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Standard sleep apnea (SA) screening instruments perform suboptimally in the atrial fibrillation (AF) pop-
ulation. We evaluated and optimized common OSA screening tools in the AF population. Participants of
the Sleep Apnea and Atrial Fibrillation Biomarkers and Electrophysiologic Atrial Triggers (SAFEBEAT,
NCT02576587) age (±5 years)-, sex-, body mass index (BMI ± 5 kg/m2)-matched case control study
(n = 150 each group) completed concurrent questionnaires and overnight polysomnography. Models
based on STOP, STOP-BANG, Berlin, NoSAS and Epworth Sleepiness Scale and also models with STOP-
BANG predictors with resting heart rate or left atrial volume were constructed. ‘‘Best subset” analysis
was used to select a predictor subset for evaluation. We assessed test performance for two outcome
thresholds: apnea-hypopnea index (AHI) � 5 and AHI � 15. Paroxysmal AF participants were: 61.3 ± 12.
1 years, BMI = 31.2 ± 6.6 kg/m2 with median AHI = 11.8(IQR: 3.8, 24.5); 65 (43.3%) with AHI � 15. Only
STOP and STOP-BANG did not perform worse in AF relative to controls. For AHI � 15, STOP-BANG (AUC
0.71, 95%CI:0.55–0.85) did not perform as well as NABS – a composite of neck circumference, age, and
BMI as continuous variables and snoring (AUC 0.88, 95%CI:0.76–0.96). Optimal model for AHI � 15
was NABS (sensitivity = 45%, specificity = 97%). For AHI � 5, NABS was also the best performing (AUC
0.82, 95%CI:0.68–0.92, sensitivity = 78%, specificity = 67%). We identify a novel, short-item SA screening
instrument for use in paroxysmal AF, i.e. NABS, with improved discriminative ability compared to
commonly-used instruments. Further validation studies are needed to assess utility in other AF subtypes.
Trial registration: clinicaltrials.gov NCT02576587.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Atrial fibrillation (AF), the most common chronic arrhythmia,
is associated with substantial morbidity and healthcare expense
[1]. AF prevalence is projected to increase 2.5-fold by 2050 [2].
Sleep apnea (SA) is highly prevalent in those with AF, occurring
in 21–81% of individuals with AF [3]. Untreated SA is associated
with poor outcomes following pharmacologic and/or procedural
management of AF [4–8]. Studies suggest that SA therapy leads
to improved outcomes after AF ablation, cardioversion, and med-
ical management [4,5,9]. Improving SA identification in the AF
population, particularly in those with paroxysmal AF (PAF) who
have the highest chance of benefiting from pharmacologic or
interventional interventions to control AF, could improve
outcomes.
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Unfortunately, SA screening instruments derived from and val-
idated in the peri-operative and general medicine populations do
not perform well in patients with cardiac disease, particularly in
those with atrial AF [10,11]. Patients with AF tend not to show
the pathognomonic signs of SA – snoring and daytime sleepiness
– and other symptoms such as fatigue and nocturnal dyspnea
can be multifactorial (e.g. attributable to underlying cardiac condi-
tion or medication side effects), non-specific, and underreported
[12–14].

We have completed an individually matched case-control study
focused on individuals with paroxysmal AF in which we evaluated
the performance characteristics of common SA screening tools and
used biologically plausible and relevant cardiac physiologic and
structural data in an effort to develop an SA screening instrument
optimized for the AF population. We hypothesized that (1) typical
SA screening tools have worse performance characteristics in
patients with AF vs. those without, (2) AF patient screening can
be improved using a subset of variables used in common screening
instruments, and (3) adding physiologic measures from echocar-
diography improves SA screening tool performance.
2. Materials and methods

