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The aim of this study was to find out if selected lactic acid bacteria (LAB) strains (antagonistic or nonantagonistic againstH. pylori
in vitro) would differ in their abilities tomodulate the DCsmaturation profiles reflected by their phenotype and cytokine expression
patterns.Methods. Monocyte-derived DCs maturation was elicited by their direct exposure to the LAB strains of L. rhamnosus 900
or L. paracasei 915 (antagonistic and nonantagonistic to H. pylori, resp.), in the presence or absence of H. pylori strain cagA+. The
DCs maturation profile was assessed on the basis of surface markers expression and cytokines production. Results. We observed
that the LAB strains and the mixtures of LAB with H. pylori are able to induce mature DCs. At the same time, the L. paracasei
915 leads to high IL-10/IL-12p70 cytokine ratio, in contrast to L. rhamnosus 900. Conclusions. This study showed that the analyzed
lactobacilli strains are more potent stimulators of DCmaturation thanH. pylori. Interestingly from the two chosen LAB strains the
antagonistic to H. pylori-L. rhamnosus strain 900 has more proinflammatory and probably antibactericidal properties.

1. Introduction

Treatment ofH. pylori infection is a long-term and not always
efficient process. Antibiotic therapy leads to eradication
of this pathogen in approximately 60–90% of the cases.
However, even the efficiently treated individuals are still at
risk of reinfection [1, 2]. Administration of selected strains
of lactic acid bacteria (LAB), a component of intestinal
microbiota, is an established factor improving efficiency of
H. pylori eradication [3–5]. Some LAB strains prevent H.
pylori colonization of gastric mucosa, thus decreasing the
number of these bacteria in the stomach. The principle
mechanism behind this effect of LAB is synthesis of lactic
acid, which alters gastric pH and inactivates urease, a pivotal

enzyme forH. pylori viability [6, 7].The antagonism between
LAB and H. pylori can be also associated with synthesis of
other antibacterial compounds, for example, bacteriocins,
autolysins, or thermostable proteins [7]. Apart from the bac-
terial antagonism, recent studies center around potential
immunologicalmechanisms throughwhich LAB can support
eradication ofH. pylori and attenuate inflammation of gastric
mucosa. These include influence of LAB on enhanced local
synthesis of IgA, modulation of specific IgG levels [8, 9], and
induction of pro- and anti-inflammatory cytokine profiles
[10].

Acute inflammation observed during an early phase of
H. pylori infection is characterized by enhanced production
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of proinflammatory Th1/Th17 cytokines, presence of cell-
mediated cytolysis, plasma cell infiltration, and synthesis of
specific antibodies in the stomach and duodenum [11–14].
In turn, chronic inflammation associated with long-term
gastrointestinal colonization by this pathogen is reflected
by suboptimal Th1 response observed at later stages of the
infection, as well as by an increase in Treg lymphocyte count
[15–18]. The type of immune response is to a large extent
determined by the activity of antigen-presenting cells (APCs),
especially dendritic cells (DCs) which constitute a “link”
between the nonspecific and specific responses [19–21]. Acute
H. pylori infection is associated with migration of DCs to
the antral mucosa [22–24]. The increased inflow of DCs
during an early phase of inflammation results mainly from
their ability to induce immune response against H. pylori.
However, it is not reflected by elimination of this microor-
ganism; phenotypic and functional changes of DCs result in
development of chronic inflammation and tolerance of these
cells toH. pylori antigens [15, 25, 26].Therefore, two questions
arose regarding whether this process could be modulated by
intestinal microbiota, namely, by selected LAB strains, and
whether antagonism between the latter bacteria andH. pylori,
associated with release of antibacterial compounds, might
modulate activity of the immune system. Moreover, still little
is known on the immunological mechanisms associated with
the development of H. pylori infection in presence of various
strains of commensal bacteria [5, 7].

