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Machine learning approaches 
to predict gestational age in normal 
and complicated pregnancies 
via urinary metabolomics analysis
Takafumi Yamauchi1, Daisuke Ochi1, Naomi Matsukawa2, Daisuke Saigusa2, Mami Ishikuro2,3, 
Taku Obara2,3, Yoshiki Tsunemoto1, Satsuki Kumatani1, Riu Yamashita4, Osamu Tanabe2,5, 
Naoko Minegishi2, Seizo Koshiba2,6, Hirohito Metoki2,7, Shinichi Kuriyama2,3,8, 
Nobuo Yaegashi2,3,6, Masayuki Yamamoto2,6, Masao Nagasaki9,10, Satoshi Hiyama1 & 
Junichi Sugawara2,3*

The elucidation of dynamic metabolomic changes during gestation is particularly important for the 
development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-
related complications. Some studies have constructed models to evaluate pregnancy status 
and predict gestational age using omics data from blood biospecimens; however, less invasive 
methods are desired. Here we propose a model to predict gestational age, using urinary metabolite 
information. In our prospective cohort study, we collected 2741 urine samples from 187 healthy 
pregnant women, 23 patients with hypertensive disorders of pregnancy, and 14 patients with 
spontaneous preterm birth. Using gas chromatography-tandem mass spectrometry, we identified 184 
urinary metabolites that showed dynamic systematic changes in healthy pregnant women according 
to gestational age. A model to predict gestational age during normal pregnancy progression was 
constructed; the correlation coefficient between actual and predicted weeks of gestation was 0.86. 
The predicted gestational ages of cases with hypertensive disorders of pregnancy exhibited significant 
progression, compared with actual gestational ages. This is the first study to predict gestational age 
in normal and complicated pregnancies by using urinary metabolite information. Minimally invasive 
urinary metabolomics might facilitate changes in the prediction of gestational age in various clinical 
settings.

Pregnancy induces dynamic and temporal changes in maternal physiological  profiles1. Recent reports suggested 
that various omics profiles (e.g., those of transcriptomics, epigenomics, metabolomics, and microbiomics) show 
substantial temporal changes during  pregnancy2–5. Furthermore, changes in omics profiles are associated with 
pregnancy  complications6,7.

To evaluate pregnancy status and predict pregnancy complications, several groups have attempted to charac-
terize normal pregnancy via omics analyses of maternal  biospecimens8–10. Specifically, Liang and colleagues have 
constructed models to predict gestational age based on plasma metabolites at the time of specimen  collection11. 
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The models could predict gestational age with high accuracy (i.e., correlation coefficient of 0.92 between predicted 
and actual gestational ages); those predictive models precisely reflected physiological adaptations in pregnant 
women. However, the models thus far have used omics information collected from maternal blood. Further-
more, there have not been investigations regarding whether predictive models show distinct results in cases with 
pregnancy complications, compared with women who have normal pregnancy. Therefore, less invasive methods 
are desired for the prediction of gestational age in women with normal and complicated pregnancies. Several 
studies have shown that urinary metabolome information is associated with blood metabolome  information12,13. 
Moreover, urine can be collected in a minimally invasive manner at each routine antenatal visit in most clinical 
 settings14.

The present study examined the dynamic urinary metabolomic profiles during pregnancy, then proposed 
a model to predict gestational age by means of urinary metabolomics analysis. Furthermore, by applying the 
predictive model to urinary metabolite data from women who subsequently developed pregnancy complications, 
this study revealed changes in predicted gestational ages, compared with actual ages, in women with complicated 
pregnancies.

Results
Maternal clinical backgrounds. Clinical backgrounds of study participants are shown in Table 1. Among 
the healthy pregnant women, the mean maternal age at the 40th gestational week and the mean pre-pregnancy 
body mass index were 32.7 ± 4.8 years, and 22.2 ± 4.7 kg/m2, respectively. Of the healthy cases, 51% were parous. 
The mean (± standard deviation) gestational age at delivery was 38.6 ± 1.2 weeks.

Compared with healthy pregnant women, the maternal age was higher among subjects with hypertensive 
disorders of pregnancy (HDP), while the gestational ages at delivery were lower in subjects with HDP or spon-
taneous preterm birth (SPTB). No other variables significantly differed between healthy pregnant women and 
subjects with complications.

