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Abstract

Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule
that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical
contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC
complexes. While several such methods have been described before, most are not publicly available and have not been
independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II
molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different
peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of
peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined,
but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently
short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding
peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than
random, but still substantially lower than the best performing sequence based class II prediction methods available. While
the approaches presented here were developed independently, we have chosen to present our results together in order to
support the notion that generating structure based predictions of peptide:MHC binding without using binding data is
unlikely to give satisfactory results.
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Introduction

A common bioinformatics application in immunology is the

prediction of peptide binding to MHC molecules [1]. Most such

binding predictions are based on machine learning algorithms,

which aim to generalize experimental binding data to define a

binding sequence pattern for a given MHC molecule. The quality

of such predictions is therefore highly dependent on the amount of

experimental training data available [2]. Moreover, there are

thousands of different MHC alleles in the human population and

binding data is only available for a small subset of alleles.

Therefore, it is desirable to develop binding prediction methods

that do not rely on the availability of peptide:MHC binding data.

A promising approach that does not require binding data is to

use 3D structures of peptide:MHC complexes. Different MHC

alleles have high sequence homology, and all solved MHC

structures have a highly conserved fold, which opens the possibility

to use homology modeling for those MHC alleles for which no 3D

structure has been solved explicitly. Moreover, a structure-based

predictive understanding of peptide:MHC binding provides a

physical explanation for the nature of the binding interactions,

while purely peptide sequence based learning methods merely

provide a description of the sequence characteristics of preferred

MHC-binding ligands. Throughout this manuscript, we refer to

prediction approaches that use structural information but not

peptide:MHC binding data as ‘ab initio’ approaches.

Several approaches have been published that predict peptide

binding to MHC molecules utilizing known 3D structures.

Threading-based approaches have been used to align peptides to

know peptide:MHC structures and binders are selected using

statistical pairwise potentials [3,4]. Bordner and Abagyan utilized

a Biased-Probability Monte Carlo docking protocol to predict

peptide:MHC binding [5]. Bui et al [6] developed a de novo

approach to sample conformations of peptide:MHC backbone and

side chains with consideration of explicit water molecules whereas

Schafroth and Floudas utilized implicit solvation for their

approach [7]. In a separate study, Fagerberg et al [8] utilized

molecular dynamic and simulated annealing to sample the

conformational space and predict binding of peptides to MHC

class I molecules. A similar approach was taken by Davis et al. [9]
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for the prediction of MHC class II peptide binding. In a recent

paper Singh et al. applied threading guided by a structure derived

contact potential to predict binding of peptides to MHC class I

molecules [10]. Structure information has also been coupled with

experimental data to predict peptide:MHC binding via quantita-

tive structure-affinity relationship methods [11]. Evaluation of

those methods was typically done using existing structures or a

small dataset of known binders and none of them currently

provides a public web server. Finally, so-called pan-specific MHC

binding predictors have been developed in recent years integrating

structural information with experimental peptide binding data

allowing for generalization of binding predictions to MHC

molecules characterized with few or even no peptide binding data

[12,13,14,15,16,17,18].

Here, we present three ab initio structure-based approaches for

predicting peptide binding to MHC class II molecules. The

approaches are based on 1) statistical potentials derived from the

analysis of known protein structures, 2) energetic evaluation of

different peptide snapshots in a molecular dynamics simulation,

and 3) direct analysis of contacts made in known 3D structures of

peptide:MHC complexes. Their prediction performance was

evaluated rigorously on a large dataset of 3,882 peptide binding

affinities to HLA-DRB1*0101. The implementation and evalua-

tion of the three approaches were initially pursued independently

by subgroups of the authors at different institutions, but led to

overall comparable results: they make significantly better than

random discriminations of binders from non-binders, but fail to

reach the prediction quality necessary for practical applications.

Results

This section is separated into two parts: In the first part, results

are reported that were generated during the derivation of each of

the three structure-based prediction methods, starting with the

statistical pair potential-based method, followed by the molecular

dynamics simulation and the contact map-based method. In the

second part, the derived predictions are applied to a common

benchmark set, namely a large set of HLA-DRB1*0101 binding

data.

Derivation of Statistical Pair Potential Predictions
The effect of the center of interaction. Different schemes

of representing the centre of interaction were used in this study:

Ca, representing a residue by the alpha carbon; Cb, by the beta

carbon; and Cm, a virtual atom denoting the centre of mass on the

sidechain atoms (see material and method). The effect of different

implementations of centre of interaction on the pair potential for

the K-D residue pair is illustrated in Figure 1. It was expected that

the positively charged side-chain of lysine (K) attracts the

negatively charged carboxylate group in the side-chain of

aspartic acid (D) at a short favorable distance. For the statistical

potentials, such a binding energy minimum can be seen clearly for

Cm, whereas it was not pronounced for Ca and Cb. This

suggested that the Cm representation was the most suitable for our

study. Two additional potentials are shown in Figure 1 for the

interaction between pairs of hydrophobic and negatively charged

amino acids, respectively. These plots further demonstrate that the

calculated potentials for Cm interactions agree with what is

expected physico-chemically.