2.1. Participants and study design

The Sleep Apnea and Atrial Fibrillation Biomarkers and Electro-
physiologic Atrial Triggers trial (SAFEBEAT, n = 300), a case-control
study, recruited participants from March 2012 to March 2017
(Fig. 1). Adults with PAF diagnosis – defined as recurrent AF epi-
sodes self-terminating within 7 days [15] – were recruited from
outpatient cardiology clinics at two academic tertiary centers. Par-
ticipants were matched 1:1 to controls based on sex, race, age (±5
years), and body mass index (BMI ± 5 kg/m2) to address important
biologic confounding influences with impact on both AF and SA
development. Exclusion criteria included AF with rapid rate
(�120 beats per minute), post-operative AF, anti-arrhythmic med-
ication with no further clinical AF, prior cardiac ablation or suc-
cessful cardioversion, implanted cardioverter-defibrillator,
significant valvular disease, atrial septal defect, infiltrative or
restrictive cardiomyopathy, heart failure, sick sinus syndrome,
end-stage renal failure, concurrent treatment for sleep disordered
breathing, severe chronic insomnia or circadian rhythm disorder,
self-reported sleep duration < 4 h, supplemental oxygen use,
unstable medical conditions, immunodeficiencies, non-skin cancer,
alcohol or drug abuse, pregnancy, and compromised competence
Fig. 1. Study flow: recruitmen
or inability to provide informed consent. The most common
screening failures in cases were distance too far to travel (1374),
AF ablation/cardioversion/atrial septal defect (1285), cardiomy-
opathy/pacemaker/ICD (795), and other medical condition (735).
The most common screening failures for controls were other med-
ical condition (474), no notes (381), cancer (201), and no estab-
lished physician/no show to appointment (192). Among eligible
candidates, the most common reasons for non-participation were
passive refusal (67.2%), not interested in research (20.7%), and
too busy (4.5%). Sleep studies were conducted in the Clinical
Research Units of University Hospitals of Cleveland or Cleveland
Clinic. The University Hospitals Case Medical Center IRB and Cleve-
land Clinic IRB each approved this study, and informed consent
was obtained for all participants.
2.2. Sleep studies

Each participant attended overnight full polysomnography
using the Compumedics E-system (Abbottsford, AU) that included
C3/A2 and C4/A1 electroencephalograms, bilateral electrooculo-
grams, a bipolar submental electromyogram, snore sensor, thoracic
and abdominal respiratory inductance plethysmography, airflow,
pulse oximetry, lead I EKG (250 Hz), body position, and bilateral
leg electromyography. Research staff who performed the study
were centrally trained and used standardized protocols.

Sleep studies were scored by one of two certified polysomnolo-
gists blinded to clinical data [16,17]. Interscorer reliability was
greater than 95% for all PSG measures. Arousals were defined as
an abrupt shift in electroencephalogram frequency lasting at least
3 s and starting after at least 10 continuous seconds of sleep [18].
In REM sleep, arousals additionally required a simultaneous
increase in chin electromyography amplitude.

All events were scored according to the American Sleep Disor-
ders Association criteria [16,17]. Apnea was defined as 10 or more
seconds of complete or near complete airflow cessation [16].
Apneas were classified as obstructive if there was maintained res-
piratory effort and central if there was a complete cessation in res-
piratory effort. Hypopneas were scored if a minimum 50%
reduction in breathing amplitude compared to baseline breathing
for at least 10 s accompanied by either arousal or a 3% or greater
arterial desaturation [16]. Severity of SA was determined by the
apnea-hypopnea index (AHI) which was calculated as the total
number of apneas and hypopneas per hour of sleep [19]. Central
sleep apnea (CSA) was defined as a central apnea index of �5.
t, attrition, and retention.
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2.3. Other measures

Height and weight measured at the baseline visit were used to
compute the BMI. All participants completed sleep questionnaires
via paper and pen at the baseline visit directly after signing the
consent and before participation in the sleep study. In addition,
the average of three heart rate readings from each participant mea-
sured while sitting at rest during the baseline exam was used in
analyses. Echocardiography was performed for research purposes
on the morning after the sleep study. Left atrial volume was mea-
sured via 2-dimensional Doppler echocardiography. Echocardiog-
raphy was conducted by a senior sonographer with the
participant in the left later decubitus position. Agitated saline
was used to enhance imaging. Images were measured in a blinded
fashion on 3 representative beats and averaged.

