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Cisplatin and other related platinum antineoplastic drugs are commonly used in the
treatment of a variety of cancers in both adults and children but are often associated with
severe side effects, including hearing loss. Cisplatin’s ototoxic effects are multifaceted,
culminating in irreversible damage to the mechanosensory hair cells in the inner ear.
Platinum drugs act on cancerous cells by forming nuclear DNA adducts, which may
initiate signaling leading to cell cycle arrest or apoptosis. Moreover, it was reported
that cisplatin may induce mitochondrial DNA damage in non-cancerous cells. Therefore,
protecting mitochondria may alleviate cisplatin-induced insult to non-proliferating cells.
Thus, it is important to identify agents that shield the mitochondria from cisplatin-
induced insult without compromising the anti-tumor actions of the platinum-based
drugs. In this study we tested the protective properties of mitochondrial division
inhibitor, mdivi-1, a derivative of quinazolinone and a regulator of mitochondrial fission.
Interestingly, it has been reported that mdivi-1 increases the apoptosis of cells that
are resistant to cisplatin. The ability of mdivi-1 to protect hair cells against cisplatin-
induced toxicity was evaluated in a fish model. Wild-type (Tübingen strain), cdh23
mutant, and transgenic pvalb3b::GFP zebrafish stably expressing GFP in the hair cells
were used in this study. Larvae at 5–6 days post fertilization were placed in varying
concentrations of cisplatin (50–200 µM) and/or mdivi-1 (1–10 µM) for 16 h. To evaluate
hair cell’s viability the number of hair bundles per neuromast were counted. To assess
hair cell function, we used the FM1-43 uptake assay and recordings of neuromast
microphonic potentials. The results showed that mdivi-1 protected hair cells of lateral
line neuromasts when they were challenged by 50 µM of cisplatin: viability of hair cells
increased almost twice from 19% ± 1.8% to 36% ± 2.0% (p < 0.001). No protection
was observed when higher concentrations of cisplatin were used. In addition, our data
were in accord with previously reported results that functional mechanotransduction
strongly potentiates cisplatin-induced hair cell toxicity. Together, our results suggest that
mitochondrial protection may prevent cisplatin-induced damage to hair cells.
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INTRODUCTION

Cisplatin and other related platinum drugs are common
antineoplastic agents that are used in the treatment of a variety
of cancers in both adults and children (for a review see Jamieson
and Lippard, 1999). However, these drugs are associated with
various side effects including nephrotoxicity and ototoxicity (for
review see Rybak et al., 2009; Schacht et al., 2012; Karasawa
and Steyger, 2015; Francis and Cunningham, 2017). Although
nephrotoxicity can be managed to some extent (Cornelison
and Reed, 1993; Wong and Giandomenico, 1999), mitigating
ototoxicity in patients treated with cisplatin remains an unmet
medical need (Brock et al., 2012; Schacht et al., 2012; Karasawa
and Steyger, 2015). The platinum drugs act on cancerous cells
mainly by forming adducts within the DNA (Huang et al., 1995;
Jamieson and Lippard, 1999) and, possibly, by increasing reactive
oxygen species (ROS) levels (Kopke et al., 1997; Rybak et al., 1999;
Devarajan et al., 2002). In addition, cisplatin leads to cytotoxicity
in normal cells that are not actively proliferating, inducing
mitochondrial DNA damage and ROS elevation (Marullo et al.,
2013; Wisnovsky et al., 2013).

Platinum-based antineoplastics irreversibly damage the
cochlear hair cells starting in the basal turn—the outer hair
cells appear to be more susceptible to this class of drug than
other cell types in the cochlear duct, including the inner hair
cells (Hinojosa et al., 1995; Li et al., 2004; Rybak et al., 2007).
However, cisplatin-induced insult could extend beyond the
hair cells and damage cells of the stria vascularis, a critical
organ within the cochlea that is essential for maintaining the
endocochlear potential and function of the cochlea (Laurell
and Engstrom, 1989; Laurell et al., 2007). Although, damage to
mostly outer hair cells is observed when low doses of cisplatin
are used in rodents (Laurell and Engstrom, 1989; Cardinaal et al.,
2000; Laurell et al., 2000; Park et al., 2002).

