecular
physics [11, 12]. Drug design may have a more therapeu-
tic effect than drug repositioning and drug combinations
in the disease of complex, rare or chronic, etc. [13, 14].
Currently, many specific drugs have been designed by
virtual screening techniques based on specific pharma-
cological insights or an end-to-end framework to control
the generation of molecules [15–20].

With the in-depth study of diseases and exploration of
the structure of target proteins [21–25], many new tech-
nologies have been applied to drug design in extensive
practice of medicinal chemistry by improving potency,
altering physical properties and eliminating or modifying
toxicophores [26–30]. All drug designs are the interac-
tion between a drug and its target (usually proteins).
Therefore, improving methods of predicting the magni-
tude of protein–ligand interactions can improve the effi-
ciency of drug development [31–34]. Drug discovery steps
require structural optimization of lead compounds to
establish the highest possible level of selectivity, potency,
and appropriate physicochemical and pharmacokinetic
characteristics [26, 35, 36]. Critically, surveying binding
hotspots in protein surfaces can help guide the explo-
ration of potential ligand-binding regions [37–41].

The world is plagued by the emergence of the SARS-
CoV-2 virus. Unfortunately, many methods face data
scarcity when designing drugs for new targets [42]. With
the development of big data and computer technology,
the application of machine learning and deep learning
as drug design algorithms has grown in recent decades
[43–46]. Deep learning has become more active in
the preparation and process of drug design, such as
predicting molecular properties and activity [47, 48],
identifying drug–target interactions [49–51] and planning
chemical syntheses [44, 52–54]. Therefore, the potential
of deep learning and molecular modeling methods helps
develop drug design pipelines, especially where there are
limited or unavailable target-specific ligand datasets [55,
56]. The designed drug must have an excellent inhibitory
effect on the disease. Nevertheless, the prediction of
the pharmacokinetics and toxicity characteristics of the
scheduled drug can avoid the failure of clinical trials
[57, 58]. Now, a set of tools incorporating in silico and
deep learning are used to advance sequence-based or
structure-based drug design problems in the computer-
aided drug design area [19, 59–64].

Therefore, the rapid application of drug design on
an increasingly broader scale with the advancement of
biometrics and bioinformatics [65–67]. Efficient tools are
now available for systematically designing compounds
with biological activity as preliminary drug candidates
[68–70]. Drug design strategies have been applied to
various epidemic diseases [38, 71–74]. For example, to
avoid the early infection of HIV, a generative adversarial
autoencoder[75], which combines a neural network with
virtual screening of a chemical database, was developed

to design potential HIV-1 entry inhibitors. However, as
COVID-19 is raging on a global scale, researchers have
focused their attention on drug design against SARS-
COV-2.

SARS-CoV-2 is a single-stranded RNA virus that
includes two types of proteins: small envelope (E) gly-
coprotein, structural [spike (S) glycoprotein, membrane
(M) glycoprotein, and nucleocapsid (N) protein] and
nonstructural (NSP) protein (i.e. nsp1-16), which has a
genome size of approximately 30 000 bp [76]. All SARS-
CoV-2 proteins play an essential role in pathogenesis
and virus replication. For example, S is a promising
drug target because it attaches to human cells and
participates in entering the cells [77]. NSP is contained in
ORF1a and ORF1ab, and they produce two polyproteins,
Pp1a and Pp1ab [78, 79]. The latter protein is produced
by ribosomal transfer, enabling continuous translation
of ORF1a and ORF1ab [80]. Specifically, ORF1ab is the
largest protein of SARS-CoV-2, and the ORF1ab gene of
human β-coronavirus (HBC) species has a signature of
a strong positive selection site in the genome analysis
of SARS-CoV-2. The positively selected sites of ORF1ab
could justify some clinical features of SARS-CoV-2
compared with other HBCs [81]. Moreover, mutational
spectra should be considered when designing drugs
[82]. The Pp1a protein contains two viral proteases, 3C-
like main protease (Mpro, corresponding to nsp5) and
papain-like protease (PLpro, a domain of nsp3)[83]. The
main protease (Mpro) of SARS-CoV-2 is a crucial enzyme
of coronaviruses and has a pivotal role in mediating
viral replication and transcription [20, 84–86]. PLpro is
also critical to SARS-CoV-2 replication and represents a
promising goal for drug design and development [87–89].
Among nonstructural proteins, the large, multidomain
Nsp3 is encoded by SARS-CoV-2. One of its units is the
ADP-ribose phosphatase domain (ADRP; also known as
the macro domain, MacroD), which interferes with the
host immune response [90].