The Epworth sleepiness scale measures propensity to fall asleep
in a series of situations and includes 8 items assessed on a 4 point
Likert scale (0 = no chance of dozing to 3 = high chance of dozing).
The score ranges from 0 to 24 with values < 11 considered normal
and higher scores indicating more sleepiness. Epworth sleepiness
score has high internal consistency (Cronbach alpha = 0.88)
[20,21].

STOP-BANG questionnaire, developed to identify obstructive
sleep apnea (OSA), has been validated in surgical populations and
studies in the primary care setting show similar predictive perfor-
mance [22]. The STOP-BANG questionnaire score is calculated by
summation of positive responses to the following factors: Snoring,
Tiredness, Observed apneas, Elevated pressure (or history of hyper-
tension), BMI > 35 kg/m2, age > 50, Neck circumference > 40 cm,
and male Gender [23].The total score can range from 0 to 8 and a
score of � 3 is consistent with high pretest probability for OSA.
The STOP-BANG questionnaire has a high sensitivity (88%) but
moderate specificity (53%) for OSA [24].

The STOP questionnaire is a subset of the STOP-BANG question-
naire that sums each positive response to 4 variables: Snoring,
Tiredness, Observed apneas, and Elevated pressure (hypertension
history) [25]. A STOP score of at least 2 is considered a positive
screening test. STOP has a higher specificity compared to STOP-
BANG for moderate-to-severe OSA (53.3% vs. 43.0%, respectively)
[25].

The Berlin questionnaire evaluates three domains (10 total
questions) to identify OSA in the general population – snoring
severity and witnessed apneas, daytime sleepiness, and hyperten-
sion/obesity [26]. If 2 of the 3 domains have a positive score, the
screen is positive for sleep disordered breathing. At an AHI
of � 5, sensitivity and specificity of the Berlin questionnaire was
80% and 46%, respectively [24].

NoSAS is geared toward finding those with AHI � 20. This
screening test incorporates Neck circumference � 40 cm (4 points),
Obesity (BMI 25 to < 30 = 3 points, BMI � 30 = 5 points), Snoring (2
points), Age > 55 years (4 points), and male Sex (2 points) for a total
score between 0 and 17 [27]. Scores of 8 or more considered a pos-
itive screen [27]. The NoSAS performs similarly to the STOP-BANG
and Berlin screening questionnaires [27,28]. The NoSAS tool has a
moderate sensitivity and specificity at a threshold of AHI � 15
(60.3% and 79.9%, respectively) and AHI � 20 (69.4% and 78.2%,
respectively) [27].
2.4. Statistical analyses

Participant characteristics were summarized as
mean ± standard deviation (SD), median [interquartile range,
IQR], or n (%). PAF and control groups were compared using Pear-
son chi-square tests for categorical variables, pooled t-test for nor-
mally distributed continuous variables, and Wilcoxon Mann
Whitney rank sum test for continuous variables with skewed
distributions.

We assumed all data was missing at random. There were no
missing values in the Berlin, STOP-BANG, STOP, NoSAS total scores,
1 missing ESS, and only 2 missing in the variables that constructed
the STOP-BANG score (for continuous models). Because of the
overlap of questions in the 5 scores, only the ESS, STOP-BANG,
and Berlin questionnaires required answers to compute all 5
scores. By combining the survey administration and sleep study
into one study visit, we attempted to decrease participant burden,
which may have improved response rates. We used cases with
complete data for the variables under examination.

A general overview of the study starts with evaluation of com-
mon SA screening instruments in the AF and non-AF cohorts
(Fig. 2). Then, the best performing of the current SA screening
instruments in the AF group was evaluated to identify if a subset
of those variables would perform comparably or better than the
overall screening to find a model with fewer predictors. Lastly,
we then tested the addition of physiologic variables – left atrial
size and heart rate – on screening performance.