Routes of cisplatin entry into the hair cell could include the
organic cation transporter Oct2 or the influx copper transporter
Ctr1 (Riedemann et al., 2007; Ciarimboli et al., 2010; More
et al., 2010; Xu et al., 2012). In addition, it was reported that in
the absence of hair cell mechanotransduction (MET) cisplatin-
induced hair cell death is reduced in zebrafish neuromast
(Thomas et al., 2013; Stawicki et al., 2014). Gentamicin, which
is bigger in size and weight than cisplatin, is known to permeate
MET channels (Marcotti et al., 2005; Alharazneh et al., 2011;
Vu et al., 2013); similarly, it is possible that cisplatin can
permeate hair cell MET channels, although other routes could
exist (Thomas et al., 2013). Using the zebrafish lateral line system,
we test whether cisplatin affects hair cell MET currents, which
might implicate its interaction with MET channels.

Attempts to find and develop otoprotective strategies for
platinum-based drugs have been ongoing. One area of interest is
antioxidant molecules. These include N-acetyl-cysteine (Feghali
et al., 2001), alpha-lipoic acid (Kim et al., 2014), D-methionine
(Lorito et al., 2011) and sodium thiosulfate (Muldoon et al.,
2000). The most important consideration is to find a protection
method or a drug that does not compromise the anti-tumor
actions of the platinum-based drugs. For that reason, using
mdivi-1, an inhibitor of the mitochondrial fission protein Drp1,

could be a promising strategy to mitigate cisplatin-induced
ototoxicity (Qian et al., 2015). One interesting aspect of mdivi-1
is that it has been reported to increase the apoptosis of
tumor cells that are resistant to cisplatin (Qian et al., 2014).
In general, mitochondrial dynamics were found to modulate
antineoplastic activity of cisplatin (Qian et al., 2015; Han et al.,
2017). Interestingly, cisplatin-induced tubular cell apoptosis and
acute kidney injury were reduced by mdivi-1 (Brooks et al.,
2009). Some recent work has shown promise for mdivi-1 in
ameliorating the adverse effects of ototoxic aminoglycosides on
hair cells of the inner ear (Nuttall et al., 2015). Here we test
whether mdivi-1 could protect hair cells against cisplatin toxicity
using the zebrafish lateral line system.

MATERIALS AND METHODS

Animals
Experiments were conducted using the Tübingen strain of
zebrafish of either sex provided by the McDermott zebrafish core
facility. Transgenic zebrafish stably expressing GFP in the hair
cell body (pvalb3b::GFP) were previously generated (McDermott
et al., 2010), and cdh23tj264a mutant (Söllner et al., 2004) was a
kind gift from Dr. Teresa Nicolson (Oregon Health and Science
University). Fish were maintained and bred at 28◦C according to
standard procedures (Nüsslein-Volhard and Dahm, 2002). This
study was carried out in accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health and animal welfare guidelines of
the Committee of Case Western Reserve University (CWRU),
USA. The protocol was approved by the Institutional Animal
Care and Use Committee at CWRU (Protocol Number: 2012-
0187).

Cisplatin Treatment
Zebrafish larvae at days post fertilization (dpf) 5–6, were
placed in varying concentrations of cisplatin (50–200 µM,

FIGURE 1 | Mechanotransduction (MET) potentiates cisplatin-induced hair cell
death. (A) Untreated cdh23tj264a/tj264a have fewer hair cells per neuromast
when compared to wild-type and heterozygous fish. (B) When treated with
increasing concentrations of cisplatin, cdh23 mutants, which do not have
functional MET, have significantly greater hair cell survival in comparison to
wild-type or heterozygous animals, which have normal MET. Data are mean,
error bars indicate SEM. ∗p < 0.001, in comparison to wild-type and normal
heterozygous larvae within the same treatment concentration. #p < 0.001, in
comparison to untreated controls within larvae of the same genotype (see
Supplementary Table S1).
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FIGURE 2 | Cisplatin does not affect MET in neuromast hair cells. (A) Neuromast microphonic potentials are not affected after 100-µM-cisplatin application. The top
trace shows pressure applied to the stimulating puff pipette. (B) Summary of microphonic potential peak-to-peak amplitudes at twice the stimulus frequency
obtained from lateral line neuromasts (controls and after 100-µM-cisplatin application). (C) Summary of fluorescent signal of FM1-43FX in live lateral line neuromasts
of control and after 100-µM-cisplatin application. (D) Representative maximum-intensity projection images of FM1-43FX-treated live neuromasts: control and after
100-µM-cisplatin. Data are mean, error bars indicate SEM. n = 5–12 larvae (noted on bar graphs, from three to six clutches) per data point. Scale bar: 10 µm.