Urinary metabolite profiles during normal pregnancy. We investigated urinary metabolomic profiles 
during normal pregnancy. Figure 1 shows hierarchical clustering of changes in the levels of urinary metabolites 
in healthy pregnant women (n = 187) during gestation. Relative levels of multiple metabolites changed dynami-
cally according to gestational age. Approximately half of the metabolites were in cluster 1 (upper part of Fig. 1); 
the normalized levels of metabolites in this cluster increased with gestational age (correlation coefficient = 0.86). 
Cluster 1 included comparatively greater proportions of amino acids, peptides, and carbohydrates (Fig. 2, and 
Supplementary Table 1 online); for example, this cluster included sulfur-containing amino acids (e.g., cysteine 
and methionine) and monosaccharides (e.g., glucose and lactose). In contrast, the normalized levels of metabo-
lites in cluster 3 were negatively correlated with gestational age (correlation coefficient = − 0.38). This cluster 
included greater proportions of purines and pyrimidines (e.g., cytosine, thymine, and uracil), compared with 
other clusters. Hydrophilic basic amino acids (e.g., histidine and lysine) were also present in this cluster. In 
contrast to metabolites in clusters 1 and 3, metabolites in cluster 2 did not show a clear linear relationship with 
gestational age (correlation coefficient = 0.24, see Supplementary Fig. 1 online). Comparatively greater propor-
tions of amino acids and fatty acids (e.g., aromatic amino acids and stearic acid) were characteristic of cluster 2.

Predictive model to estimate gestational age. Using urinary metabolites from healthy pregnant 
women, we constructed a predictive model to estimate gestational age at the time of urine collection. Blue dots 
in Fig. 3 show actual and predicted days of gestation when leave-one-out cross validation was performed for each 
healthy pregnant woman. The root mean squared error between the actual and predicted days of gestation was 
26.7, while the Pearson correlation coefficient was 0.86.

Sixty-eight of the 184 metabolites consistently contributed to the predictive model; no metabolite coefficient 
reached zero during leave-one-out cross validation (see Supplementary Table 1 online). The top 10 metabolites 
with the greatest contributions to the predictive model are shown in Table 2. These contributions were evalu-
ated by the absolute values of coefficients. Eight of these 10 metabolites were classified in either cluster 1 or 3 
in Fig. 1. These results indicated that our predictive model successfully selected metabolites that were highly 
correlated with gestational age.

The results of enrichment analysis for the 68 metabolites are shown in Table 3. In cluster 1, metabolites related 
to cysteine metabolism were enriched. The metabolism of homocysteine, which is located upstream of cysteine 

Table 1.  Clinical characteristics of pregnant women in this study. *Categorical or continuous variables were 
compared between the healthy group and either HDP or SPTB groups using Fisher’s exact test or Welch’s t-test, 
respectively. Regarding gestational age at delivery, significant differences (p < 0.05) were observed using the 
Mann–Whitney U test. Data are presented as the mean ± S.D.

Variable Healthy (n = 187) HDP (n = 23) p-value* SPTB (n = 14) p-value*

Age at 40th gestational week, years 32.7 (± 4.8) 35.5 (± 6.1) 0.045 34.1 (± 4.9) 0.33

Pre-pregnancy body mass index, kg/m2 22.2 (± 4.7) 22.4 (± 3.6) 0.78 21.4 (± 4.0) 0.50

Parity 51% 39% 0.38 57% 0.78

Gestational age at delivery, weeks 38.6 (± 1.2) 37.5 (± 2.0) 0.017 35.1 (± 1.4)  < 0.0001
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metabolism, is considered crucial for the maintenance of a healthy  pregnancy15. Metabolites related to vitamin 
and purine metabolic processes were significantly enriched in cluster 3.

Red dots in Fig. 3 indicate gestational age predicted by the model, using metabolite levels in urine samples 
collected after childbirth. Similar to the findings by Ghaemi et al., the predicted gestational age was significantly 
younger when our model was used with urine samples collected after childbirth than when our model was used 
with urine samples collected near  delivery10.