2.4.1. Screening tool performance in AF cases and controls
The entire dataset (no separation into training and validation

datasets) was used to evaluate performance characteristics of
commonly-used SA screening instruments. Separate prediction
models were created for AF and control participants using logistic
regression on the entire dataset of each group. AHI � 15 and
AHI � 5 served as the dependent variable and the following were
independent variables: STOP-BANG score (possible values 0–8)
[23,29] and NoSAS (possible values 0–17) [27,28], Berlin question-
naire (possible values 0–3 positive categories [26,30,31], Epworth
Sleepiness Scale (possible values 0–24) [20,21]. Area under the
curve (AUC) of receiver operating characteristic (ROC) was used
as a measure of performance.

2.4.2. Optimizing prediction models for people with AF
To improve SA screening in AF, the AF cohort was randomly

split into training (n = 100) and validation (n = 50) datasets. Based
on putative SA physiology as a potential AF-exacerbating factor,
heart rate and left atrial volume were added individually to models
as biologic markers of altered physiologic and cardiac structural
substrate. STOP-BANG was used as the base model because it has
the best performance in the AF cohort in the present study when
evaluating current screening instruments. Best subsets were used
to identify a subset of STOP-BANG predictors for evaluation and
5-fold cross-validation was used to select the best-performing
best-subset model [32]. Focusing on a smaller number of predic-
tors was chosen because a model with fewer predictors but compa-
rable performance may have improved clinical applicability.

2.4.3. Predictive utility of physiologic variables for sleep apnea
screening in AF

Performance characteristics – mean squared error – were eval-
uated in the validation subset (n = 50) for the following linear mod-
els of AHI: STOP-BANG, STOP-BANG with average heart rate, STOP-
BANG with left atrial volume, NABS (Neck circumference, Age, BMI,
and Snoring) with continuous predictors where applicable, NABS
with average heart rate, and NABS with left atrial volume. Heart
rate and left atrial volume were chosen prior to analysis because
of putative association between SA and worse control of AF leading
to a larger left atrial volume and higher heart rate. No model
updating was performed since the validation and training datasets
populations were not expected to have systematic differences.

SA diagnosis was examined at two thresholds based on clinical
cutoffs: (1) AHI � 15 and (2) AHI � 5 using logistic regression. Area
under the curve (AUC) of receiver operating characteristic (ROC),



Fig. 2. Statistical methods. Step 1 – evaluate the currently available sleep apnea screening tests in atrial fibrillation and non-atrial fibrillation groups and compare
performance metrics. Find the best-performing test according to AUSC in the AF group. Step 2. Split atrial fibrillation group into testing and training. Perform best subsets
regression on the training subset to find a better screening test for those with atrial fibrillation. Step 3. Evaluate performance metrics in the new and current best-in-atrial-
fibrillation screening test. Evaluate performance metrics if heart rate or left atrial volume are added to the model.
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sensitivity, specificity, positive predictive value, negative predic-
tive value were examined to evaluate logistic model performance.
Bootstrapping was used to estimate 95% confidence intervals for
performance characteristics in the validation dataset and test for
significant AUC difference between instruments. Hypotheses of
association were evaluated using a two-sided significance level of
a = 0.05. All analyses were conducted using R software version
3.4.3 (R Core Development Team, Vienna, Austria) [33].

3. Results

3.1. Study population

Table 1 reports the baseline characteristics of the cohort. The
300 participants in the overall cohort were 61.4 ± 11.9 years old
and 83.6% Caucasian with a BMI of 31.4 ± 6.7 kg/m2 and AHI of
11.8 (IQR 3.8 – 24.5). In the PAF group (n = 150), 69 (46.0%) had
an AHI � 15 and 104 (69.3%) had an AHI � 5. The age, sex, race,
and BMI-matched control group (n = 150), had similar prevalence
of SA when defined both by AHI � 15 (43.3%) and AHI � 5
(68.0%). Participants in the AF group had a lower heart rate and lar-
ger left atrial volume and were more likely to have been prescribed
beta-blockers and calcium channel blockers. Comorbidities were
evenly balanced across groups.

