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MicroRNA-196a regulates bovine newborn ovary
homeobox gene (NOBOX) expression during early
embryogenesis
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Abstract

Background: Oocyte-derived maternal RNAs drive early embryogenesis when the newly formed embryo is
transcriptionally inactive. Recent studies in zebrafish have identified the role of microRNAs during the maternal-to-
embryonic transition (MET). MicroRNAs are short RNAs that bind to the 3’ UTR of target mRNAs to repress their
translation and accelerate their decay. Newborn ovary homeobox gene (NOBOX) is a transcription factor that is
preferentially expressed in oocytes and essential for folliculogenesis in mice. NOBOX knockout mice are infertile
and lack of NOBOX disrupts expression of many germ-cell specific genes and microRNAs. We recently reported the
cloning and expression of bovine NOBOX during early embryonic development and our gene knockdown studies
indicate that NOBOX is a maternal effect gene essential for early embryonic development. As NOBOX is a maternal
transcript critical for development and NOBOX is depleted during early embryogenesis, we hypothesized that
NOBOX is targeted by microRNAs for silencing and/or degradation.

Results: Using an algorithm “MicroInspector”, a potential microRNA recognition element (MRE) for miR-196a was
identified in the 3’ UTR of the bovine NOBOX mRNA. Expression analysis of miR-196a in bovine oocytes and during
early embryonic development indicated that it is expressed both in oocytes and embryos and tends to increase at
the four-cell and eight-cell stages. Ectopic expression of NOBOX and miR-196a in HeLa cells inhibited the
expression of NOBOX protein compared to the control cells without miR-196a. Similarly, the activity of a luciferase
construct containing the entire 3’ UTR of bovine NOBOX was suppressed, and the regulation was abolished by
mutations in the miR-196a binding site indicating that the predicted MRE is critical for the direct and specific
binding of miR-196a to the NOBOX mRNA. Furthermore, ectopic expression of miR-196a mimic in bovine early
embryos significantly reduced the NOBOX expression at the both mRNA and protein levels.

Conclusion: Collectively, our results demonstrate that miR-196a is a bona fide negative regulator of NOBOX during
bovine early embryogenesis.
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Background
The earliest stages of embryonic development in verte-
brates primarily rely on the maternal RNA and proteins
synthesized during oogenesis [1,2]. The period of mater-
nal control of embryonic development varies among spe-
cies according to the onset of embryonic genome
activation and the degradation of maternal gene products

[3]. The major onset of embryonic genome activation
begins during the two-cell stage in mice; the four-cell
stage in humans, rats and pigs, and during the eight-cell
to 16-cell stage in cattle and sheep [4]. Upon fertilization,
in mouse embryos, 90 percent of the maternal mRNA is
degraded by the two-cell stage, coincident with the com-
plete activation of the embryonic genome [5,6]. There is
direct evidence that maternal mRNA clearance is critical
for early embryonic development. For example oocyte-
specific c-mos mRNA, essential for regulating meiotic
arrest at metaphase, is degraded soon after fertilization
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and injection of c-mos protein into Xenopus two-cell
embryos induces cleavage arrest [7]. In mouse, maternal
mRNA degradation is dependent on the 3’ untranslated
region (3’ UTR) of the mRNA transcript. For example,
chimeric mRNAs composed of the c-mos coding region
fused to the hypoxanthine phosphoribosyltransferase
(Hprt) 3’ UTR have reduced rates of degradation follow-
ing microinjection into mouse fertilized oocytes [8]. Thus
degradation of maternal mRNAs is critical to embryogen-
esis and represents a conserved mechanism of vertebrate
development.
Multiple negative regulatory mechanisms are critical

for post-transcriptional regulation of maternal tran-
scripts, such as transcript deadenylation and interaction
with RNA-binding proteins in a nonspecific or
sequence-specific fashion [9]. Recent studies in zebrafish
have established a role for microRNAs (miRNA) as key
regulatory molecules targeting maternal mRNA for
degradation during the maternal-to-embryonic transition
(MET) [10]. MicroRNAs are endogenous small noncod-
ing RNAs that bind primarily to the 3’ UTR of target
mRNAs to repress their translation and accelerate their
decay [11]. The majority of miRNAs are evolutionarily
conserved across species boundaries and play essential
roles in regulating many distinct processes such as ani-
mal development and growth, cell differentiation, signal
transduction, cancer, disease, virus immune defense,
programmed cell death, insulin secretion and metabo-
lism [12-14].
In recent years, several studies have revealed the sig-