It is well known that molecular inhibitors such as
drugs can achieve inhibitory effects by targeting can-
cer or virus expression pathways. For example, seasonal
and pandemic influenza have a substantial impact on
global public health [91]. A study found that endonucle-
ase activity exists in the independently folded N-terminal
domain of PA (PAN) [92, 93], where PA is a subunit of RNA-
dependent RNA polymerase (RdRp) that can catalyze
viral transcription. Subsequently, the molecular mech-
anism of the inhibitor was structurally confirmed, and
the interaction sites in the crystal structure of the virus
strain and the inhibitor were obtained [94]. This informa-
tion also provides a basis for drug discovery and design.
The molecular mechanisms involved in immune regula-
tion during the new coronavirus infection have played
a major role in resisting the new coronavirus. Mitogen-
activated protein kinase (MAPK) affects cell defense and
apoptosis [95]. Azithromycin has been shown to control
activation of the MAPK cascade, one of the molecular
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Figure 1. Structure-based approaches and AI-based approaches for designing drugs. The decisive part of structure-based and AI-based approaches is
the identification of the interaction between molecules and target proteins. Structure-based approaches of designing drugs rely on the
three-dimensional structure of the target protein and its active site to identify the interaction between protein and molecule, while AI-based
approaches rely on the knowledge of protein and molecule to understand the interaction between them through machine learning or deep learning
algorithms.

mechanisms involved in virus infection, thereby reducing
virus replication [96].

In general, SARS-CoV-2-related proteins have been
suggested as targets for drug design [97]. In particular,
the proteins considered in the entire design of anti-
coronavirus drugs are also related to cancer treatment
and other diseases [98–100]. Indeed, potentially suit-
able drugs against this virus essentially affect signal
transduction and the synthesis of macromolecules,
which strongly interfere with the host immune response,
particularly the proteins associated with COVID-19 [13].

Drug design strategies for COVID-19
Computational drug design approaches applied to
COVID-19 can be broadly categorized as (i) structure-
based approaches and (ii) AI-based approaches [101–105].
Some methods consist of both structure-based and AI-
based approaches [106–109]. The drug design process is
shown in Figure 1.

Structure-based approaches
Insertion of halogen atoms on hit or lead compounds
has been used to exploit their steric effects because
the formation of halogen groups in ligand–target
complexes favorably contributes to the stability of

the protein–ligand complex [28, 110, 111]. The use of
carbamates in medicinal chemistry has increased, and
many derivatives are specifically designed to form drug–
target interactions through their carbamate moiety [29,
112, 113]. Fragment-based drug discovery is an effective
strategy for generating small-molecule protein inhibitors
and drug candidates, which has led to three FDA-
approved drugs and clinical trials for nearly 50 molecules
[114]. To enable the screening of virtual libraries in
search of active compounds, combinatorial chemistry
and structure-based design need to be combined, which
can exploit ligands and targets’ fundamental structural
and physicochemical properties [115–117]. We believe
that these approaches have been helpful for designing
antiviral compounds.

Structure-based drug design for target CoV main proteases

The genus Coronavirus contains approximately 25 coro-
naviruses (CoVs), which are essential pathogens caus-
ing highly prevalent diseases [38]. By comparing four
crystal structures and homologous models representing
all three genetic clusters of the genus Coronavirus, it
was found that the CoV main proteases (Mpro or 3CLpro)
are critical enzymes in viral gene expression and repli-
cation and share a highly conserved substrate recog-
nition pocket [118, 119]. In addition, the active sites of
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Figure 2. The basic steps of SBDD. First, the preparation of the target macromolecule structure is fundamental to SBDD approaches, which can be
obtained by structure identification techniques such as X-ray and NMR analysis, searching the PDB database or using other calculation methods. Next,
the binding site of the target macromolecule is identified to determine the protein–ligand interaction, and ligands or drug-like compounds with the
limitation of Lipinski’s rule of five’ are selected from a chemical database to construct a ligand library. When all preparations are ready, molecule
docking programs are applied, and scoring functions are mostly used in the post-docking analysis. Finally, the top-ranked molecules are chemically
synthesized, and biological evaluation is necessary.