3.2. Established screening tool performance in AF cases and controls

Screening tools were evaluated using the whole cohort (i.e., not
split into training and validation datasets) to understand perfor-
mance of current tools in patients with and without AF. All except
the STOP and STOP-BANG screening instruments performed worse
based on AUC in the PAF group compared to controls (Table 2, Sup-
plementary Fig. S1). At a threshold of AHI � 15, the STOP-BANG
instrument performed best overall in PAF participants
(AUC = 0.75, 95% CI: 0.68–0.85), while the NoSAS had the best over-
all performance in controls (AUC = 0.79, 95% CI: 0.72–0.86). The
Epworth Sleepiness Scale performed no better than chance in both
groups. Overall, performance of common screening instruments
was significantly less robust in both AF and controls compared to
reported screening tool characteristics [21,23,27–30].

3.3. Optimizing prediction models in AF cases

The AF cohort was split into training and validation datasets. All
measures reported are based on performance in the validation
dataset. A continuous model utilizing neck circumference, age,
BMI, and snoring (NABS) had the lowest prediction error of the best
subset models and is specified below for AHI � 15 (see also Sup-
plement for further description):

Log odds (SA) = �12.6645 + 0.1380 (BMI) + 0.0664 (Age) +
0.0876 (Neck Circumference) + 0.6613 (Snoring)

In the validation dataset, NABS predictors performed better
than STOP-BANG at both the AHI � 15 (NABS AUC = 0.88, 95% CI:
0.76–0.96 vs. STOP-BANG AUC = 0.81, 95% CI: 0.64–0.91) and
AHI � 5 (NABS AUC = 0.82, 95% CI: 0.68–0.92 vs. STOP-BANG
AUC = 0.73, 95% CI: 0.55–0.87) thresholds (Table 3, Supplementary
Figs. S2 and S3). The NABS AUC significantly improved upon STOP-
BANG performance for AHI � 5 (p = 0.04) but not AHI � 15
(p = 0.10).

3.4. Predictive utility of physiologic variables for sleep apnea screening
in AF cases

There was a decrement in screening prediction in the validation
dataset with addition of heart rate or left atrial volume in all mod-
els (Table 3, Supplementary Figs. S2 and S3).

4. Discussion

In this matched case-control study, SA was common in both
people with PAF and their matched controls. Standard SA screening
performed poorly in AF. Performance measures were substantially
improved for both the AHI � 15 and AHI � 5 models in the AF
group with use of the NABS model. We considered SA more likely



Table 1
Baseline characteristicsy

Characteristic n Overall
(n = 300)

PAF
(n = 150)

Control
(n = 150)

p-value

Age (years) 300 61.42 ± 11.91 61.28 ± 12.11 61.55 ± 11.75 0.84
Non-white race 299 49 (16.4%) 24 (16.0%) 25 (16.8%) 0.98
Male gender 300 190 (63.3%) 95 (63.3%) 95 (63.3%) >0.99
BMI (kg/m2) 300 31.38 ± 6.68 31.20 ± 6.62 31.57 ± 6.76 0.63
Heart rate (bpm) 299 66.87 ± 10.46 64.99 ± 10.19 68.76 ± 10.41 0.002
Apnea-hypopnea index 300 11.80

[3.77, 24.50]
10.60
[3.62, 23.38]

12.70
[3.90, 24.50]

0.33

AHI � 15 300 134 (44.7%) 65 (43.3%) 69 (46.0%) 0.73
AHI � 5 300 206 (68.7%) 102 (68.0%) 104 (69.3%) 0.90
Central sleep apneay 300 16 (7.8%) 7 (6.9%) 9 (8.7%) 0.83
Neck circumference (cm) 299 39.3 ± 4.5 39.2 ± 4.3 39.4 ± 4.8 0.77
Epworth sleepiness score 299 7.9 ± 4.3 7.5 ± 4.3 8.3 ± 4.3 0.12
STOP-BANG score 300 3.4 ± 1.4 3.5 ± 1.4 3.4 ± 1.5 0.91
STOP score 300 1.9 ± 1.0 1.9 ± 1.0 1.9 ± 1.0 0.58
NoSAS score 300 10.9 ± 4.1 10.8 ± 4.1 11.0 ± 4.0 0.64
Berlin categories positive 300 1.6 ± 0.8 1.6 ± 0.8 1.6 ± 0.9 >0.99
Left atrial volume 284 59.9