The optimal scoring function. The distance cutoff in the

scoring function defining which pairwise interactions are taken

into account when estimating the binding affinity was estimated

based on a benchmark set of MHC class I binding data described

in the methods section. For each of the three types of interactions

centers, the predictive performance for the training set in terms of

the Pearson Correlation Coefficient (PCC) was reported as a

function of the cutoff distance used in the scoring function. The

results of this calculation are shown in Figure 1. It clearly

demonstrates that the predictive performance depends strongly on

the type of interaction center, and that the optimal scoring

function is found when using the Cm interaction centers with a

distance cutoff for interactions at 7.5 Å.

To confirm the validity of the potential scoring function and the

optimized potential parameters, we tested its performance on the

separate benchmark set of 36,210 peptides that covers 41 MHC

class I alleles. In this experiment the built-in Modeller energy was

found to correlate poorly with the peptide:MHC binding affinity

and had an average PCC of 0.04, whereas the statistical potential

for Ca, Cb and Cm reached an average PCC of 0.11, 0.13 and

0.21, respectively. The pair-potential binding prediction method

shows large variations in predictive performance for different

MHC molecules. The method performs best for alleles with

hydrophobic amino acid preference at the primary anchor

positions (A2, and A24 supertype alleles) and worse for alleles

with charged amino acid preference at the primary anchor

positions (A3, and B44 supertype alleles). For details on this

experiment see Table S1. These results confirmed that the

potential function based on Cm interaction centers performed

better than both Ca and Cb, and we shall use this potential

function with a distance cutoff of 7.5 Å in the subsequent

evaluation on the MHC class II benchmark data set described

below. Note, that the sequence-based method, NetMHCpan-1.0,

Figure 1. Pairwise potential function. (Left) Pair potential score as a function of interaction distance for K-D based on definition of Ca, Cb, and Cm,
respectively. (Middle) Interaction score as a function of Cm distance between two hydrophobic amino acids, A-V, and two negatively charged amino
acids, L-A, respectively. (Right) Predictive performance as a function of the interactions distance cutoff for three types of interaction centers. The
predictive performance is estimated in terms of the Pearsons correlation for the 1173 peptide data in the training data set.
doi:10.1371/journal.pone.0009272.g001
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evaluated using a leave-one-allele-out approach on the same data

set, achieved a performance of 0.674.

Derivation of Molecular Dynamics-Based Predictions
Structures from MD simulation. For the peptide:MHC

class II complex, an MD simulation was carried out for 4 ns.

The time-series of the root-mean-square-deviation (RMSD) of

backbone atoms from the initial PDB structures is shown in

Figure 2. For the 4 ns trajectory, the protein complex has an

average RMSD of 1.62 Å with a standard deviation of 0.33 Å. At

around 1.6 ns into the simulation, the RMSD of the peptide:MHC

complex stabilized around 1.83 Å with a peak value of 2.42 Å

suggesting the system has reached equilibrium. In addition, the

small RMSD value suggested that the peptide:MHC complex

structure is very stable.

Binding free energy calculations and its application to

binding prediction. From the trajectory of the MD simulation,

it is possible to calculate the absolute binding free energy of

individual amino acids. This can be done either by binding free

energy decomposition [19,20] or via computational alanine

scanning [21]. Previous studies have shown that binding free

energy decomposition generally provided more accurate results

than computational alanine scanning [22]. However, compu-

tational alanine scanning is more suitable for our task as binding

free energy decomposition requires MD simulation for large

numbers of mutated structures which are prohibitively time

consuming. To estimate the binding free energy contributions of

all twenty amino acids at each of the nine peptide positions that

interact with the MHC class II molecule, we conducted extensive

in silico mutations (see Materials and Methods for details). This

computational alanine scanning-like approach probed all one

hundred eighty (2069) combinations of amino acids (20) and the

peptide core positions (9). Those probing structures generated

from the computational alanine scanning like approach were first

energy minimized then subjected to binding free energy calcu-

lations using the MM-PBSA approach. This process was repeated

for 100 snapshots taken from the MD simulation trajectory and

the average results were reported as estimates for binding free

energy of each amino acid at different core positions.

The calculated absolute binding free energies are displayed in

Table 1 in a matrix format. Previous studies have suggest that for

HLA-DRB1*0101, binding pocket number one has a strong

preference for amino acids with a large neutrally charged side

chain [23]. Our calculated binding free energies are consistent

with this observation since residues like phenylalanine or

tryptophan have the most favorable energies. The structure of

the peptide:MHC complexes also suggest that epitope residues at

pocket number five will not contribute much to the binding as the

side chains protrude away from the MHC class II molecule [24].

Our calculated results are consistent with this finding, as the

calculated values for pocket number five deviate less from zero

than at other positions.

Flexibility of epitope and MHC residues during MD

simulation. Dynamic changes of protein structures play im-

portant roles in biological processes such as kinase activation and

HIV entry into host cell [25,26]. Utilizing the MD simulation

data, we examined the flexibility of the MHC molecule and

the peptide epitope by calculating root mean square fluctuation

(RMSF) of the peptide backbone atoms and the backbone atoms

of MHC residues interacting with peptide (within 5 Å of the

peptide). The resulting RMSFs are displayed in Figure 3. The

9mer core residues of epitope peptide (residue 308 to 316) are very

stable as their backbone atoms showed very small RMSFs. While

the +1 and 21 residues (residue 307 and residue 317) shared

similar RMSFs with the core residues, the +2 and 22 residues

(residue 306 and residue 318) showed significantly increased

RMSFs. This suggested that residues beyond +1 and 21 positions

are unlikely to contribute much to peptide:MHC binding as their

excessive motions will prevent stable interactions. While pep-

tide interacting residues in chain B of the MHC molecule

demonstrated remarkable stability, chain A residues located in the

middle portion of the peptide interacting helix showed increased

mobility. This suggested that the center region of the peptide

binding groove has increased flexibility. This flexibility may help

in the incorporation of peptides with diverse residues at the center

and provide increased flexibility for T-cell receptor interaction.