2. Material and Methods

2.1. Bacteria and Their Selection. The studied LAB strains
were selected from among 29 strains of Lactobacillus casei,
Lactobacillus rhamnosus, Lactobacillus paracasei, and Lacto-
bacillus plantarum. The strains were identified by the seque-
ncing of ribosomal RNA-encoding genes [27]. All the strains
originated from the Pure Culture Collection of Industrial
Microorganisms at the Technical University of Lodz (ŁOCK).
The activity of interstrain antagonism was investigated using
the agar slab method [28]. The method was based on the
observation of parallel growth of the strains under study (the
indicator—H. pylori cagA+ strain 95 and one of the LAB
strains). Agar slabs of 10mm in diameter were aseptically
cut off from the de Man, Rogosa and Sharpe medium (MRS,
Oxoid) overgrown with a lawn of LAB strain incubated for
24 h at 37∘C, 5% CO

2
, and placed on plates with Wilkins-

Chalgren Anaerobe Agar (Oxoid) inoculated with the indi-
cator strain (105-106 CFU/mL). After 5 days of incubation
in anaerobic conditions at 37∘C, the diameters of growth
inhibition zones around the agar slabs were measured. The
results are given in mm, minus the agar slab diameter
(Table 1).

Finally, the study included human strains of two Gram-
positive bacteria, L. rhamnosus 900 and L. paracasei 915
(kindly provided by the Institute of Technology Fermenta-
tion and Microbiology, Faculty of Biotechnology and Food
Sciences, Technical University of Lodz), and Gram-negative
H. pylori cagA+ strain 95 (obtained from the Department
of Microbiology and Clinical Immunology, The Children’s
Memorial Health Institute). The isolated live bacterial strains

Table 1: Antagonistic activity of lactic acid bacteria strains.

Species Strain Growth inhibition zone [mm]

Lactobacillus casei

ŁOCK 899 1.7
ŁOCK 901 0
ŁOCK 902 0
ŁOCK 903 0
ŁOCK 904 0
ŁOCK 905 1.7
ŁOCK 906 2.1
ŁOCK 907 0
ŁOCK 908 4.8
ŁOCK 909 0
ŁOCK 910 0
ŁOCK 911 2.5

Lactobacillus
rhamnosus ŁOCK 900∗ 5.21

Lactobacillus
paracasei

ŁOCK 912 0
ŁOCK 913 2.9
ŁOCK 914 0
ŁOCK 915∗ 0
ŁOCK 916 2.9
ŁOCK 917 1.6
ŁOCK 918 2.7
ŁOCK 919 3.6
ŁOCK 920 2.2
ŁOCK 921 1.7
ŁOCK 922 0
ŁOCK 923 0
ŁOCK 924 0

Lactobacillus
plantarum

ŁOCK 862 2.3
ŁOCK 864 0
ŁOCK 943 1.6

∗The selected strains.

or their combinations were used as stimulating agents in all
the experiments.

2.2. Generation of Human Monocyte-Derived Dendritic Cells.
Peripheral blood mononuclear cells (PBMCs) were isolated
from buffy coat of healthy volunteers (from the Blood
Centre in Bydgoszcz, Poland) by means of Lymphocyte
Separation Medium 1077 (LSM, PAA) gradient centrifuga-
tion.Monocyte-derivedDCswere generated frommonocytes
(CD14+ cells) isolated with an aid of CD14 beads (Becton
Dickinson, positive selection), as previously described [29–
32]. The purity of the cells was greater than 95%. Subse-
quently, the isolated cells (1 × 106/mL) were cultured in RPMI
1640 (PAA) with 2% human serum (AB, Rh+ serum from the
Blood Centre in Bydgoszcz, Poland) at 37∘C and 5% CO

2
for

6 days. IL-4 (50 ng/mL, R&D) and granulocyte-macrophage
colony-stimulating factor (GM-CSF, 100 ng/mL, R&D) were
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Table 2: Expression of chosen receptors (CD14, HLA-DR, CD80, CD83, CD86, CD40, and CD11c) on monocyte-derived DCs surface.