Prediction of gestational age in complicated pregnancies. By entering urinary metabolite data from 
complicated pregnancies into the predictive model, we investigated potential differences in predicted gestational 
age between healthy and complicated pregnancies. After 20 weeks of gestation, the predicted gestational age was 
significantly older in HDP cases than in healthy pregnancies (Fig. 4). Comparison between healthy pregnancies 
and SPTB cases showed no significant differences in predicted gestational age or in metabolite levels (Fig. 4).

To analyze the effects of maternal age on the predictive model, we compared predicted ages between younger 
(< 35 years) and older (≥ 35 years) groups of women with normal pregnancies (see Supplementary Fig. 2 online). 
We found no significant differences between the two groups at any gestational age.

Subsequently, isocitric acid, 3-hydroxy-3-methylglutaric acid, and urocanic acid were identified as urinary 
metabolites that had significant associations with HDP onset (false discovery rate < 0.05) (see Supplementary 
Table 2 online). All three metabolites were classified in cluster 1 (Fig. 1); their urinary concentrations were higher 
in HDP cases than in healthy cases (see Supplementary Table 2 online).

As shown in Fig. 5, the levels of these three metabolites and the predicted gestational age were significantly 
associated with HDP onset at several weeks of gestation. Compared with each of the three metabolites, the pre-
dicted gestational age was more strongly associated with HDP onset.

Figure 1.  Changes in urinary metabolite levels during normal pregnancy. Levels of metabolites in urine 
samples from 187 healthy pregnant women were averaged for each gestational week, standardized by the 
z-score method, and presented as a heatmap. On the left, metabolite types are indicated using red, blue, yellow, 
green, and gray stripes; these indicate “amino acids, peptides, and analogs,” “carbohydrates and carbohydrate 
conjugates,” “fatty acids and conjugates,” “purines, pyrimidines, and their derivatives,” and “others,” respectively.
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Discussion
This study demonstrated dynamic changes in urinary metabolomic profiles during normal pregnancy. By means 
of machine learning algorithms, we constructed a predictive model that used urinary metabolite data to estimate 
gestational age during the progression of normal pregnancy. Moreover, we found that the predicted gestational 
age was significantly older than actual gestational age in cases with HDP.

This is a challenging attempt to predict gestational age in normal and complicated pregnancies by means of 
urinary metabolomics. Although a few studies have analyzed urinary metabolites in pregnant women, fewer 
than 50 metabolites were analyzed in each of those  studies16–18.

We initially analyzed urine samples that were collected longitudinally from 187 healthy pregnant women, 
with the aim of elucidating urinary metabolite profiles during pregnancy. Hierarchical clustering showed that 
urinary metabolites comprised three distinct clusters (Fig. 1). The levels of metabolites contained in cluster 1, 
the largest cluster, increased with gestational age. These increased urinary metabolites during pregnancy might 
reflect the increased those in blood due to the reduction of maternal energy consumption associated with fetal 
and placental  growth19,20. In a previous study, Diaz et al. used untargeted nuclear magnetic resonance-based 
metabolomics to examine temporal changes in the levels of 21 urinary metabolites during pregnancy; they identi-
fied 11 metabolites for which the levels significantly increased from the second trimester to the third  trimester21. 
Three of those 11 metabolites (i.e., alanine, lactic acid, and threonine) were also identified in our study; all were 
included in cluster 1. Monosaccharides (e.g., glucose and lactose) were also included in cluster 1. The increased 
glucose level is consistent with the increased maternal insulin resistance that occurs during  pregnancy22. A 
cohort study of 823 healthy pregnant women also showed similar results with respect to urinary  lactose23. The 
increased lactose level was also present in blood metabolomics analyses; this was presumed to reflect maternal 
physiological changes to enable breastfeeding after  delivery24.

Sixty-eight of the 184 metabolites with dynamic systematic changes consistently contributed to the predictive 
model; the coefficient of each metabolite never reached zero during leave-one-out cross validation. Therefore, 
these 68 metabolites are presumed to strongly reflect the progression of normal pregnancy. Enrichment analysis 
showed that 36 of the 68 metabolites (all in cluster 1) were related to cysteine metabolism. This suggests that 
homocysteine metabolism, which is located upstream of cysteine metabolism, is upregulated to maintain a 
healthy  pregnancy15. Moreover, methionine, which is produced from homocysteine in the methionine cycle, was 
also classified in cluster 1, further supporting the potential upregulation of homocysteine metabolism.