Derivation of Contact-Map Based Predictions
Types of atom contacts considered. First, we determined

which contacts should be considered in calculating the position

specific scoring matrices (PSSM). Four schemas for counting

atomic interactions were considered: (1) interactions at a distance

of 4 Å; (2) hydrogen bonds alone; (3) van der Waals interactions

and hydrogen bonds; and (4) hydrogen bonds together with van

der Waals and hydrophobic interactions. Each interacting atom

pair was counted once, independent of how many different

interactions it participated in. The number of contacts for each

amino acid residue was defined as the number of atom-atom

interactions in which its atoms were involved while interacting

with MHC. To select the schema, we used a benchmark set of

MHC class II alleles other than HLA-DRB1*0101 (Table S2). The

PSSMs were generated for each MHC class II allele using 3D

structures of the peptide:MHC complexes and Eqs. (3.1–3.3). The

models based on hydrogen bonds, van der Waals, and

hydrophobic interactions gave the best AUC values, while the

schema taking into account only hydrogen bonds gave the worst

prediction (Table S3).

Figure 2. Evolution of RMSD (Å) of the 2G9H protein backbone
over 4 ns of MD simulation. Structures of the MD simulation
snapshots are aligned to the initial 2G9H structure and their backbone
RMSDs (y-axis) are plotted against the time when the snapshots are
taken (x-axis). The graph indicates that the structure reaches
equilibrium around 1.6 ns into the MD simulation and remains stable
through the end of the 4 ns simulation.
doi:10.1371/journal.pone.0009272.g002
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Derivation of contact map PSSM for HLA-DRB1*0101.

For each peptide core residue, we calculated the number of

contacts in all six complexes with HLA-DR1*0101, taking into

account hydrogen bonds, van der Waals, and hydrophobic

interactions (Table S4). The values in the table correspond to

Q(i,s) in Eq. (3.2), that is the number of times the amino acid

of type s is found at position i of the peptide core. Using Eqs.

(3.1–3.3), the PSSM for DRB1*0101 was calculated (Table 2). As

for the absolute binding free energies calculated with the

molecular dynamics method (Table 1), the contact-based PSSM

values (Table 2) are consistent with the observation that the HLA-

DRB1*0101 binding pocket number one has a preference for

hydrophobic amino acids [24]. The contact-based PSSM values

are also in agreement with the experimentally measured

preferences for the HLA-DRB1*0101 binding pocket number

four [23], which mostly favors leucine and methionine and

disfavors aspartic acid, lysine, tryptophane, and arginine.

Evaluation of MHC Class II Binding Prediction
Performance

All three prediction approaches were evaluated on a common

benchmark of MHC class II binding peptides to HLA-DRB*0101.

The pair-potential method was applied using Cm interaction centers,

and a distance cutoff of 7.5 Å. The molecular-dynamics based method

used the scoring matrix in Table 1, and the contact map method used

the scoring matrix in Table 2. For each peptide in the evaluation set,

most of which are 15-mers, all possible 9-mer cores were evaluated,

and the core with the highest affinity was chosen. The overall

performance of the prediction methods was evaluated by their ability

to distinguish binding peptides in the set with an IC50,1,000 nM

from those with a weaker affinity, as evaluated by a ROC curve.

Figure 4 shows the ROC curves for the three methods. For the

statistical pair potential method, the AUC value was 0.68260.009,

while it was 0.66760.009 for the molecular dynamics method and

0.62160.010 for the contact-map method. This is significantly

better than a random value of AUC = 0.5 (p-value,0.00001 using

standard error z-statistics). As a comparison, the ROC curve for

the prediction method NetMHCIIpan was included in Figure 4

as well. As described previously [17] NetMHCIIpan utilizes

measured peptide binding data from all MHC class II alleles, and

can extrapolate predictions to new alleles for which no such data

are available. The performance of this method (trained excluding

all HLA-DRB1*0101 data) with an AUC value of 0.794 is

substantially higher than all structure based predictions.

Discussion

Predicting peptide binding for MHC class II molecules remains a

challenging problem [27]. While available prediction methods

showed success in peptide binding prediction, their performance is

much worse than the performance of the methods for MHC class I

binding prediction [2]. In addition, existing methods typically

depend on large sets of experimentally measured binding affinities

and are not applicable to MHC alleles that lack such data. The three

approaches described here were developed independently with the

goal of deriving peptide:MHC binding predictions that do not

require any binding data. The resulting prediction performances are

significantly better than random. However, they are still substantially

lower than the best performing sequence based class II prediction

methods available (AUC,0.863) [27]. We have chosen to present

our results together in order to support the notion that generating

structure-based predictions of peptide:MHC binding without using

binding data is unlikely to give satisfactory results.