Receptor type CD14 HLA-DR CD80 CD83 CD86 CD40 CD11c
iDC

% 1.98
[0.38–1.99]

97.11
[89.30–99.55]

4.99
[2.88–5.73]

1.27
[0.89–3.32]

98.55
[97.25–99.70]

26.4
[12.10–37.95]

98.7
[97.50–99.00]

GFI 183
[146–220]

336
[274–363]

181
[170–188]

150
[145–160]

463
[350–581]

160
[130–190]

676
[650–793]

DCs: dendritic cells; iDCs: immature DCs; %: the percentage of DCs expressing the analyzed receptor; GFI: geometric mean fluorescence intensity of the
analyzed receptor in DCs population exhibiting its expression; values are expressed as the medians of six independent experiments and range of lower quartile-
upper quartile [Q1–Q3].

added to the culture medium in order to stimulate DCs
development.

2.3. Dendritic Cells Stimulation. The DCs (1 × 106/mL) were
suspended in 1mL of RPMI 1640 (PAA) supplemented with
2% human serum (AB, Rh+ serum provided by the Blood
Centre in Bydgoszcz, Poland) and incubated at 37∘C and
5% CO

2
in presence of H. pylori, L. rhamnosus 900, L.

paracasei 915, L. rhamnosus 900 + H. pylori, or L. paracasei
915 + H. pylori. The DCs were incubated with bacteria or
medium alone (control DCs) for 24 h.TheDC to bacterial cell
ratio was 1 : 10. The live bacteria at concentrations providing
optimal maturity and viability of DCs (not shown) were used
as stimulating agents in all the experiments. The cells were
collected by gentle pipetting and centrifuged at 250×g for
10min. The culture supernatant was collected and stored at
−80∘C until cytokine analysis. The cells were resuspended in
PBS, and trypan blue exclusion test showed that the culture
contained 90% of viable cells.

2.4. Cell Surface Phenotype Expression. Subsequently, the
cells were stained for CD14, CD11c, CD80, CD86, and
CD40 (all from Becton Dickinson) using mouse anti-
human monoclonal antibodies conjugated with fluorescein
isothiocyanate (FITC), phycoerythrin (PE), or peridinin-
chlorophyll proteins (PercP). A total of 20 000 events were
collected according to the manufacturer’s procedure that was
described elsewhere [33]. The cells were subjected to flow
cytometric analysis with FACScan flow cytometer (Becton
Dickinson), and the cytometric data were analyzed using
FlowJo version 7.6.1 software (Tree Star). The percentage of
cells showing expression of the studied receptors and the
average receptor density expressed as the geometric mean of
fluorescence intensity (GFI) were analyzed in a population of
DCs.

2.5. Cytokine Assay. Cytokine concentrations in DCs cell
culture supernatants were estimated following 24 h of bac-
terial or medium alone (control DCs) stimulation. The
cytokine levels were measured by means of commercially
available ELISA kits: DuoSet, BD Bioscience (IL-12p70, IL-
10, and TNF-𝛼), and R&D Systems (IL-23), according to
the manufacturer’s instructions. Before performing the tests,
the supernatant samples were diluted according to each kit’s
protocol and the final results were obtained by appropriate
multiplication. The protein level in the diluted sample was

calculated from a reference curve generated for a given assay
by using reference standards containing known concentra-
tions of appropriate protein. Results were expressed as pg per
mL. The range of cytokine detection was as follows: from
7.8 to 500 pg/mL for IL-12p70, IL-10, TNF-alfa and from
125 pg/mL to 8000 pg/mL for IL-23.

2.6. Statistics. Statistical analysis was conducted with Sta-
tistica 9.0 software (StatSoft). The normal distribution was
checked using the Shapiro-Wilk test. Due to the nonnormal
distribution of the data, Mann-Whitney 𝑈 test was per-
formed. Statistical significance was considered at 𝑃 < 0.05.