Figure 2.  Proportions of metabolite types in each cluster. Red, blue, yellow, green, and gray sectors indicate 
“amino acids, peptides, and analogs,” “carbohydrates and carbohydrate conjugates,” “fatty acids and conjugates,” 
“purines, pyrimidines, and their derivatives,” and “others,” respectively.
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The levels of metabolites classified in cluster 3 exhibited downward trends during pregnancy. This cluster 
included pyrimidines (e.g., cytosine, thymine, and uracil) and hydrophilic basic amino acids (e.g., histidine 
and lysine). Only a few previous studies have described the roles of, or changes in, these metabolites during 
 pregnancy18,25. Furthermore, enrichment analysis of metabolites selected by the predictive model revealed sig-
nificant enrichment of metabolites related to vitamins in cluster 3. Water-soluble vitamins (e.g.,  B6,  B12, and C) 
play critical roles during pregnancy. For example, vitamin  B12 is an important cofactor for DNA synthesis; it also 
participates in metabolic processes involving amino acids and fatty  acids26. During pregnancy, vitamin  B12 is 
supplied to the fetus by the mother through the placenta; the blood concentration of vitamin  B12 is approximately 
twofold greater in the fetus than in the  mother27. In addition, levels of vitamins  B6,  B12, and C in maternal blood 

Figure 3.  Prediction of gestational age in healthy pregnant women. Blue dots indicate actual days (horizontal 
axis) and predicted days (vertical axis) of gestation when leave-one-out cross validation was performed for 
each healthy pregnant woman using urine samples collected before delivery. Red dots indicate gestational ages 
estimated by the predictive model, which was trained with urine samples before delivery, using metabolite levels 
in samples collected after delivery.

Table 2.  Top 10 metabolites that contributed most to the predictive model.

Metabolite Cluster Coefficient

Threonine 1 0.27

7-Methylguanine 1 0.19

2-Hydroxyglutaric acid 1 0.17

Xanthine 3  − 0.17

Batyl alcohol 1 0.16

3-Hydroxy-3-methylglutaric acid 1 0.16

Acetylglycine 2  − 0.14

5-Oxoproline 3  − 0.13

Spermine 1 0.12

Arginine 2  − 0.11
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have been reported to decrease during  pregnancy27, which is consistent with our results. Because vitamins  B6 
and  B12 are involved in homocysteine metabolism, the results of enrichment analysis for cluster 1 may reflect 
both maternal and fetal metabolism.

Using urinary metabolites, we successfully established a predictive model to estimate gestational age that 
exhibited performance equivalent to that of previously reported models involving plasma  metabolites11. There-
fore, gestational age could presumably be estimated from urinary metabolites. Because urine samples can be 
collected in a minimally invasive manner at each routine antenatal visit in most clinical settings, our results have 
potential clinical applications (e.g., in telemedicine using a medical examination kit).

Table 3.  Top five biofunctions for each cluster annotated by enrichment analysis of 68 metabolites.