nificance of miRNAs in reproduction and embryonic
development. For example, targeted disruption of Dicer,
a key enzyme involved in miRNA processing and the
synthesis of small interfering RNAs from long double-
stranded RNA [15,16] in mice and zebrafish resulted in
embryonic lethality due to abnormalities in morphogen-
esis, cell division and chromosome organization [17-21].
In zebrafish, miR-430 has been linked to maternal
mRNA decay accompanying the maternal-to-embryonic
transition [10]. At the onset of embryonic genome acti-
vation, the level of miR-430 substantially increases and
the miRNA targets several hundred maternally provided
mRNAs by binding to the complementary sites in their
3’ UTR and promotes their deadenylation [10]. Further-
more, miR-196a regulates mammalian development via
targeting homoeobox clusters [22] and misexpression of
miR-196a leads to specific eye anomalies in a dose-
dependent manner in Xenopus laevis [23].
Newborn ovary homeobox gene (NOBOX) is a tran-

scription factor, identified by in silico subtraction of
expressed sequence tags (ESTs) derived from newborn
ovaries in mice [24]. NOBOX mRNA and protein are
preferentially expressed in oocytes throughout folliculo-
genesis [25]. Nobox knockout mice are infertile due to

disrupted folliculogenesis and expression of many germ-
cell specific genes and miRNAs is perturbed in such ani-
mals [25,26]. Furthermore, mutations in the NOBOX
gene associated with premature ovarian failure have
been described in humans [27,28]. We recently estab-
lished a key role for NOBOX in bovine early embryonic
development [29]. Bovine NOBOX is stage-specifically
expressed during oocyte maturation and early embryo-
nic development and of maternal origin. Depletion of
NOBOX in bovine zygotes by siRNA microinjection
impaired embryo development to the blastocyst stage.
Furthermore, knockdown of NOBOX affected the
expression of genes from the embryonic genome critical
to early development and expression of pluripotency
genes was altered in the inner cell mass of NOBOX
siRNA injected embryos that reached the blastocyst
stage. However, despite its established role in folliculo-
genesis and early embryonic development, the post-
transcriptional regulation of NOBOX has not been
investigated. Given the importance of NOBOX, as a
maternal transcript critical for development, and
observed depletion of NOBOX during MET, we
hypothesized that NOBOX is targeted by miRNAs for
silencing and/or degradation in early embryos. In this
study we identified a miRNA (miR-196a) targeting
bovine NOBOX, examined the temporal expression of
miR-196a during bovine early embryonic development
and determined the effect and specificity of miR-196a in
regulating bovine NOBOX expression both exogenously
(HeLa cells) and endogenously in early embryos.

Results and Discussion
miR-196a binds to the 3’ UTR of bovine NOBOX
MicroRNAs regulate mRNA translation rate by perfect
or imperfect base pairing with the 3’ UTR regions of
their targets [30]. It has been predicted that one
miRNA can potentially regulate translation of up to a
hundred mRNAs, which creates a challenge for experi-
mentally validating miRNA-specific targets [31]. To
identify miRNAs that potentially regulate NOBOX
expression, we analyzed the 3’ UTR sequence of bovine
NOBOX using the “Microinspector” algorithm to pre-
dict potential miRNA target sites [32]. miR-196a was
chosen for further studies, because the predicted MRE
in the bovine NOBOX 3’ UTR had a low predicted free
energy of hybridization with the cognate miRNA (-19.8
kcal/mol), suggesting a stable miRNA: mRNA duplex
within the 9 nucleotide (nt) seed region at the 5’ end of
the miRNA (Figure 1). This seed sequence is an impor-
tant determinant of miRNA-induced repression of gene
expression [33]. RNA secondary structure prediction
analysis using Mfold [34] revealed that the apparent
miR-196a binding site was positioned on a hairpin-loop
structure, in an exposed position, which might facilitate
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miRNA accessibility. In addition, when the NOBOX
sequence was analyzed with other miRNA target predic-
tion algorithms, miR-196a always was listed as a top
candidate miRNA, further indicating that miRNA-196a
might be a potential post-transcriptional regulator of
NOBOX in early embryos. The lack of conservation of
miR-196a recognition sequence in bovine NOBOX
might be due to the rapid drifting of 3’ UTR during
evolution [31,35]. Furthermore, it has been reported
that a large fraction of bona fide targets of microRNA
would be missed [10,31,36] if evolutionary conservation
were used as the sole criterion for predicting targets.
Moreover, recent studies support a functional role for
this specific miRNA as miR-196a targets specific
homeobox genes (HoxB8, HoxC8, HoxD8 and HoxA7)
in mouse embryos and mammalian cells and plays a
major role in animal development [22]. Thus, the func-
tional role of miR-196a in regulation of NOBOX was
further investigated.