Table 1. Binding free energy contribution of each amino acid at different epitope core locations.

aa\pos 1 2 3 4 5 6 7 8 9

ALA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ARG 1.88 4.71 8.55 9.80 2.67 6.45 10.54 3.95 13.93

ASN 1.47 0.68 1.94 0.85 1.39 1.17 0.64 1.53 3.18

ASP 214.60 22.82 28.95 25.53 22.69 211.09 29.06 26.01 215.69

CYS 2.90 3.47 2.11 1.90 1.05 2.62 3.41 0.98 4.60

GLU 214.82 21.89 28.90 21.14 23.13 211.84 211.20 24.60 215.98

GLN 3.87 2.86 4.08 8.34 1.04 3.75 6.21 1.39 6.12

GLY 20.86 21.48 20.52 21.74 0.31 20.81 22.51 0.00 21.66

HIS 5.38 1.00 2.31 5.50 1.82 2.86 5.62 1.05 3.72

ILE 4.88 2.38 4.09 2.84 1.84 3.79 3.30 1.11 4.31

LEU 6.59 2.25 3.55 5.22 0.24 2.44 5.43 1.22 6.98

LYS 25.99 1.59 10.68 5.20 3.35 3.79 3.61 2.40 2.51

MET 8.22 4.41 7.42 8.29 0.02 6.32 5.69 1.45 9.45

PHE 12.14 2.16 6.12 6.45 2.60 3.37 6.19 1.37 8.66

PRO 0.60 23.51 0.93 22.79 2.32 0.01 1.98 22.71 0.60

SER 21.25 0.36 20.05 21.52 0.85 1.03 1.64 0.19 1.16

THR 0.57 1.23 20.69 0.23 0.65 3.66 0.80 0.20 0.42

TRP 13.49 2.02 6.32 25.37 3.42 5.03 10.29 1.43 7.35

TYR 12.20 2.06 5.44 3.37 3.20 4.02 7.05 1.22 12.80

VAL 4.48 1.42 0.95 2.15 0.58 2.81 2.46 0.42 2.67

Each row is an amino acid and the columns refer to pocket one to nine of the MHC class II epitope-binding groove. Each value is the difference of binding free energy in
comparison with alanine in units of kcal/mol. Positive values indicate residues favorable for binding.
doi:10.1371/journal.pone.0009272.t001
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While it is surely possible to improve on the approaches

presented here, a large gap to satisfactory prediction qualities

remains. This is especially true as the evaluations conducted here

for the DRB1*0101 MHC molecules constitute a best case

scenario, as this is the molecule with the largest amount of 3D

structures information available. One straightforward approach to

improve upon the prediction quality would be to make a consensus

of the three methods applied here. Minimally, this would achieve

the prediction performance of the convex hull of the ROC curves

shown in Figure 4. Still, such a consensus would have an AUC

value of less than 0.70, which is conventionally accepted as a

usable prediction performance of sequence based prediction

methods.

It has to be stressed that we are not claiming that the use of

structural data has no place in peptide:MHC binding predictions.

We are explicitly referring here to limitations of ‘ab initio’ methods,

meaning those developed in the absence of any binding data. In

fact, the use of structural methods in combination with binding

data is promising, as shown by which peptide binding data is used

to parameterize structure based scoring functions. Also, implicitly

structural data are used in the ‘Pan’ approaches, which include

representations of peptide contact residues in the MHC binding

pocket molecule positions [12,13,15,16,17].

Another requirement we placed on the methods implemented

here is that they needed to be capable of performing predictions on

realistic sized datasets in a reasonable time frame. The standard

application of these binding predictions is to scan sets of proteins or

entire genomes for potential binding peptides. This easily leads to

tens of thousands of predictions that have to be made, and rules out

the use of very computationally expensive prediction approaches.

For example, a prediction that would rely on generating molecular

dynamics simulations for a peptide of interest is simply not practical.

Figure 3. Backbone RMSF (Å) of the epitope peptide and MHC residues contacting epitope over the last 2 ns of MD simulation.
RMSFs of the backbone atoms (CA, C, N and O) are plotted against the residue numbers (x-axis). For the epitope peptide, residue 308 is located in
pocket 1 of the MHC binding groove and residue 316 is located in binding pocket 9. The MHC residues contact epitope peptide in a linear fashion.
For chain A of MHC molecule, the lower numbered MHC residues contact lower numbered peptide residues and higher numbered residues contact
higher numbered peptide residues. For chain B of MHC molecule, the contacts are in reverse order in that the higher numbered MHC residues
contact lower numbered peptide residues and lower numbered MHC residues contact higher numbered peptide residues.
doi:10.1371/journal.pone.0009272.g003
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The cost of performing a peptide:MHC binding experiment, which

is routinely feasible for less than $50, places a boundary on the

amount of computation time that is justifiable in a real-world

application. While generating the scoring matrix is a time consuming

process for our MD based approach (performing a 4 ns MD

simulation for a peptide:MHC complex takes about 2 weeks on a 64

nodes Linux cluster), our MD based prediction method could easily

manage genome scale peptide binding prediction once the scoring

matrices are generated. The predictive matrix of the contact map

based approach only takes seconds to produce, and can easily handle

genome scale predictions, similar to the MD based approach. In

contrast, the pair potential method requires generating 3d models of

peptide:MHC molecules for each possible register, which takes

minutes per peptide, and makes genomic scale predictions more

problematic.