Biofunction p-value False discovery rate

Cluster 1

Components of cysteine metabolism 4.0e–10 1.8e–08

Components of arginine and proline metabolism 2.1e–08 4.9e–07

Components of nitrogen metabolism 2.9e–07 4.4e–06

Components of glutamate metabolism 2.1e–06 2.4e–05

Components of glycine, serine, and threonine metabolism 5.9e–06 5.5e–05

Cluster 2

Components of glycine, serine, and threonine metabolism 1.9e–07 4.7e–06

Essential amino acids 2.9e–06 3.5e–05

Components of aminoacyl-tRNA biosynthesis 8.9e–06 5.3e–05

Components of cysteine metabolism 6.8e–06 5.3e–05

Semi-essential amino acids 5.4e–04 2.6e–03

Cluster 3

Vitamins 1.0e–06 1.8e–05

Essential amino acids 9.1e–06 6.2e–05

Essential vitamins 1.0e–05 6.2e–05

Components of purine metabolism 7.3e–05 3.3e–04

Vitamins (Vitamin C) 6.6e–04 2.2e–03

Figure 4.  Comparison of predicted gestational ages among healthy, SPTB, and HDP cases. Asterisks indicate 
statistically significant differences by Welch’s t-test (p < 0.05) between healthy cases and those with pregnancy 
complications.
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Our predictive model mainly uses metabolites that demonstrate linear changes in levels during pregnancy. 
However, some metabolites demonstrate non-linear changes in levels (see Supplementary Fig. 1 online). For 
example, fatty acids play important roles in normal pregnancy; fatty acids reportedly accumulate in the mother 
during the first and second trimesters, then are released in the third  trimester28. In the present study, many fatty 
acids were classified in cluster 2, such that they did not extensively contribute to the predictive model. However, 
the incorporation of metabolites with complex behaviors into our predictive model might enable more accurate 
prediction of gestational age.

Clinically, diagnosis of gestational weeks is conducted by using information regarding the last menstrual 
periods or fetal ultrasound findings at the early stage of pregnancy. This clinical information is sometimes inac-
curate or inaccessible even in developed  countries29–31. Therefore, estimation of gestational weeks by minimally 
invasive procedures is needed for various clinical settings in obstetrics, including determination of the due date, 
preterm birth and fetal growth. Taken together, our prediction model constructed by urinary metabolomics may 
provide useful clinical information for estimating gestational weeks in a variety of clinical settings.

The predicted gestational age was significantly older in cases who subsequently developed HDP. This result 
might be due to the presence of circulating metabolites caused by premature placental  aging32. Premature pla-
cental aging associated with elevated oxidative stress and mitochondrial damages is known to cause placental 
insufficiency leading to HDP, including  preeclampsia32–34. Urinary metabolite profiles also reportedly change with 
cellular  senescence35. Therefore, the older predicted gestational age in the HDP cases, which implies aberrant 
acceleration of pregnancy, might be caused by changes in the urinary metabolite profile due to placental aging.

Importantly, we identified metabolites that were associated with the onset of HDP. For example, the increased 
level of 3-hydroxy-3-methylglutaric acid was significantly associated with the onset of HDP. In a rat model, 
3-hydroxy-3-methylglutaric acid was able to induce physiological oxidative  stress36. In addition, Nemeth et al. 
reported that the onset of HDP, including gestational hypertension, is related to increased maternal oxidative 
 stress37. They indicated that insufficient capacity for glutathione recycling in patients with HDP might lead to 
reduced protection against oxidative stress. Furthermore, elevated oxidative stress is regarded as a manifesta-
tion of preeclampsia; for example, in the placentas of patients with preeclampsia, increased lipid peroxidation 
and decreased activities of some antioxidant enzymes have been  identified38. Our results are suggestive of such 
physiological aberrations.

The increased levels of isocitric and urocanic acids also showed significant associations with HDP onset. 
Although isocitric acid is a component of the tricarboxylic acid cycle, the level of succinic acid (located down-
stream of isocitric acid) did not significantly differ between the healthy and HDP groups. This suggests reduced 
conversion of isocitric acid to oxalosuccinic acid, which requires nicotinamide adenine dinucleotide  (NAD+). 
Therefore, the cellular  NAD+ level may be reduced in cases who develop  HDP39. Because  NAD+ is required for 
DNA repair, DNA damage in the placenta caused by elevated oxidative stress associated with HDP might lead 
to a reduction of the  NAD+/NADH  ratio40. Urocanic acid is a histidine metabolite and a major component 
of ultraviolet light absorption in the skin. Its concentration in the plasma is reportedly elevated in cases with 
 preeclampsia41, in agreement with our results.

In this study, we demonstrated that the predicted gestational age calculated by combining multiple metabolite 
levels could more accurately predict the onset of HDP, compared with each metabolite level alone (Fig. 5). This 
finding suggests that a combination of metabolites—each with weak explanatory power—could more accurately 
predict the risk, compared with individual metabolites; this was similar to the previously described polygenic 
risk score, which comprised the weighted sum of alleles associated with some  traits42.