miR-196a is spatio-temporally regulated during
development
To determine the tissue specific expression pattern of
miR-196a, quantitative real-time PCR was performed.
As shown in Figure 2A, miR-196a is expressed predomi-
nantly in kidney; it is also detected significantly in fetal
and adult ovary, brain and hypothalamus. A similar
expression pattern was observed in mice where miR-
196a is enriched in the kidney and adult reproductive
tissues [37]. In order to examine if miR-196a expression
is inversely correlated to bovine NOBOX expression
during early embryonic development, we analyzed miR-
196 expression during oocyte maturation and early

embryogenesis. Expression analysis indicates that bovine
miR-196a is increased in four-cell and eight-cell stage
embryos relative to germinal vesicle stage oocytes and
declines at morula and blastocyst stages (Figure 2B).
The increased expression level of miR-196a near the
eight-cell stage of embryogenesis potentially indicates
miR-196a involvement in maternal transcript degrada-
tion during the maternal-to-zygotic transition, as was
observed for miR-430 in zebrafish [10] miR-427 in
Xenopus [38] and miR-290 in mouse [20]. Moreover,
when the spatio-temporal expression pattern of miR-
196a is compared with the expression pattern of bovine
NOBOX during early embryogenesis, miR-196a expres-
sion increases steadily from two-cell to eight-cell stage
of embryogenesis, while NOBOX expression decreases
gradually during the same period [29]. Thus, the inverse
relationship between miR-196a and NOBOX expression/
activity supports the proposed role of miR-196a as a
physiological regulator of NOBOX during early
embryogenesis.

miR-196a specifically suppresses the expression of bovine
NOBOX
To confirm the binding of miR-196a to bovine NOBOX
in vitro, HeLa cell transfection studies were conducted.
A significant inhibition of NOBOX expression was
observed in HeLa cells ectopically expressing both
NOBOX and miR-196a (Figure 3A) relative to cells
transfected with NOBOX alone. Semi-quantitative analy-
sis of western blot data showed a significant inhibition
of NOBOX expression in the miR-196a-transfected cells
(Figure 3B). These results unequivocally show that
bovine NOBOX is regulated at the post-transcriptional

Figure 1 Prediction of a miR-196a binding site in the 3’ UTR of bovine NOBOX mRNA. The predicted miR-196a binding site is underlined.
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level by miR-196a and further supports the hypothesis
that miR-196a is responsible for the negative regulation
of NOBOX.
Furthermore, luciferase reporter assays were per-

formed to validate specificity of the miR-196a regulation
of NOBOX through the predicted miR-196a recognition
sequence in the 3’ UTR of NOBOX. NOBOX 3’ UTR
sequence was inserted downstream of the firefly lucifer-
ase coding region. Mutations in the predicted MRE in

the 3’ UTR of the NOBOX for miR-196a were created
such that interaction between miR-196a and NOBOX is
compromised (Figure 4A). Ectopic expression of miR-
196a by transfection of miR-196a duplex into the HeLa
cells suppressed activity of a chimeric luciferase con-
struct containing the miR-196a MRE of NOBOX at its
3’ end (Figure 4B). Luciferase activity was restored when
a four-base mismatch mutation was introduced into the
seed region of the miRNA-196a recognition sequence in

A B

Figure 2 Spatial and temporal expression profile of miR-196a. (A) Tissue distribution of miR-196a analyzed by quantitative real-time PCR.
Quantity of miRNA-196a was normalized to abundance of RPS18 mRNA and abundance expressed as relative fold change using the sample
with the lowest value as the calibrator (n = 4 per tissue; mean ± SEM depicted). (B) Relative abundance of miR-196a in bovine oocytes and in
vitro produced bovine early embryos (n = 4 pools of five oocytes/embryos each). Quantity of miRNA was normalized relative to abundance of
miR-125b. The relative amount of miR-196a was expressed as relative fold change using the sample with the lowest value as the calibrator (n =
4, mean ± SEM). Different letters indicate statistical difference (P < 0.05).