3. Results

3.1. The Antagonistic Spectrum of LAB Strains. Antagonistic
effect of LAB strains was tested against H. pylori cagA+
strain 95. The antagonistic activity of Lactobacillus spp. was
examined with the agar slab method, which is based on
analysis of simultaneous growth of the indicator strain (H.
pylori cagA+ strain 95) and a tested strain (LAB). The
results of the slab culture constituted the basis for selection
of the studied strains of LAB. The strongest antagonistic
effect against H. pylori, manifested by a 5.21 mm zone of
inhibition, was documented in the case of L. rhamnosus
900. Finally, two strains of LAB were selected for further
analyses: L. rhamnosus 900, antagonistic toH. pylori, and the
nonantagonistic L. paracasei 915.

3.2. Phenotype of Monocyte-Derived DCs. Monocyte-derived
DCs were analyzed for surface phenotype by flow cytometry.
Cells grown in GM-CSF and IL-4 alone after 6 days were
immature, as defined by lack expression of CD14, relatively
to stimulated DCs poor expression of CD83 and CD80
(Table 3) and lower expression of CD40, HLA-DR, and
CD86. Almost all monocyte-derived DCs had expression
of CD11c, characteristic marker for myeloid DCs (Figure 1,
Table 2).

3.3. Phenotype of Bacteria-StimulatedDCs. Differences in the
expression of DCs surface molecules were analyzed after one
day of the bacterial stimulation (LAB strains: L. rhamnosus
900, L. paracasei 915; H. pylori; mixture: L. rhamnosus 900 +
H. pylori and L. paracasei 915 + H. pylori) (Table 3).

Compared to the unstimulated DCs (control DCs),
bacteria-stimulated DCs (irrespective of their variant) were
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Figure 1: Phenotype of immatureDCs.Histograms of representative cytometric data illustrate the following: (a) percentage ofCD80+DCs; (b)
percentage of CD83+ DCs, (c) percentage of CD86+ DCs; (d) percentage of CD40+ DCs; (e) percentage of HLA-DR+ DCs; and (f) percentage
of CD11c+ DCs. DCs: dendritic cells; stimulated DCs are represented by filled curves; isotype controls are represented by empty curves.
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Figure 2: Effect of the examined bacteria and their mixtures on the production of cytokines by DCs population. Values expressed as medians
from six independent experiments and interquartile ranges [Q1–Q3]; control: unstipulated DCs; L.r.: L. rhamnosus 900; L.p.: L. paracasei 915;
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+ H. pylori; 𝑃 < 0.05; DCs: dendritic cells.

reflected by a significant increase in HLA-DR and CD86
receptor densities on DCs (GFI for CD86 and GFI for HLA-
DR).

Furthermore, the stimulation with either single bacterial
strain caused a significant increase in the percentage ofCD83-
positive cells but the highest percentage of these cells was
observed after stimulation with L. paracasei 915. A mixture
of L. paracasei 915 + H. pylori turned out to exert stronger
stimulatory effect on the expression of CD83-positive DCs
than H. pylori alone or the mixture of L. rhamnosus 900 and
H. pylori.

A significant increase in the percentage of CD80-positive
DCs was observed solely after exposure of DCs to LAB
strains alone or in combination with H. pylori. In turn, H.
pylori alone turned out to be significantly weaker inducer
of the CD80-positive cells than the LAB strains and their
mixtures.Moreover, we showed that exposure to L. paracasei
915 was reflected by significantly higher increase in density
of CD80 receptor (GFI for CD80 receptor) than in the case
of stimulation with H. pylori. Both L. paracasei 915 alone

and in the mixture withH. pylori caused significantly greater
increase in GFI for CD80 than did L. rhamnosus 900.

3.4. Comparison of Cytokine Levels after Bacterial Stimulation.
The DCs were stimulated for 24 h with live bacteria, either a
single strain or a mixture of two bacterial strains (Figure 2).
All the stimulators effectively induced cytokine synthesis (IL-
10, IL-12p70, IL-23, and TNF-𝛼) when compared with control
DCs (unstimulated DCs).