There were no significant differences in predicted gestational age or the levels of metabolites between the 
healthy and SPTB groups. Previous studies reported an association between urinary phthalate metabolites and 
 SPTB43,44. Unfortunately, the metabolites could not be detected by gas chromatography-tandem mass spectrom-
etry (GC–MS/MS) in our study. Although associations between maternal urinary or blood metabolites and 
SPTB development have rarely been described, various metabolites in cervicovaginal fluid, amniotic fluid, and 

Figure 5.  Statistical analyses of associations of urinary metabolites or predicted gestational age with HDP onset. 
Urinary levels of isocitric acid, 3-hydroxy-3-methylglutaric acid, and urocanic acid, as well as the predicted 
gestational age, were significantly associated with HDP onset at several weeks of gestation. p-values calculated 
by the Wald test, adjusted for maternal age and urine type, are shown as a heatmap for each gestational week. 
Asterisks in panel A indicate statistical significance (p < 0.05).
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neonatal urine are reportedly associated with  SPTB45–47. SPTB often involves inflammatory changes caused by 
local bacterial infection in organs or tissues such as the vagina, decidua, placenta, and amniotic  cavity48. There-
fore, manifestations of SPTB may not be detected with urinary metabolites.

The present study had several limitations. First, all study participants were recruited at a single facility in 
Japan; therefore, our predictive model must be validated in independent facilities and in cohorts of patients 
with different  ethnicities49. Second, we studied physiological changes in pregnant women solely on the basis 
of urinary metabolites; thus, comprehensive analyses that consider other omics data are warranted. In a previ-
ous prospective cohort study (i.e., the Maternity Log [MLOG] study), we obtained multi-omics information 
including the plasma metabolome, blood transcriptome, and urinary  metabolome49. We hope that the validity 
of our predictive model will be verified by the analysis of relationships among urinary metabolites and other 
multi-omics data in the future. Third, the number of healthy pregnant women available for construction of the 
predictive model in this study was insufficient. In the TMM BirThree Cohort Study, which is a parent cohort 
of the MLOG study, 23,406 pregnant women were  recruited50,51; moreover, urine samples were collected twice 
during pregnancy from each participant for use in the quantification of urinary metabolites. Urinary metabolite 
information from a very large number of pregnant women could further elucidate metabolomic changes during 
pregnancy; this might improve the predictive performance of our model. Finally, only relative quantification of 
metabolites was performed in this study. For metabolites that were found to have a significant association with 
the onset of HDP, we plan to increase the reliability of the evidence by absolute quantification in the near future.

In conclusion, we demonstrated dynamic changes in urinary metabolomic profiles of 184 metabolites during 
pregnancy, a predictive model was constructed by using urinary metabolite information to estimate gestational 
age at the time of urine specimen collection. The results suggested that urinary metabolite information is useful 
for understanding the normal progression of pregnancy, as well as for predicting the development of pregnancy 
complications. Minimally invasive urinary metabolomics might lead to breakthroughs in the analysis and man-
agement of healthy and complicated pregnancies in various clinical settings in the future.

Methods
Study setting. In total, 302 pregnant women were recruited at Tohoku University Hospital, Sendai, Japan, 
between September 2015 and November 2016; these women were previously included in the MLOG  study49, 
which is an add-on study to the TMM BirThree Cohort  Study50,51. Written informed consent was obtained from 
all participants by the genome medical research coordinators. The MLOG study was conducted under a col-
laborative research agreement among Tohoku Medical Megabank Organization, Tohoku University, and NTT 
DOCOMO, Inc. (Tokyo, Japan) and all procedures were in accordance with the Declaration of Helsinki. The 
study protocol was approved by the ethics committees of the Graduate School of Medicine (2014-1-704) and 
Tohoku Medical Megabank Organization (22017-1-085) at Tohoku University.

As shown in Supplementary Fig. 3 online, 187 healthy pregnant women were selected from the 302 recruited 
subjects; the data from these 187 women were used for the construction of a model to predict gestational age. 
Healthy pregnant women were defined as subjects who had a singleton pregnancy, gave birth at term, and did not 
develop any pregnancy complications. With respect to pregnancy complications observed in this study, 23 sub-
jects developed HDP (excluding those with chronic hypertension) and 14 subjects gave SPTB. HDP was defined 
as gestational hypertension, preeclampsia, or superimposed preeclampsia, excluding chronic  hypertension52,53. 
SPTB was defined as spontaneous labor at fewer than 37 weeks of gestation, excluding delivery by cesarean 
section.