A B

Figure 3 Regulation of bovine NOBOX expression by miR-196a in vitro in HeLa cells. (A) Representative Western blot showing specific
suppression of bovine NOBOX by miR-196a in HeLa cells. b-Actin was used as loading control. The experiment was repeated four times with similar
results, and a representative experiment is shown. (B) Semi-quantitative analysis of miRNA-196a regulation of NOBOX expression in transfected HeLa
cells. Abundance of NOBOX protein in each sample was determined by densitometry and normalized relative to abundance of b-Actin protein
(control). Data are expressed as mean relative pixel density (n = 4 mean ± SEM). Different letters indicate statistical difference (P < 0.05).
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the NOBOX 3’ UTR (Figure 4B). These data indicate the
predicted MRE is critical for the direct and specific
binding of miR-196a to NOBOX transcript.

miR-196a represses endogenous NOBOX in bovine early
embryos
Since we determined in heterologous systems that miR-
196a is capable of regulating NOBOX expression
through direct binding to the 3’ UTR of its mRNA, the
ability of miR-196a to regulate endogenous NOBOX
expression in early embryos was determined. Microin-
jection of miRNA mimics into zygotes has been utilized
previously as a tool to determine effects of overexpres-
sion of specific miRNAs in mouse and zebrafish
embryos [39-41]. Ectopic expression of miR-196a mimic
in bovine embryos effectively reduced NOBOX protein
expression in eight-cell embryos compared to uninjected
and the negative control miRNA-injected embryos (Fig-
ure 5A). Furthermore, recent studies have suggested
that miRNAs not only inhibit productive translation but
also accelerates target mRNA decay [42,43]. Microinjec-
tion of miR-196a mimic in bovine embryos significantly
reduced NOBOX mRNA levels in eight-cell embryos by

more than 80% relative to uninjected and negative con-
trol miRNA-injected embryos (Figure 5B).
The degradation of the untranslated maternal RNA

pool is very critical to early embryonic development [1].
The translation potential of a maternal mRNA transcript
is affected by the length of the poly (A) tail as it confers
mRNA stability and stimulates translation via interaction
of poly (A) binding protein (PABP) with the 5’ m7G cap
[44,45]. Moreover, maternal mRNAs are dependent on
post-transcriptional and post-translational mechanisms
to regulate their activity, as they cannot be repressed at
the transcriptional level [9,46]. Recent studies in zebra-
fish and Xenopus found that miRNAs promote deadeny-
lation of target mRNAs and induce maternal mRNA
degradation/clearance during early embryogenesis
[10,38], indicating that miRNA-induced clearance of
maternal mRNAs might be a universal mechanism dur-
ing MET. Thus, a similar mechanism is likely to be
involved in the miR-196a negative regulation of
NOBOX expression in bovine embryos during MET.
miR-196a is an evolutionary conserved miRNA that

has been identified in a wide range of vertebrate species.
It is expressed from intergenic regions of HOX gene
clusters, and targets several HOX genes in these clus-
ters, which are known to play crucial roles during devel-
opment [22,47,48]. Recent studies showed that 75% of
tumors express high levels of miR-196a and miR-196a is
involved in regulating key pathways such as AKT signal-
ing, p53 and WNT signaling pathways [49,50]. It has
also been reported that miR-196a is differently regulated
during polycystic kidney disease suggesting that miR-
196 is important for normal functioning of kidney [51].
The involvement of miR-196a in regulating the expres-
sion of NOBOX supports a new role of this miRNA in
early embryonic development during MET.

Conclusions
Collectively, our results demonstrate the ability of miR-
196a to negatively regulate NOBOX expression in a
sequence specific fashion and the ability of miR-196a to
suppress NOBOX mRNA and protein in early embryos.
Future studies of interest will investigate whether loss of
miR-196a has any effect on the early embryonic devel-
opment and identify putative miR-196a targets by next
generation sequencing analysis of miR-196a depleted
and wild type embryos.