The work presented here shows similar predictive performance

as the early attempts to use protein structure and threading

techniques to predict peptide binding to MHC molecules [3,28].

Most structure-based MHC prediction algorithms are not

available online on the web, making large scale benchmarking of

their predictive performance impossible. Exceptions to this are

PREDEP [4], and MHCPred [29] where online prediction servers

are available covering a limited set of MHC molecules. In recent

large-scale benchmark calculations both of these methods have

been shown to under-perform significantly when compared to

state-of-the-art data-driven methods [2,30]. In particular, the

MHCpred method was shown to achieve a predictive performance

of 0.565 AUC when evaluated on a set of more than 1000 HLA-

DRB1*0101 peptides [30], suggesting that this method does not

outperform the methods considered in this work.

Experimental data had suggested that residues outside of the

MHC class II binding groove contribute to binding [31,32] and

prediction methods have been developed incorporating such

residues with considerable success [30] Our analysis of residue

flexibility with the MD simulation data supports this notion. While

peptide residues more than one amino acids away from the 9mer

Table 2. PSSM for the DRB1*0101 generated by the contact-based method.

aa\pos 1 2 3 4 5 6 7 8 9

ALA 23.00 23.00 23.00 23.00 0.99 1.50 1.33 23.00 23.00

ARG 23.00 1.81 23.00 23.00 2.07 23.00 23.00 23.00 23.00

ASN 23.00 23.00 23.00 23.00 1.24 23.00 23.00 23.00 23.00

ASP 23.00 23.00 0.92 23.00 23.00 23.00 23.00 23.00 23.00

CYS 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00

GLU 23.00 23.00 23.00 0.85 23.00 23.00 23.00 23.00 23.00

GLN 23.00 23.00 23.00 1.72 0.77 23.00 23.00 23.00 1.23

GLY 23.00 0.89 0.29 23.00 23.00 1.02 23.00 23.00 0.32

HIS 23.00 23.00 23.00 23.00 23.00 23.00 23.00 1.17 23.00

ILE 0.79 1.24 1.38 23.00 23.00 23.00 23.00 23.00 23.00

LEU 23.00 23.00 23.00 2.10 23.00 23.00 1.27 2.25 2.36

LYS 23.00 0.66 1.19 23.00 23.00 23.00 23.00 2.01 23.00

MET 23.00 23.00 23.00 1.41 23.00 23.00 23.00 23.00 23.00

PHE 1.22 23.00 1.82 23.00 1.39 23.00 23.00 23.00 23.00

PRO 23.00 23.00 1.10 23.00 23.00 23.00 1.85 23.00 23.00

SER 23.00 0.89 23.00 23.00 23.00 1.43 23.00 23.00 0.59

THR 23.00 23.00 23.00 23.00 23.00 2.17 23.00 23.00 23.00

TRP 1.53 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00

TYR 2.09 23.00 23.00 23.00 23.00 23.00 1.87 23.00 23.00

VAL 0.65 1.37 23.00 23.00 23.00 23.00 23.00 23.00 1.12

doi:10.1371/journal.pone.0009272.t002

Figure 4. Performance of three ab initio structure based
prediction methods and NetMHCIIpan using HLA DRB1*0101
as an example. The prediction results of three methods applied to
HLA DRB1*0101 binding data are shown in the ROC plot. The ROC
curves were generated by plotting the true positive rate (y-axis) against
the false positive rate (x-axis). The AUC values for the three methods
were shown in parentheses.
doi:10.1371/journal.pone.0009272.g004
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binding core are unlikely to contribute to binding due to excessive

flexibility, the +1 and 21 residues could play detectable roles in

binding as they share similar flexibility with other core residues.

Our analysis of hydrogen bonds (data not shown) detected two

stable hydrogen bonds formed between the +1 peptide residue and

MHC residues and another two stable hydrogen bonds formed

between the 21 peptide residue and MHC residues. We further

analyzed the roles of those resides in binding by carrying out free

energy calculation similar to the core residues. The resulting

energy (data not shown) suggested that the +1 and 21 positions

have small standard deviations similar to the non-anchor core

positions 2, 3, 5 and 8. This suggested that their contribution to

binding is mostly due to backbone interactions. Those results

provided dynamic evidence supporting the roles of residues

immediately outside of the binding groove in peptide:MHC

interaction and suggested that predictive methods should incor-

porate residues outside of the binding core.

In summary, we have developed and tested three ‘ab initio’

structure based binding approaches that do not require pepti-

de:MHC binding information, and found their prediction

performance to be limited. We believe, it is nevertheless important

to publicize this essentially negative finding as the approaches

tested here have an obvious appeal and similar approaches are

likely be pursued repeatedly. Also, we would like to be proven

wrong, and will be convinced of the usefulness of ab initio structure

based predictions by a method that is publicly available, capable of

performing predictions for 1,000 peptides in less than a day, and

was developed without requiring peptide:MHC binding data for a

complex parameterization.

Materials and Methods

The materials and methods section is separated into three parts

corresponding to the three distinct approaches for MHC peptide

binding.

The Statistical Pair-Potential-Based Method
This method is based on deriving heuristic potentials between

amino acids based on the frequency with which pairs of amino

acids occur at a given distance in a large set of protein structures.