Urine collection. Either early morning first urine or spot urine specimen (10 mL) was collected at each 
antenatal visit; 12 samples were obtained from each subject. In total, 2741 urine samples were collected from 
healthy, HDP, or SPTB cases (2140 early morning first urine and 601 spot urine samples). All samples were 
stored at − 80 °C immediately after collection, then subjected to GC–MS/MS analysis.

Chemical reagents. The following chemical reagents were used in this study: pyridine (Cat. No. Q003, 
Tokyo Chemical Industry Co. Ltd., Tokyo, Japan), methanol (Cat. No. 25185-76, Kanto Kagaku, Tokyo, Japan), 
chloroform (Cat. No. 07278-79, Kanto Kagaku), water (MilliQ, Millipore, Burlington, MA, USA), 2-isopropyl 
malic acid (Cat. No. 333115-100MG, Sigma-Aldrich, St. Louis, MO, USA), methoxyamine hydrochloride (Cat. 
No. 226904-25G, Sigma-Aldrich), and N-methyl-N-(trimethylsilyl) trifluoroacetamide (Cat. No. 1022-11061, 
GL Science, Saitama, Japan).

GC–MS/MS analysis. To determine metabolite levels in maternal urine samples, GC–MS/MS analysis was 
performed using a previously described  method49,54. The urine metabolites were extracted by a robotic system 
(Microlab STARlet Robot System, Hamilton, Reno, NV, USA). Fifty microliter of each urine sample was added 
to 260 μL of extraction solvent, consisting of chloroform/methanol/water/internal standard solution at a ratio 
of 1/2.5/1/0.18 (vol/vol/vol/vol); the internal standard solution contained 0.5  mg/mL 2-isopropylmalic acid. 
Each sample was shaken at 37 °C for 30 min, then centrifuged at 6231×g for 5 min at 4 °C. The supernatant was 
transferred to a 1.5-mL tube and lyophilized with a freeze-drying system (FDS-1000, EYELA, Tokyo, Japan). For 
the first derivatization, the residue was resuspended using 20 mg/mL methoxyamine hydrochloride in pyridine 
(80 μL) at 37 Hz for 20 min in an ultrasonic bath (UT-10, Sharp, Osaka, Japan); it was incubated at 1200 rpm 
for 90 min at 30 °C. After centrifugation at 16,000×g for 3 min at 4 °C, the supernatant (40 μL) was transferred 
to a glass vial and placed on the multifunctional autosampler system (AOC6000, Shimadzu, Kyoto, Japan). The 
metabolites in the sample were automatically derivatized with 20 μL of N-methyl-N-(trimethylsilyl)trifluoro-
acetamide using the multifunctional autosampler. The sample was then analyzed with gas chromatography triple 
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quadrupole mass spectrometry (TQ-8040, Shimadzu). The sample (1 μL) was exposed to an injector (split ratio 
30:1); the targeted analytes, including 2-isopropylmalic acid (internal standard), were separated using a capillary 
column (BPX5: 30-m length, 0.25-μm film thickness, 0.25-mm inner diameter; Cat. No. SGE054101, Shimadzu 
GLC Ltd., Tokyo, Japan) under helium gas with constant linear velocity of 39.0 cm/sec. The inlet temperature 
was set to 250 °C; the oven temperature was initially set to 60 °C for 2 min, then changed to 330 °C at a rate 
of 15 °C/min, and finally maintained at this temperature for 3 min. The electron ionization voltage, ion source 
temperature, and MS interface temperature were 70 eV, 200 °C, and 280 °C, respectively. The metabolites were 
identified with the Smart Metabolites Database (Shimadzu) and the peak area was calculated by Traverse MS 
(Reifycs, Tokyo, Japan). To adjust for measurement errors during each GC–MS/MS analysis, normalization was 
first conducted using 2-isopropylmalic acid as an internal standard added to each sample (see Supplementary 
Fig.  4 online). Normalization was repeated using quality control samples (see Supplementary Fig.  4 online) 
mixed second-trimester human urine (IR100040-Donor-HG, Innovative Research, Inc., Novi, MI, USA), third-
trimester human urine (IR100041-DONOR-JT, Innovative Research, Inc.), and our study urine samples, which 
were injected at intervals of 12 study samples, in accordance with the reference quality control  method55. Nor-
malized levels of metabolites in the quality control samples were assessed by calculating coefficients of variation; 
metabolites with coefficients of variation > 20% were eliminated. Finally, 184 metabolites fulfilled the criteria of 
the second normalization. Thereafter, to avoid the dilution effect of urine, the levels of those metabolites were 
compensated by creatinine concentration in the samples measured by a biochemical test (Detaminer-L CRE, 
Hitachi Chemical Diagnostics Systems Co., Ltd., Tokyo, Japan).