Methods
Bioinformatics Analysis
To examine the possibility of NOBOX regulation by
miRNAs, we searched for potential microRNA recogni-
tion elements (MRE) in the NOBOX 3’ UTR using
Microinspector http://bioinfo.uni-plovdiv.bg/microin-
spector/, an algorithm for detection of possible

A

B

Figure 4 miR-196a specifically binds to the 3’ UTR of bovine
NOBOX and regulates its expression. (A) Schematic of the
luciferase reporter constructs used to demonstrate sequence
specificity in recognition sequence in bovine NOBOX 3’ UTR
mediating miR-196a mediated repression. Nucleotides changed to
generate the target site mutant 3’ UTR are underlined (B) Repression
of luciferase activity due to specific interaction between miR-196a
and the predicted MRE in the luciferase-NOBOX-3’ UTR constructs.
Repression of luciferase reporter gene activity by miR-196a was
abolished when the MRE was mutated. Data is presented as relative
firefly luciferase units (RLUs). Relative firefly luciferase values were
determined by a ratio of firefly to renilla luciferase with the negative
control (cells transfected with native NOBOX-3’ UTR construct alone)
set at 1. Each group represents the mean ± SEM of four wells for an
experiment repeated four times with similar results. Different letters
indicate statistical difference (P < 0.05).
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interactions between miRNAs and target mRNA
sequences [32].

Tissue collection, RNA isolation and microRNA expression
analysis
Bovine tissue sample collection, total RNA isolation and
miRNA expression analysis in multiple tissues, oocytes
and early embryos were performed as described pre-
viously [52].

Plasmid construction
The full-length bovine NOBOX mRNA sequence was
amplified from bovine adult ovary cDNA samples by
PCR using gene-specific primers containing restriction
sites BamHI/XhoI (Additional file 1, Table 1 for the list
of primer sequences). The PCR product was digested
with BamHI and XhoI enzymes and subsequently
cloned into pcDNA3.1 (Invitrogen, Carlsbad, CA) vec-
tor digested with the same enzymes. pcDNA3.1: miR-
NA196a was constructed by PCR amplifying a ~220nt
region of genomic sequence surrounding pre-miR-196a
from bovine genomic DNA sample using primers con-
taining restriction sites BamHI/XhoI (Additional file 1,
Table 1 for the list of primer sequences). The PCR
product was digested and subsequently cloned into

pcDNA3.1 vector digested with BamHI and XhoI. For
construction of a vector containing NOBOX-3’ UTR
fused to the 3’ end of a luciferase reporter, we used
the dual luciferase pmirGLO vector (Promega, Madi-
son, WI). The NOBOX 3’ UTR was amplified from
pcDNA3.1: NOBOX construct using primers contain-
ing restriction sites SacI/XbaI (Additional file 1, Table
1 for the list of primer sequences). The PCR product
was digested with SacI and XbaI and subsequently
cloned into dual luciferase pmirGLO vector digested
with the same enzymes. Mutation of the mir-196a
miRNA recognition element (MRE) in the NOBOX 3’
UTR was performed using the QuickChange site-direc-
ted mutagenesis kit (Stratagene, Santaclara, CA)
according to the manufacturer’s instructions. (Addi-
tional file 1, Table 1 for the list of primer sequences).

Cell culture and Reporter assay
HeLa cells were cultured in DMEM (Invitrogen, Carls-
bad, CA) containing 10% FBS and 1% penicillin/strepto-
mycin (Invitrogen, Carlsbad, CA). For transient
transfection, FuGENE6 (Roche Applied Science, Indiana-
polis, IN) was used according to manufacturer’s instruc-
tions. Following transfection, cells were incubated for 48
h before harvest for western blotting and luciferase

A B

Figure 5 Microinjection of miR-196a mimic represses endogenous NOBOX expression in bovine early embryos. (A) Effect of miR-196a
mimic microinjection on abundance of NOBOX protein in 8-cell stage embryos as determined by immunocytochemical analysis using confocal
spinning-disk microscopy (n = 4 pools of 5-10 embryos per treatment). Uninjected embryos and embryos injected with a nonspecific miRNA (Neg
miRNA) were used as controls. Nuclear DNA was stained with DAPI. (B) Effect of miR-196a mimic microinjection on abundance of NOBOX mRNA in
eight-cell embryos as determined by real-time PCR. Data were normalized relative to abundance of endogenous control ribosomal protein S18
(RSP18) and are shown as mean ± SEM (n = 4 pools of 10 embryos per treatment). Different letters indicate statistical difference (P < 0.05).
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assay. Luciferase assay was performed using the Dual-
Glo luciferase assay system (Promega, Madison, WI) as
described by the manufacturer. Firefly luciferase activity
was normalized to renilla luciferase activity to adjust for
variations in transfection efficiency among experiments.
All transfection experiments were performed in quadru-
plicate (n = 4) with data averaged from four indepen-
dent experiments.