L. rhamnosus 900 alone turned out to be stronger inducer
of IL-12p70 than H. pylori alone and mixtures of H. pylori
+ LAB. Also another analyzed LAB strain, L. paracasei 915,
proved to be better stimulator of IL-12p70 synthesis than H.
pylori.

Furthermore, the stimulation with either L. paracasei
915 alone or its combination with H. pylori was reflected
by significantly more enhanced synthesis of IL-10 than the
exposure to L. rhamnosus 900, L. rhamnosus 900 + H. pylori,
and H. pylori alone.
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Figure 3: The cytokine IL-10/IL-12p70 ratio. Values expressed as
medians from the ratios from six independent experiments and
interquartile ranges [Q1–Q3]; control: unstipulated DCs; L.r.: L.
rhamnosus 900; L.p.: L. paracasei 915; andH.p.:H. pylori; statistically
significant differences are given as follows: ∗: stimulators versus
control (unstimulated DCs), †: stimulators versus H. pylori, ‡:
stimulators versus L. rhamnosus 900, stimulators versus L. paracasei
915; 𝑃 < 0.05; DCs: dendritic cells.

Finally, stimulation of DCs with any of bacterial strains
or their mixtures caused an increase in the synthesis of IL-23.
However,H. pylori alone turned out to be a weaker stimulator
of IL-23 versus L. paracasei 915 + H. pylori (𝑃 < 0.05) and L.
rhamnosus 900 + H. pylori (𝑃 < 0.1).

Stimulation with all the bacteria and their mixtures
resulted in a significant increase in TNF-𝛼 concentration, but
without statistical differences.

Next, we calculated the IL-10/IL-12p70 ratios obtained
from these studies (Figure 3). These allowed the ranking of
the strains from an “anti-inflammatory” to a “proinflam-
matory” profile. The strains L. paracasei 915 and H. pylori
were classified as more anti-inflammatory. L. rhamnosus 900
showed a slightly proinflammatory profile with a very low IL-
10/IL-12p70 ratio. The mixture L. paracasei 915 + H. pylori
showed strong anti-inflammatory capability. In contrast,
despite the rather high ratio of IL-10/IL-12p70, the mixture L.
rhamnosus 900 + H. pylori did not show differences between
stimulators.

4. Discussion

In this study, we provided evidence for the immunostimula-
tory effect of LAB strains on H. pylori-induced DCs. We also
reported for the first time that the LAB strains induce more
mature phenotype of DCs than H. pylori alone (as shown
by greater percentage of CD80+ DCs). Thus, our findings
point to potential application of some of these bacteria as a
component of H. pylori infection treatment.

There are three consecutive stages of DC maturation:
immature DCs (iDCs), semimature DCs (smDCs), and
matureDCs (mDCs).The cells representing these phenotypes
can be distinguished on the basis of cytometric analysis of

HLA-DR, CD80, CD86, CD83, and CD40 receptor expres-
sions and profile of secreted cytokines, such as IL-10, IL-
12p70, IL-23, and TNF-𝛼 [34–36]. Activation of iDCs with
foreign antigens, for example, bacterial Ag, results in their
transformation to smDCs or mDCs. The phenotype of semi-
mature DCs does not differ from that of mDCs: their ability
to synthesize cytokines is limited as shown bymarkedly lower
concentrations of proinflammatory cytokines and moderate
level of IL-10 in culture supernatant. In contrast, the fully
matureDCs cause activation of T cell response and synthesize
an array of cytokines, for example, IL-12p70, IL-12p40, IL-
6, and TNF-𝛼 [34, 35, 37]. It is noteworthy that all DCs
constitutively express CD86 and HLA-DR on their surfaces
[38, 39]. Therefore, we identified iDCs, mDCs, and smDCs
on the basis of percentage of cells expressing CD83 and CD80
and fluorescence intensity of these receptors onDC surface as
well as cytokine production.