Data analysis. To investigate the profiles of urinary metabolites during normal pregnancy, we determined 
the average level of each metabolite according to gestational age in healthy pregnant women. The average levels 
were standardized for each metabolite by the z-score method, then subjected to hierarchical clustering analysis 
and trend analysis. The Ward variance minimization algorithm was selected for the clustering  analysis56.

Subsequently, using the levels of urinary metabolites in healthy pregnant women, we constructed a predic-
tive model to estimate gestational age at the time of urine collection. Elastic net regression was used for model 
construction, with the objective variable as the gestational age (days) and the explanatory variable as the loga-
rithmic level of each of 184 metabolites. Elastic net regression has a substantial learning ability for features with 
multicollinearity, such as omics  data10. The logarithms of metabolite levels were used to reduce the effects of 
outliers. Leave-one-out cross validation was performed; the data of one healthy pregnant woman were used as 
the test data, and after learning with the data of others, prediction was performed for the test data. This cycle was 
repeated according to the number of healthy pregnant women (n = 187). Then, the predictive performance of all 
combined test data was evaluated by the root mean squared error and Pearson correlation coefficient between 
actual and predicted gestational age.

Using the MBROLE 2.0 web-based analysis  tool57, we performed enrichment analysis for 68 metabolites that 
consistently contributed to the prediction; no metabolite coefficient in the model reached zero during 187 cycles 
in the leave-one-out cross validation. Enrichment analysis was performed for each metabolite cluster, targeting 
the biofunctions defined by Human Metabolome  Database58.

Finally, by entering urinary metabolite data from HDP or SPTB cases into the model constructed by data 
from all healthy pregnant women in this study, we examined whether outputs significantly differed between 
healthy and complicated pregnancies.

For 68 metabolites, we also identified those that were associated with the onset of HDP. The association 
between the onset and each metabolite according to gestational age was confirmed by using the Wald test for 
logistic regression, with the onset of HDP as the objective variable (i.e., healthy = 0 and HDP = 1) and the level 
of each metabolite as the explanatory variable.

Principal component analysis (PCA) of 2741 urine samples revealed significant differences between early 
morning first urine and spot urine samples with respect to both first and second principal components (see 
Supplementary Figs. 5 and 6 online). Therefore, when constructing our predictive model for gestational age, 
we used the levels of urinary metabolites in healthy pregnant women, as well as their urine sample types (i.e., 
early morning urine = 0 and spot urine = 1). In hierarchical clustering analysis, we used only early morning 
urine samples; these are less likely to be affected by each subject’s lifestyle or behavior. Furthermore, we found a 
significant difference in maternal age between healthy and HDP cases (Table 1). Therefore, to exclude the effects 
of maternal age and urine type, we evaluated the association between each metabolite and the onset of HDP 
by using the Wald test for logistic regression, with maternal age and urine type as covariances. Considering the 
number of metabolites (n = 68), we used the Benjamini–Hochberg method to compensate for multiple Wald 
tests. Metabolites with a false discovery rate of less than 0.05 at any one gestational week were defined as those 
significantly associated with HDP.

Python libraries as follows; (1)  Seaborn59, (2) Scikit-learn60, and (3)  Statsmodels61, were used for (1) the hier-
archical clustering analysis and each figure visualization, (2) the trend analysis, predictive model construction 
and PCA, and (3) the Wald test for logistic regression, respectively.

Data are presented as the mean ± S.D. (standard deviation) unless otherwise indicated. Computational 
resources were provided by the Tohoku Medical Megabank Organization supercomputer system.
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