These potentials are used to assign a heuristic binding affinity to

homology modeled peptide:MHC binding complexes.

Statistical Pair-Potential. The statistical potential is defined

as a logarithm of the ratio of the probability of observation against

the probability of expectation. Here, we take the form adopted by

Samudrala et al. [33] to calculate a potential from the count of

observations:

E~{log
pobs

pexp
: ð1:1Þ

To estimate the probability Pobs, we counted the number of obser

vations of amino acid pairs (a, b), within a distance r in a

representative set of protein structures. To obtain Pexp , we assume

that for any given pair of amino acids (a, b), the distribution is

homogenous for a given distance r, i.e., P(r|a,b) = P(r). The

potential is hence calculated as:

E~{log
p rDa,bð Þ

p rð Þ , ð1:2Þ

where log is the the natural logarithm.

To predict peptide:MHC binding interactions, we are only

interested in the inter-chain interactions between the peptide and

the MHC molecule. To focus the potential on such non-local

interactions, only amino acid pairs with a sequence separation

greater than 9 amino acids were included when calculating the

potential function.

The Culled PDB dataset from Wang and Dunbrack [34] was

used to build the knowledge-based potential function. This

collection of data is composed of 1202 high-resolution (resolution

cutoff 2.0 Å) crystal structures of globular proteins with sequence

length between 300 and 460 residues (MHC protein sequence size

680 residues). The pair-potential was calculated using a distance

bin of 0.25 Å. A penalty term was assigned to the potential

function for distances closer than 1.0 Å to account for steric

repulsion. The steric penalty was set to 2.0.

Finally, to limit the computational cost and to optimize the

potential scoring function, only pairwise interactions up to a

specific distance cutoff value were included [33,35].

Reduced Models for Proteins. The calculation of the

potential functions was based on a reduced model for protein

structures where the pair-wise interactions of residues are repre-

sented by distance-dependent interactions between centroids. A

number of schemes to represent the interaction centres of amino

acid residues were tested: Ca, Cb, Cm. In the Ca scheme, a residue

is represented by its alpha carbon; in Cb by the beta carbon in the

sidechain (a virtual betacarbon is calculated for glysine); in Cm by

the centre of mass of the heavy sidechain atoms (non-hydrogen).

Other types of centroid definitions could be considered including

backbone atoms of the residue. However, backbone conformations

are highly conserved for different residue types and inclusion of such

atoms in the centroid description would predominantly lead to

residue-type specific shifts in centroid location towards the Cb
position. Furthermore, sidechain center of mass centroids have

earlier been show to perform well for knowledge-based potential

functions [36].

Homology Modelling. The models of peptide:MHC com-

plexes were predicted using Modeller 8.v2 [37]. Modeller

generates an ensemble of models using an initial random seed,

and selects those with as little violation as possible to the spatial

restrains derived from the alignment and expressed as probability

density functions (PDFs). The PDFs restrain Ca-Ca and backbone

N-O distances, as well as backbone and side-chain dihedral angles

for different residue types. A pool of 42 templates was used to build

peptide:MHC binding models (Table S5). For each peptide, three

MHC complex models were constructed from the template pool

using different initial seeds for Modeller. To obtain a predicted

affinity for a given peptide, the three peptide:MHC models were

evaluated in the pair-potential, and the final binding score was

obtained as the simple average of the three binding scores.

Parameter estimation based on MHC-I data. To assess

the performance of the three protein geometric representation

models Ca, Cb, and Cm and to estimate the optimal distance

cutoff for pairwise interactions in the potential function, we

performed benchmarks based on a large set of 37384 MHC class I

binding data restricted to 42 MHC class I alleles used in the

original NetMHCpan publication [16]. To obtain fair statistics

covering different HLA molecules, we sampled randomly 100 data

points from each of the 12 HLA class I supertypes. Furthermore,

to fairly represent the diversity within a given supertype, an equal

number of binding data were sampled from each allele within the

supertype. This formed a representative dataset for the

peptide:MHC binding data. This training set contains 1174

peptides with affinity data (the B39 supertype only had 74 binding

measurements). The remaining peptide data were used to form the

evaluation data set, which contains 36210 peptide:MHC binding

data.
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The Molecular Dynamics-Based Method
This method is based on sampling the configurations that a

peptide adopts in a molecular dynamics simulation of a

peptide:MHC binding complex. Using in silico mutations of the

peptides in each configuration, an average contribution to binding

free energy of each possible amino acid in each position of the

peptide core is assigned.

Molecular dynamics simulation. The molecular dynamics

(MD) simulation was performed with the software package NAMD

[38] using the CHARMM22 force field [39] with an explicit water

model. The structure of the MHC class II molecule in complex

with peptide epitope (PDB ID 2G9H) was taken from the Protein

Data Bank [40]. The simulation was performed with the following

protocol. The peptide:MHC complex was solvated in a box of

TIP3 water with at least 10 Å distance between protein and the

boundary of the water box. The system was first minimized with

10,000 steps of steepest descent followed by 100,000 steps of

conjugate gradient descent. The MD simulation time step was 2 fs,

and trajectory was saved every 1 ps. The particle mesh Ewald

method was used to treat long-range electrostatic interactions and

bond lengths involving hydrogen atoms were constrained with the

SHAKE algorithm [41]. Constant temperature was controlled by

Langevin dynamics, and pressure was maintained by using Nosé-

Hoover Langevin piston pressure control. For the purpose of free

energy calculation, 100 snapshots were taken from the last 1 ns of

the 4 ns MD simulation trajectory.