Mpro, S1′, S1, S2 and S4 are highly conserved among all
coronaviruses [38]. It is possible to design and synthe-
size inhibitors that target SARS-CoV-2 Mpro by analyzing
the substrate-binding pocket of SARS-CoV Mpro (PDB ID
2H2Z). When designing a new inhibitor, Dai et al. chose
an aldehyde as a new warhead to form a covalent bond
with cysteine. In addition, they introduced cyclohexyl or
3-fluorophenyl in P2 to enhance the activity and intro-
duced indole groups in P3 to form new hydrogen bonds
with S4, which improves the drug-like properties [103].
UCI-1 is a cyclic peptide inhibitor that was designed
based on the crystal structure of an inactive SARS-CoV
Mpro (C145A) variant. The purpose of designing UCI-1
is to mimic the conformation of a C-terminal autolytic
cleavage site of the SARS-CoV Mpro, a naturally occurring
Mpro substrate. In UCI-1, the carboxy-terminus of the P2’
residue is linked to the amino-terminus of the P2 residue
with a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) group,
creating a cyclophane. The (2-aminoethyl)phenyl group
of AEPA is designed to act as a surrogate for a phenylala-
nine side chain at position P3’ and fill the S3’ pocket. Fur-
thermore, research shows that UCI-1 tends to be nontoxic

toward human embryonic kidney cells at concentrations
that inhibit Mpro, but compared with other Mpro inhibitors,
it shows lower activity [86].

Owing to the structural elucidation of the target, the
application of structure-based drug design (SBDD) soft-
ware is flourishing [120–122]; the basic steps of SBDD are
described in detail in Figure 2. Using different comple-
mentary virtual screening and docking approaches can
identify nonapproved active compounds as new potential
inhibitors of 3CLpro from the ZINC15 library. Then, these
compounds could be further optimized by using SBDD
[123]. On the other hand, one study started with the X-
ray crystal structure of SARS-CoV Mpro [86] and then used
UCSF Chimera software [124] to modify the substrate to
create a cyclic peptide inhibitor within the Mpro active
site. Finally, AutoDock Vina [125] was used to evaluate
this model by docking the inhibitor to SARS-CoV-2 Mpro.

SBDD for target PLpro

PLpro aids coronaviruses in their evasion of host innate
immune responses because it has the additional function
of stripping ubiquitin and interferon-stimulated gene 15
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(ISG15) from host-cell proteins [126]. Inhibition of SARS-
CoV-2 PLpro with GRL-0617 has three main tasks: impair
the virus-induced cytopathogenic effect, maintain the
antiviral interferon pathway and reduce viral replication
in infected cells [127]. A recent investigation attempted
to design potential SARS-CoV PLpro inhibitors contain-
ing naphthalene and 3,4-dihydro-2H-pyran moieties con-
nected via-NHCO-linker [89].

Another study first used HyCoSuL, a novel chemical
approach to perform comprehensive activity profiling
of SARS-CoV-2 PLpro, and revealed the molecular rules
governing PLpro substrate specificity [128]. Then, com-
pared with other proteases, potent inhibitors (VIR250 and
VIR251) were designed and biochemically characterized
were shown to be more effective against SARS-CoV-2 PLpro

and related SARS-CoV-1 PLpro, presenting high selectivity.
In addition, it was surprisingly discovered that the P4
amino acids of VIR250 and VIR251 occupy both sides
of the wide S4 pocket of SARS-CoV-2 PLpro, which will
make contributions to future drug discovery [87]. It is
worth noting that there is not enough information about
SARS-CoV-2-PLpro, and HyCoSul is based on a hypothe-
sis that SARS-CoV-2-PLpro is highly similar to SARS-CoV-
PLpro. The crystal structure of the SARS-CoV-2 ADP-ribose
phosphatase domain (ADRP) in multiple states was deter-
mined by many studies: in the apo form and in com-
plexes with 2-(N-morpholino) ethane sulfonic acid (MES),
ADP-ribose (ADPr) and AMP. Researchers have proposed
a robust system to identify potential small-molecule
inhibitors with apo crystals diffracting to atomic resolu-
tion based on structure-based experiments [90].