Western blot analysis
Western blot was performed as previously described
[53] with minor modifications. After 48 h of transfec-
tion, HeLa cell lysates were harvested and washed once
with phosphate-buffered saline (PBS), suspended in 50
μl of PBS, and mixed with an equal volume of Laemmli
sample buffer (Bio-Rad, Hercules, CA). Protein samples
(15 μg/each) were separated on a 4-20% gradient polya-
crylamide gel (Bio-Rad, Hercules, CA) and electroblotted
onto a polyvinylindene difluoride (PVDF) membrane
(Bio-Rad, Hercules, CA). Following transfer and block-
ing in 5% nonfat dry milk in Tris-buffered saline con-
taining 0.1% Tween-20 (TBST) for one hour, the
membrane was then incubated in NOBOX antibody
(ab41612; Abcam, Cambridge, MA) diluted 1:100 in
blocking buffer overnight at 4°C. After washing three
times with TBST, the membrane was incubated for 1 h
with horseradish peroxidase-conjugated goat anti-rabbit
IgG (Pierce, Rockford, IL) diluted 1:10 000 in blocking
solution. The membrane was washed again with TBST,
followed by detection with SuperSignal West Pico Che-
miluminescent Substrate (Pierce, Rockford, IL). The
membrane was stripped in Restore Plus Western Blot
Stripping Buffer (Pierce, Rockford, IL), followed by
detection of b-actin (ACTB) protein (positive control)
using anti-b-actin antibody (Ambion, Austin, TX) and
horseradish peroxidase-conjugated goat anti-mouse IgG
(Pierce, Rockford, IL).

Microinjection experiments
Procedures for in vitro maturation of oocytes (obtained
from abattoir-derived ovaries) and in vitro fertilization to
generate zygotes for microinjection and for subsequent
embryo culture were conducted basically as described
[54,55]. Presumptive zygotes collected at 16-18 hours
post-fertilization (hpf) were used in all microinjection
experiments. Mature miRNA-196a mimic
(MIMAT0000226) and negative control cel-miR-67 (CN-
001000-01-05) were obtained from Dharmacon Technolo-
gies (Dharmacon Inc, Lafayette, CO), and diluted with
RNase free water to a final concentration of 10 μM and 20
μM before microinjection (The final concentration used
for microinjection was 20 μM based on initial experiments
showing this concentration is more effective in repressing
Nobox expression). Approximately 20 pl of miRNA mimic

(20 μM) was injected into the cytoplasm of zygotes using
an inverted Nikon microscope equipped with micromani-
pulators (Narishige International USA, Inc., East Meadow,
NY). Uninjected embryos and embryos injected with
above negative control miRNA were used as control
groups. Each group contained 25-30 embryos per replicate
(n = 4). After microinjection, groups of embryos were cul-
tured in 75- to 90-μl drops of potassium simplex optimiza-
tion medium (KSOM) (Specialty Media, Phillipsburg, NJ)
supplemented with 0.3% bovine serum albumin (BSA)
until 72 h after insemination at which time point embryos
were collected. The efficiency of NOBOX mRNA/protein
knockdown in miRNA-196a mimic injected and control
embryos was determined by quantitative real-time PCR
analysis and immunocytochemistry in eight-cell stage
embryos as described previously [30]. Imaging was per-
formed using confocal spinning-disk microscopy. Optical
sections every 1 μm were acquired for each embryo and
MetaMorph software (Universal Imaging, Downingtown,
PA, USA) was used for image acquisition and analysis.

Statistical Analysis
One-way ANOVA using the general linear models
(GLM) procedure of SAS were used to determine the
significance of differences in mRNA abundance and
between the treated samples and the controls where
values resulted from the luciferase reporter assay, quan-
titative real-time PCR and western blots. Different let-
ters indicate significant differences (P < 0.05).

Additional material

Additional file 1: Table 1. List of primers used in this study.
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