The increase in the percentage of CD83+ cells, observed
after stimulation with either all the analyzed bacteria (H.
pylori, LAB) or their mixtures (LAB with H. pylori), likely
reflected the process of DC maturation [31, 40]. L. paracasei
915, that is, the strain nonantagonistic to H. pylori, turned
out to be the most potent activator of DC maturation among
all the analyzed variants, as shown by the most pronounced
increase in the percentage of CD83+ cells and density of
CD80. Analysis of the expression of CD80 receptor, respon-
sible for late activation of DCs [38], showed that H. pylori
was the only bacterium that did not stimulate an increase in
the percentage of CD80+ cells. Therefore, the analyzed strain
of H. pylori stimulated maturation of DCs to a lesser extent,
which likely corresponded to development of smDCs with
tolerogenic phenotype [41, 42]. In contrast, the mixtures of
H. pylori with the LAB strains stimulated differentiation of
CD80-positiveDCs.Therefore, the analyzed lactobacilli likely
enhanced the process of DCsmaturation despite the presence
ofH. pylori. This phenomenonmay directly affect the follow-
ing: (a) presentation of Ag to antigen-naive lymphocytes T,
(b) profile of secreted cytokines, and (c) characteristics of T-
dependent response (e.g., predominance ofTh1,Th2, orTh17
response).

It is commonly known that the effective response of T
lymphocytes requires two types of activation signal: (a) inter-
action between Ag presented byMHC I/II and the TCR/CD3
receptor and (b) interaction between receptors, such asCD80,
CD86, and CD28 or CTLA-4. Too weak second signal leads
to anergy of T lymphocytes and resultant apoptosis thereof
[38, 43]. The abovementioned process involves a number of
molecules supporting the presentation, such as CD40 and
CD83 participating in activation of T lymphocytes [44, 45].
Although we documented an increase in the percentage of
CD83+ cells in DC population, both relative and absolute
numbers of CD40+ cells remained unchanged. Moreover,
it should be stressed that all the analyzed strains and the
mixtures thereof exerted similar effect on CD86 and HLA-
DR expressions.These findings suggest that we did not obtain
fullymatureDCs since, asmentioned previously, the presence
of the latter needs to be confirmed by secretion of specific
cytokines to culture supernatant. Apart from maturation
of DCs, also polarization of these cells toward DC1 or
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DC2 function constitutes equally important component of
response to H. pylori infection; the process of polarization
can be analyzed on the basis of concentrations of selected
cytokines, especially IL-12p70 and IL-10. The fact that the
level of biologically active form of IL-12 after stimulation
with H. pylori alone was lower than after the exposure to the
analyzed LAB strains may reflect immunosuppressive effect
of H. pylori or polarization of DC towardsTh2 response [15].
It should be emphasized that the mixtures of analyzed LAB
strains (L. rhamnosus 900 and L. paracasei 915) and H. pylori
induced secretion of IL-12p70 at a similar level as did H.
pylori alone, which suggests that the latter bacterium might
inhibit the LAB-induced immune response. This hypothesis
is supported by the results of a previous study in which H.
pylori was shown to release a factor that inhibited secretion
of IL-12 by DCs [24, 46]. However, despite the fact that IL-
23 belongs to the family of IL-12, similar effects were not
observed. We showed that the level of IL-23 after stimulation
with L. paracasei 915 and H. pylori mixture was significantly
higher than in the case of exposure to H. pylori alone.
In turn, the concentration of IL-23 in the culture of DCs
stimulated with the mixture of L. rhamnosus 900 and H.
pylori turned out to be similar as in the case of DCs induced
with L. paracasei 915 and H. pylori. High level of IL-23
corresponds to proinflammatory function of activated DCs
and can be associated with induction of Th17 response [47,
48]. The DCs stimulated with the bacterial mixtures seemed
to be more effective and their phenotype resembled that of
mDCs to a larger extent than the phenotype of the cells
exposed to H. pylori alone. Enhanced synthesis of IL-23,
involved in the control of Th17 response, may be beneficial
in the case of H. pylori-induced inflammation as previous
studies showed that it improves the antibacterial potential
[13, 22]. Apart from IL-23, DCs synthesize an array of other
proinflammatory cytokines, for example, TNF-𝛼 [49]. Both
LAB and H. pylori, as well as their mixtures, enhanced
synthesis of TNF-𝛼; however, the levels of this cytokine did
not differ significantly between the analyzed culture variants.
Previous studies showed that bacterial stimulation of DCs
is reflected by enhanced synthesis of TNF-𝛼; this cytokine
exerts pleiotropic effects [50–55], determined by duration of
the exposure. Moreover, high level of TNF-𝛼was shown to be
a marker of DC maturation. It is interesting that mature DCs
can also synthesize these cytokines that act antagonistically
to proinflammatory cytokines, for example, IL-10 [56]. Both
L. paracasei 915 strain and the mixture thereof with H.
pylori turned out to be the strongest inductors of IL-10
synthesis. These findings confirm that a nonantagonistic
strain can stimulate tolerogenic response associated with
activation of type-2 polarized DCs. The concentration of IL-
10 documented after stimulation withH. pyloriwas markedly
lower, similar to that observed after exposure to L. rhamnosus
900 alone or in mixture with H. pylori. As mentioned above,
low level of this cytokine may be characteristic for smDCs
[34], which further confirms that stimulation with H. pylori
promotes tolerogenic phenotype of DCs. Low levels of both
IL-10 and IL-12p70 in H. pylori-induced culture may also
point to the lack of DC polarization and result in the lack of