SBDD for target spike glycoprotein

A coronavirus was identified as the causative agent of
SARS as early as 2003 [129]. Current research shows
that the latest SARS-CoV-2 in 2019 has a very similar
structure and function to SARS [130–132]. The COVID-
19 genomes from isolates of China, India, Italy, Nepal
and the USA have a sequence similarity of approximately
60% with the human SARS-CoV German isolate, but it
has sequence similarity of 79–80% with bat SARS-CoV
[133]. Spike glycoprotein (S) is crucial in the attachment
of SARS-CoV-2 to host receptors and cell entry, leading to
COVID-19 infection [134, 135]. An in silico pharmacophore
modeling and virtual screening approach has been used
to explore drugs against receptor-binding domain (RBD)
of SARS-CoV-2. First, the 3D structure of RBD is modelled,
the conservative area is used as a template and Ligand-
Scout is used to design the pharmacophore. Then, the
Cambridge, DrugBank, ZINC and TIMBLE databases are
used to screen lead compounds. Finally, AutoDock Vina
Is used to dock the shortlisted lead compounds molec-
ularly and visualize the interacting residues [77]. All the
resulting lead compounds are preliminary findings, and
clinical and investigational trials are still required. New
research points out that the cell membrane receptor
angiotensin-converting enzyme 2 (ACE2) plays a key role
in the entry of SARS-CoV-2 into cells [136]. SARS-CoV-2 S
interacts with ACE2 through the RBD [137]. To this end,

a structure-based ACE2 variant dataset was combined
with the SARS-CoV-2 RBD, resulting in a total of 242 struc-
tural models. These models can be used as a starting
point for drug design and be used further to understand
the recognition of SARS-CoV-2 S protein by ACE2 [138].
Research has identified a pair of key salt bridges formed
by the side chains of K537 and E619. Drugs designed to
prevent the formation of these salt bridges can effectively
treat COVID-19, but for the simplicity of the protein
complex, it is concluded to be applicable to the trimeric
S protein [139].

For the different target proteins of SARS-COV-2, SBDD
studies against the COVID-19 pandemic are summarized
in Table 1. In addition, small peptides can be transported
across the cell membrane by amino acid and peptide
transporters [140]. A variety of small peptide compounds
have been developed to inhibit ACE [141, 142]. Another
promising method is to select and combine the substruc-
tures of highly active compounds to form new peptide
analogs [143–146].

AI-based approaches
Designing novel drugs for new diseases is a complicated
process necessary to find molecules that bind to specific
biomolecular targets and have good physical and chem-
ical properties over a broad chemical space [147]. First,
knowledge of the virus and target is necessary. A number
of methods have used machine learning or deep learning
algorithms to identify the structure of the protein, but
most of them could not obtain an accurate structure
until AlphaFold [148] appeared. The input of AlphaFold
is the given protein sequence, which can be more eas-
ily obtained than the structure through experiments.
Then, it learns protein-specific potential by training a
deep neural network and makes an accurate prediction
of the structure by minimizing the potential by gradi-
ent descent. Another high-quality prediction of protein
structure is C-I-TASSER [149]; it is an improvement based
on I-TASSER [150], with three modules added on the
original basis, which are a new multivariate sequence
comparison protocol, an improved meta method NeBcon
and an optimized contact potential.

Then, with the ever-increasing number of potential
lead compounds derived through virtual screening stud-
ies, it is helpful to screen extensive virtual libraries of
compounds with improved biological properties such as
explicitness and selectivity toward the respective tar-
get, lower toxicity or reduced cost to discover drugs
with essential biological features. It is laborious for drug
designers to extract synthetic information from sub-
stantial compound libraries to devise drugs with impor-
tant biological features; machine learning has become
an effective tool to solve this problem [151–155]. For
example, random forest analyses coupled with a unique
approach to bioactivity and chemical data curation have
led to a series of target-specific and cross-validated pre-
dictive feature fingerprints [156]. Moreover, in the study
of reference [157], the desire to map small molecules to
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target interactions across multiple stages of SARS-CoV-2
infection drives the initial target selection.

Deep learning can be applied to extract complex
and deeper features from simple representations [158].
For example, given a protein pocket and using deep
generative modeling for compound design, potential
binding compounds can be generated [159]. We know
that effective noncovalent inhibitors of the major
proteases of SARS-CoV and SARS-CoV-2 should have
the same structural and chemical characteristics [84,
160, 161]. The ligand generative adversarial network
(LIGANN) is a novel virtual screening technique that is
applied for multimodal structure-based ligand design
[61]. The ligand is generated in LIGANN to match the
shape and chemical properties of the binding pocket
and then is decoded into its SMILES sequence, thereby
directly realizing AI-based drug design [73].