ThermoFisher Scientific, Waltham, MA, USA) and/or mdivi-1
(1–10 µM, Enzo Life Sciences, Farmingdale, NY, USA)
overnight for 16 h. The next day, the larvae were transferred
to another dish, anesthetized with MS-222 (Sigma-Aldrich,
St. Louis, MO, USA), and secured in a recording chamber
using strands of dental floss tie downs (Ricci and Fettiplace,
1997) and placed under the microscope, an upright Olympus
BX51WI microscope equipped with 100× 1NA objective
for observation. To assess viability, blood flow and heart
rate were visually monitored. Images were observed with a
Grasshopper3 CMOS camera (Point Grey, Richmond, BC,
Canada) and captured with manufacturer provided software.
Starting with the eye neuromasts andmoving caudal, the number
of hair bundles were counted in approximately 10 neuromasts
per fish.

FM1-43 Labeling and Image Analyses
After overnight treatment with cisplatin and/or Mdivi-1, fish
were placed into wells containing FM1-43 (ThermoFisher
Scientific, Waltham, MA, USA) in fish water. After 30 s,

fish were transferred to fish solution containing MS-222 and
BSA. The larvae were then secured in a recording chamber
and placed under the microscope for imaging as described
above. Approximately 3–4 neuromasts were imaged, and
maximal projection images were generated using ImageJ (NIH,
Bethesda, MD, USA). For lateral line neuromasts, raw images
were gathered using an Olympus BX51WI microscope and a
Grasshopper3 CMOS camera as described above. Fluorescence
measurements were obtained using ImageJ. A region of interest
was used to obtain measurements from the cells in each
neuromast (Icell) and an area without cells (Ibackground) in the
same image. Fluorescence intensity of FM1-43FX (Iload) for each
neuromast was normalized (Iload = Icell − Ibackground).

Recordings of Neuromast Microphonic
Potential in Zebrafish
We anesthetized zebrafish larvae (5–7 dpf) using MS-222
dissolved in a standard bath solution containing (in mM):
NaCl (120), KCl (2), HEPES (10), CaCl2 (2), NaH2PO4 (0.7),
adjusted to pH ∼7.2. The larvae were secured in a recording
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FIGURE 3 | Mdivi-1 protects against cisplatin-induced hair cell death. (A) Concentrations of mitochondrial division inhibitor mdivi-1 between 1–5 µM are well
tolerated by zebrafish; whereas 10 µM of mdivi-1 is toxic to hair cells (n = 5 larvae per data point, from three clutches). (B) Application of 3 or 7 µM of mdivi-1
allowed significantly more hair cells to survive treatment with 50 and 100 µM of cisplatin. (C) Representative maximum-intensity projection images of pvalb3b::GFP
neuromast hair cells treated with 50-µM-cisplatin and/or 50-µM-mdivi-1 (middle and right images). Data are mean, error bars indicate SEM. ∗∗p < 0.001 and
∗p < 0.05, in comparison to no mdivi-1 treatment within the same cisplatin concentration (see Supplementary Table S1). Scale bar: 10 µm.

chamber and placed under the microscope for observation
as described above. Viability, blood flow and heart rate of
larvae were visually monitored. Images were observed with a
Grasshopper3 CMOS camera and captured with manufacturer
provided software. We recorded from posterior neuromasts;
kinocilia tufts were deflected with a fluid jet (Nicolson et al.,
1998; Trapani and Nicolson, 2010) delivered via a glass pipette
with a diameter of approximately 5–7 µm and controlled
by HSPC-1 (ALA Scientific Instruments, Farmingdale, NY,
USA). Fluid jet pipette was placed approximately 75 µm
near the neuromast and used to deliver sinusoidal stimuli of
50 Hz frequency. The microphonic potentials were recorded
at room temperature (22◦C). We used borosilicate glass
electrodes with a resistance of 3–6 MΩ, which were filled with
standard bath solution and placed near the apical edges of the
lateral line neuromasts. We recorded microphonic potentials
using a PC-505B amplifier (Warner Instruments, Hamden,
CT, USA) and a PCI-6221 digitizer (National Instruments,
Austin, TX, USA). Microphonic potentials were amplified
by 20 (SIM983, Stanford Research, Sunnyvale, CA, USA),
measured by a jClamp (Scisoft, Yale University, New Haven,
CT, USA) in a current-clamp mode, and low-pass filtered
at 100 Hz. All records represent an average of at least
500 trials.

Statistics
All statistical analyses were performed using GraphPad Prism 7.
Data are reported as mean± SEM. Comparisons between groups
were analyzed by ANOVA with Tukey post hoc testing.