their reactivity with T lymphocytes. However, the hereby pre-
sented findings suggest that such dysregulation of immune
response may be at least partially counterbalanced by LAB
strains, as shown by increased expression of DC surface
markers (CD80 and/or CD83) and higher concentration of
IL-23 in culture supernatant.

The fact that LAB stimulated maturation of DCs sug-
gests that these bacteria may normalize immune mucosal
function during symptomatic H. pylori infection. However,
we could not unambiguously distinguish which of the LAB
strains, antagonistic or nonantagonistic one, was a stronger
enhancer of antibacterial reaction associated with activation
of T-dependent (Th1, Th17) response. On one hand, we
documented a marked increase in CD80 expression solely on
the surface of DCs stimulated with L. paracasei 915 and its
mixturewithH. pylori, which points to greater potential of the
nonantagonistic LAB strainas a stimulator of DCmaturation.
On the other hand, the same LAB strain proved to be a
strong inductor of IL-10 synthesis. In turn, this cytokine is
known to stimulate response of Treg lymphocytes [57], and
percentage of these latter cells increases in the course of
H. pylori infection, being tightly associated with the activity
and phenotype of DCs. In contrast, elimination of Tregs
may promote eradication of H. pylori [58]. Therefore, lower
mucosal counts of Tregs will be reflected by stronger immune
response (Th1 or Th17 response) and resultant elimination of
H. pylori. Understanding the profile of T lymphocyte in the
coculture of these cells with LAB/H. pylori-stimulated DCs is
warranted (actually under study).However,L. rhamnosus 900
in contrast to L. paracasei 915 shows reduced IL-10/IL-12p70
ratio. Therefore, it seems that nonantagonistic strain may be
more supressive/tolerogenic. It should be noted also that the
mixture L. paracasei 915 + H. pylori was also strongly anti-
inflammatory. Taking together, L. rhamnosus 900 proved to
be a weaker stimulator of DC maturation, the polarization of
cellular response induced by this bacterium could be more
beneficial in the context of H. pylori infection.

5. Conclusions

First, the LAB strains used here were much more potent
DC maturation agents than H. pylori. Second, H. pylori-
induced DCs tolerogenic phenotype was at least partially
overcome by the LAB strains. Third, the L. rhamnosus strain
900 (antagonistic to H. pylori) proved to be more effective
than L. paracasei strain 915 (nonantagonistic to H. pylori) in
DCs protection against tolerogenic action of H. pylori.
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