In silico mutation of the peptide:MHC complex. For each

of the 100 snapshot structures of the MD simulation, the following

in silico mutations were performed. For each position of the 9-mer

binding core of the peptide, 19 mutated structures were generated

where each structure contained a mutation of the core residue to

one of the other 19 amino acids. Thus, for each snapshot 171 (1969)

mutated structures were generated that covered all possible amino

acids at each of the core position of the peptide. The mutations were

generated with the ‘‘Mutate Residue’’ Plugin of the VMD software

[42]. The mutated structures were minimized with 10,000 steps of

conjugate gradient descent using NAMD before they were subjected

to binding free energy calculation.

Calculating binding free energy contribution of core

peptide residues. The contribution to binding free energy

was calculated for all 20 amino acids at each position of the 9-mer

binding core via a computational alanine scanning like approach:

DDGi,j~DGalanine,j{DGi,j , ð2:1Þ

where DDGi,j is the contribution to binding free energy of residue i

at peptide core position j, DGi,j is the binding free energy between

the MHC class II molecule and the peptide where the residue at

position j was mutated to amino acid i and DGalanine,j is the binding

free energy between MHC class II molecule and the peptide where

residue at position j is mutated to alanine.

The absolute binding free energy between the MHC class II

molecule and peptide was calculated with the molecular

mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach

according to the thermodynamic cycle shown in Figure 5. In this

formulation, the binding free energy was the sum of gas phase

contribution, SDGbindT, the desolvation energy upon binding,

SDGdesolvT, and an entropic term, -STDST:

DG~SDGbindTzSDGdesolvT{STDST: ð2:2Þ

The brackets, ,., denote an average over snapshots taken from

the MD simulation trajectories.

The entropy term was omitted from our calculation since

previous studies have shown that this term is canceled out when

comparing systems with a single point mutation [43].

The gas-phase contribution to the binding free energy,

SDGbindT, is the sum of the van der Waals and electrostatic

interaction between MHC class II molecule and peptide and the

difference in the internal energy between the peptide:MHC

complex and the individual molecules of MHC class II and

peptide. Those energies were calculated with the ‘‘NAMD

Energy’’ plugin of VMD using the provided default parameters.

The solvation contribution for binding free energy, SDGdesolvT,

is the difference between the solvation energy of the peptide:MHC

complex and those of the isolated MHC class II molecule and

peptide. The solvation energy is divided into the electrostatic

contribution and the non-polar contribution. The non-polar

contribution to the solvation energy was calculated with an

empirical formula: DGnp,solv =s6SASA where SASA is the solvent-

accessible surface area and s is a constant value of 0.0072 kcal/Å2

[19]. The electrostatic contribution to solvation energy was

calculated by solving the Poisson- Boltzmann equation with

Delphi [44] at 0.10 M salt. The partial charges and atomic radii

were taken from the CHARMM22 force field. The interior of the

molecular surface of the solute molecule (calculated with a 1.4 Å

probe sphere) was assigned a dielectric constant of epsilon = 2,

whereas the exterior aqueous phase was assigned a value of

epsilon = 80. Debye–Hückel boundary conditions and five focus-

ing steps were used with a cubic grid size of 155.

The Contact Map-Based Method
The contact-based method implements a simple peptide:MHC

contact model that assumes the following: (i) the peptide residues

interact independently with the MHC molecule and (ii) the

probability of an amino acid to be in a certain position of the

peptide core is proportional to the average number of atomic

contacts made by that amino acid in that position with the MHC

molecule in 3D structures of peptides in complexes with MHC

class II of a particular allele. The structures used for the method

development are provided in Table 3.

Constructing the MHC allele-specific PSSMs. The

elements of a position-specific scoring matrix (PSSM) were

calculated as follows:

w i,sð Þ~log2

p i,sð Þ
p sð Þ zr

� �
, ð3:1Þ

where p(i,s) is the probability of the amino acid s at position i, and

r = 0.05 is a small value added to avoid underflow when p(i,s) = 0.

Figure 5. Thermodynamic cycle used to calculate the binding free
energies between MHC class II molecule and the epitope peptide.
The diagram shows the thermodynamic cycle for the binding of a MHC
class II molecule and a epitope peptide, in both the solvated phase and
in vacuo. The free energy of binding in solvent can be calculated by the
following equation: DDGbind~DGbindzDG

complex
solv {DGMHC

solv {DG
epitope
solv .

doi:10.1371/journal.pone.0009272.g005
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When more than one structure for an allele was considered,

the probabilities p(i,s) in the equation above were calculated as

follows:

p i,sð Þ~
Q(i,s)|w(i,s)P

S

Q(i,s)|w(i,s)½ � ,
P
S

Q(i,s)|w(i,s)½ �=0

0:05, otherwise

8><
>: ð3:2Þ

where Q(i,s) is the number of times residue s is found at position i

in all peptide core sequences in the analyzed structures.

w i,sð Þ~Nav s,ið Þ, if s [ E ið Þ, w i,sð Þ~Nav, if s 6 [ E ið Þ,

where E(i) is a set of amino acids at the position i in all core

sequences from the analyzed structures; Nav(s,i) is an average

number of contacts that amino acid s at the position i makes with

MHC; and Nav is the average of contacts over all residues in all

analyzed structures of peptide:MHC complexes for a particular

allele.