RESULTS AND DISCUSSION

Mechanotransduction Potentiates
Cisplatin-Induced Hair Cell Death
Our data show that functional MET potentiate cisplatin-induced
hair cell toxicity in lateral line neuromasts in a zebrafish
(Figure 1), in accordance with published reports (Thomas et al.,
2013; Stawicki et al., 2014). cdh23tj264a/tj264a mutant zebrafish
do not have functional MET in hair cells, because Cdh23 is an
integral part of mechanosensitive stereocilia bundles in hair cells
(Siemens et al., 2004; Söllner et al., 2004; Kazmierczak et al., 2007;
Indzhykulian et al., 2013). Notably, cdh23 mutants have smaller
numbers of hair cells per neuromast in comparison to wild-type
or heterozygous fish (Figure 1). Despite the fact that treatment
with 50 µM of cisplatin did not significantly change the number
of hair cells in neuromasts of cdh23tj264a/tj264a zebrafish, whereas
in wild-type fish this dose of cisplatin considerably reduced
the number of hair cells (Figure 1A). This result indicates that
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MET channels may be involved in cisplatin entry into the hair
cell. Alternatively, cisplatin entry into the hair cell is largely
independent of the MET channel, but the ion flow carried out
by functional MET potentiates cisplatin-induced damage.

Cisplatin and Mechanotransduction in
Neuromast Hair Cells
If cisplatin enters hair cells via MET channels, it could interact
with the channel directly and attenuate ion flow through the
channel. To test this hypothesis, the microphonic potentials of
neuromast hair cells (Figures 2A,B) were measured with and
without application of 50 µM or 100 µM of cisplatin. The
microphonic potential is an evoked electrical potential elicited
by hair bundle deflections. The microphonic potential results
from modulation of the cationic current flowing into stimulated
hair cells via functional MET channels. Our results show that
microphonic potentials were not affected by cisplatin application
(Figures 2A,B). An alternate approach using FM1-43FX was
also employed to test the hypothesis. FM1–43FX is a derivative
of FM1-43, an amphipathic styryl dye that is known to rapidly
accumulate in sensory hair cells via the MET channels that are
partially open at rest in non-stimulated hair bundles (Gale et al.,
2001; Meyers et al., 2003). Loading of FM1-43FX in live hair
cells of lateral line neuromasts of controls and after 100-µM-
cisplatin was not significantly different (Figures 2C,D). Our
results did not reveal any evidence that cisplatin enters hair
cells via MET channels. It is known that aminoglycosides enter
hair cells via MET channels and are permeant blockers of these
channels. Our results, however, do not rule out the possibility
cisplatin may enter hair cells via the MET channel but this
amount may not be sufficient to affect measured microphonic
potentials.

When MET is functional, substantial amounts of calcium can
enter hair cells through MET channels. Intracellular calcium
balance is critical for hair cell function; it was found that
calcium homeostasis is rapidly disrupted following ototoxic
aminoglycoside exposure (Esterberg et al., 2014). It is possible
that hair cell mitochondria continuously buffer calcium entering
cell via functional MET channels, causing hair cells to become
more vulnerable to toxic insult. Drugs that could reduce
mitochondrial stress and/or protect mitochondria in other ways,
may potentially increase hair cell viability when faced with
ototoxic drugs.

Mitochondrial Division Inhibitor 1 Protects
against Cisplatin-Induced Hair Cell Death
Here we tested whether mdivi-1 can protect hair cells against
cisplatin induced toxicity in neuromast hair cells. Mdivi-1 is an

inhibitor of mitochondrial division that selectively attenuates
dynamin-related protein 1 activity, a fission protein that
involved in the constriction and cleavage of mitochondria
(Cassidy-Stone et al., 2008). First, we tested different doses
of mdivi-1 for neuromast hair cell toxicity. High doses of
mdivi-1, more than 10 µM, were toxic to the 5–6 dpf larvae
(Figure 3A); therefore, we used lower doses of mdivi-1, 3 and
7 µM. Our data show that these doses of mdivi-1 protected
hair cells of lateral line neuromast against toxicity of 50 µM
of cisplatin (Figures 3B,C). These data demonstrated that
modulating mitochondria dynamics may increase viability of
hair cells against cisplatin toxicity in a zebrafish model. This
finding is interesting also because it is known that mdivi-1
assists the abilities of cisplatin to trigger apoptosis in certain
platinum-resistant tumor cells (Qian et al., 2014). Future studies,
incorporating mammalian models, will be of further value
in corroborating our results and revealing the mechanism of
mdivi-1-mediated protection.

CONCLUSION

MET potentiates cisplatin-induced damage of neuromast hair
cells. However, cisplatin, in contrast to aminoglycosides, does
not affect MET of neuromast hair cells. Our data suggests that
mitochondrial protection may prevent cisplatin-induced damage
to hair cells.
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