CogMol (controlled generation of molecules) is an
end-to-end framework that was proposed to design
new drug-like small molecules targeting novel viral
proteins with high affinity and off-target selectivity
[162]. CogMol combines the variational autoencoder in
the molecular SMILES format and the multi-attribute
controlled sampling scheme and applies this approach
to three SARS-CoV-2 target proteins: the main protease,
the RBD of the spike protein and the nonstructural
protein. Compared with earlier deep-learning molecular
methods, the new approach explores new molecules by
adding a meaningful molecular fragment one by one
rather than a single atom at a time [163, 164]. However,
due to the deviation of the training data or the inaccuracy
of the predictor used to control the generation, there
may be a certain degree of unreliability and inability to
meet the needs of generating molecules with specific
properties. ADQN-FBDD [165] is another AI-based drug
design approach against SARS-CoV-2. First, an initial
molecular database targeting SARS-CoV-2 3CLpro is built
by collecting SARS-CoV 3CLpro inhibitors (284 molecules).
Then, this set of molecules is split into fragments, and the
molecular weight of each fragment does not exceed 200
Daltons. Finally, the features of the fragments are input
into the deep Q-learning network to generate potential
lead compounds. Most of the computation-aided drug
design methods need to be experimentally verified, and
ADQN-FBDD is no exception. In conclusion, the major
steps of AI-based drug design are described in Figure 3.

Discussion and conclusion
Although vaccines against SARS-CoV-2 have been
developed to help prevent COVID-19, there are still
some potential problems. Some vaccines developed
internationally continue to reveal potential risks and
cannot effectively prevent the virus after vaccination.
Drug relocation is also a popular way to treat COVID-
19, but previous drugs often do not have a significant
inhibitory effect on SARS-CoV-2. Therefore, the develop-
ment of drugs against SARS-CoV-2 is more reasonable
and attractive and can provide an effective first line of

Figure 3. The basic steps of AI-based drug design. The first step is target
discovery, which means identifying the target protein that interacts with
coronavirus. Next, a virtual screening technique is applied to search
ligands from chemical databases, and knowledge of target protein–ligand
interactions can be obtained from databases or calculated
by other calculation methods. Then, AI methods, including machine
learning and deep learning, such as generators and predictors, can be
used to discover novel drugs. However, before machine learning or deep
learning algorithms are used to generate lead molecules, the molecule
fed into the learning system should be transformed into vectors,
such as molecular descriptors, fingerprints, SMILES strings or grids.

defense for emerging coronavirus-related drugs in the
future. In recent years, technological developments have
enabled the determination of more protein structures
and expanded structural biology, thereby accelerating
the progress of drug design.

It is estimated that the traditional pharmaceutical
industry spends US$2.6 billion to design a new drug, with
the failure rate reaching 90% between clinical trials and
approval [169]. The emergence of structure-based and
AI-based drug design has greatly reduced the cost and
time and is more creative. Moreover, the key to structure-
based and AI-based drug design is target–protein deter-
mination and target–drug interactions. However, SBDD
relies more on the three-dimensional structure to opti-
mize the drug compounds, which has a larger chem-
ical space, whereas AI-based structures use machine
learning and deep learning algorithms in combination
with virtual screening to find the lead molecule. Finally,
predicts the binding models between COVID-19 targets
and designed molecules by [170].

We also found that structure-based approaches are
more abundant than purely AI-based methods because
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SBDD methods have been developed for decades. As
a result, the entire design–experiment–verification pro-
cess is flawless, and the corresponding tools are also
more comprehensive. We summarize the tools of drug
design in Table 2. On the other hand, the contribution
of AI-based methods to drug design may not achieve the
expected results. The possible reason is that these meth-
ods are limited to our knowledge. Currently, we do not
have enough knowledge to understand a virus that was
only discovered less than 2 years ago. Therefore, basic
research is essential to the analysis of research applied
to biomedicine because basic research is an indispens-
able foundation for knowledge growth, but it is often
undervalued. Nevertheless, powerful and effective calcu-
lation methods and pipelines for designing compounds
can provide beneficial drug candidates for the treatment
of SARS-CoV-2 infection, and these candidates or their
variants are likely to produce effective anti-COVID-19
lead drugs. Therefore, we believe that these advances will
help make more meaningful contributions to the fight
against COVID-19 in the future.

Key Points

• Drug design is rapidly being applied on an
increasingly broader scale with the advancement
of biometrics and bioinformatics. In particular,
the design of anti-COVID-19 drugs is meaningful
work for COIVD-19.

• Structure-based approaches use the basic struc-
ture, physicochemical properties of ligands and
targets to screen virtual libraries to find active
anti-COVID-19 drugs. In summary, develop cor-
responding design strategies of anti-COVID-19
drugs according to the characteristics of different
target proteins.

• AI-based approaches can extract complex and
deeper features from simple drug molecular
representations and generate potential binding
compounds. It is essential to extract features
from compounds or proteins using interpretable
methods.
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