If only one structure was considered for the allele, the

probabilities p(i,s) were calculated using the following equation:

p i,sð Þ~

1

20
| 1{

N i,sð Þ
w

� �
if N i,sð Þƒ w, 0 if N i,sð Þww s 6[E ið Þð Þ;

1

20
| 1z

19N i,sð Þ
w

� �
if N i,sð Þƒ w, 1 if N i,sð Þww s [E ið Þð Þ

8>>><
>>>:

: ð3:3Þ

where N(s,i) is a number of contacts that amino acid s at the

position i of the core makes with the MHC molecule and w is a

free parameter that was taken as equal to the average number of

contacts per residue over all core residues.

Benchmark Data Sets + Performance Evaluation Metrics
The evaluation of methods was performed using HLA

DRB1*0101 binding data described in detail elsewhere [27]. Briefly,

the dataset contains 3,882 experimentally measured peptide:MHC

binding affinities. The binding affinities were expressed in terms of

IC50 values and the experiments were all carried out as described

before [45]. For evaluation purpose, the peptides were classified into

2939 binders (experimental IC50,1000 nM) and 943 non-binders

(experimental IC50. = 1000 nM). The receiver operating charac-

teristic (ROC) curves [46] were used to measure the performance of

prediction algorithms. The ROC curve is generated by plotting the

true positive rate against the false positive rate while changing the

cutoff from the highest to lowest prediction score. The area under the

ROC curve (AUC) can be used to measure prediction performance

where 0.5 is random prediction and 1.0 is perfect prediction. The

actual plotting of ROC curve and calculation of AUC were carried

out with the ROCR [47] package of R [48]. Standard errors for

AUC values were calculated according to [49] as:

SEAUC

~
AUC| 1{AUCð Þz npos{1

� �
| Q1{AUC2
� �

z nneg{1
� �

| Q2{AUC2
� �

npos|nneg

� �0:5 ð4:1Þ

Where AUC is the area under the curve, npos and nneg are the

number of positive and negative binding peptides in the test set

respectively, and Q1 and Q2 are calculated as

Q1~
AUC

2{AUCð Þ and Q2~
2|AUC2

1zAUCð Þ :

Supporting Information

Table S1 Benchmark performance of methods. Columns are:

name of allele, supertype, number of peptides, followed by the

Pearsons correlation between the logarithm of the measured

binding affinity and Modeller energy, pair potential energy based

on Ca, Cb and Cm centre of interaction, respectively. NN refers to

the leave-one-out performance of NetMHCpan taken from Nielsen

et al, 2007 [16]. The pair-potential cutoff values for Ca, Cb and Cm

were 20 Å, 20 Å, and 7.5 Å, respectively (see figure 1).

Found at: doi:10.1371/journal.pone.0009272.s001 (0.08 MB

DOC)

Table S2 Structures of peptide:MHC class II complexes used in

the benchmarking contact-based method.

Found at: doi:10.1371/journal.pone.0009272.s002 (0.04 MB

DOC)

Table S3 The results of the peptide:MHC class II binding

affinity prediction using the contact-based method.

Found at: doi:10.1371/journal.pone.0009272.s003 (0.06 MB

DOC)

Table S4 Number of atomic contacts for peptide core residues in

complexes with HLA-DRB1*0101, counting hydrogen bonds, van

der Waals, and hydrophobic interactions.

Found at: doi:10.1371/journal.pone.0009272.s004 (0.04 MB

DOC)

Table 3. Structural data used throughout this study to derive the MHC class II structure-based binding predictions.

Allele PDB ID Resolution(A) R-Value R-free peptide sequence peptide core
peptide
chain ID

MHC alpha
chain ID

MHC beta-chain
ID

DRB1*0101 2FSE 3.1 0.222 0.295 AGFKGEQGPKGEPG FKGEQGPKG E A B

DRB1*0101 1KLG 2.4 0.206 0.246 GELIGILNAAKVPAD IGILNAAKV C A B

DRB1*0101 1SJE 2.45 0.196 0.223 PEVIPMFSALSEGATP VIPMFSALS C A B

DRB1*0101 1AQD 2.45 0.216 0.279 GSDWRFLRGYHQYA WRFLRGYHQ C A B

DRB1*0101 1T5W 2.4 0.231 0.255 AAYSDQATPLLLSPR YSDQATPLL C A B

DRB1*0101 2G9H 2 0.215 0.252 PKYVKQNTLKLAT YVKQNTLKL C A B

The different columns give the MHC allele name, PDB identifier, resolution of X-ray structure, the R-free structure quality value, the peptide sequence, the peptide
binding core as defined from the crystal structure, followed by the PDB chain ID for the peptide, MHC alpha, and MHC beta chains, respectively.
doi:10.1371/journal.pone.0009272.t003

ð3.3Þ

ð4.1Þ
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Table S5 PDB templates used in homology modeling of the

structures of peptide:MHC-I complexes for the pair potential

method.

Found at: doi:10.1371/journal.pone.0009272.s005 (0.03 MB

DOC)
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