[46.9, 75.0]
64.2
[48.9, 77.4]

56.2
[45.1, 70.0]

0.006

Ever smoker 300 159 (53.0%) 81 (54.0%) 78 (52.0%) 0.82
Days per week alcohol consumed 300 1.8 ± 2.0 1.7 ± 2.0 1.9 ± 2.1 0.21
Largest number alcoholic drinks consumed 300 1.2 ± 1.0 1.1 ± 1.0 1.2 ± 1.0 0.36
Comorbidities
Asthma 293 39 (13.3%) 19 (13.0%) 20 (13.6%) >0.99
COPD 293 23 (8.0%) 13 (8.8%) 10 (7.1%) 0.75
Myocardial infarction 293 25 (8.5%) 9 (6.0%) 16 (11.1%) 0.18
Hypertension 292 166 (56.8%) 87 (60.0%) 79 (53.7%) 0.34
Hypercholesterolemia 292 177 (61.0%) 86 (60.1%) 91 (61.9%) 0.85
Stroke 298 7 (2.3%) 5 (3.3%) 2 (1.4%) 0.46
Medication use
Beta-blocker 300 120 (40.0%) 85 (56.7%) 35 (23.3%) <0.001
Calcium channel blocker 300 28 (9.3%) 20 (13.3%) 8 (5.3%) 0.03
Antihypertensives 300 156 (52.9%) 80 (54.4%) 76 (51.4%) 0.68
Antilipidemics 300 140 (47.9%) 65 (44.8%) 75 (51.0%) 0.35
Antidiabetic 300 36 (12.2%) 17 (11.5%) 19 (12.9%) 0.84

AHI = apnea-hypopnea index; BMI = body mass index; bpm = beats per minute; COPD = chronic obstructive pulmonary disease; NoSAS = 5-item screening score assessing
neck circumference, body mass index, snoring, age, and male gender; PAF = paroxysmal atrial fibrillation; SMD = standardized mean difference; STOP = 4-item screening with
1 point each for snoring, tired, observed apnea, and hypertension; STOP-BANG = 8 item screening with 1 point for each item for snoring, tired, observed apnea, hypertension,
BMI > 35 kg/m2, age > 50 years, neck circumference > 40 cm, and male gender.
yStatistics presented as Mean ± SD, Median [2th percentile, 75th percentile], or N(%).

Table 2
Performance characteristics of common OSA screening measures for AHI � 15 in atrial fibrillation and matched controls (n = 150 for both AF and control groups).

OSA screening tool Sensitivityy Specificityy PPVy NPVy AUC

Atrial fibrillation cohort
ESSy 25

(15–37)
74
(63–83)

42
(26–59)

56
(47–66)

0.50
(0.42–0.60)

STOP-BANG 89
(79–96)

42
(32–54)

54
(44–64)

84
(69–93)

0.75
(0.66–0.86)

STOP 74
(61–84)

44
(33–55)

50
(40–60)

69
(54–80)

0.65
(0.56–0.73)

Berlin 72
(60–83)

58
(46–68)

57
(45–67)

73
(61–83)

0.64
(0.52–0.75)

NoSAS 91
(81–97)

38
(27–49)

53
(43–62)

84
(69–94)

0.74
(0.67–0.80)

Control cohort
ESS 32

(21, 44)
81
(71, 89)

59
(42, 75)

58
(48, 67)

0.57

(0.49–0.68)
STOP-BANG 93

(84, 98)
42
(31, 53)

58
(48, 67)

87
(73, 96)

0.75
(0.69–0.83)

STOP 77
(65, 86)

48
(37, 60)

56
(45, 66)

71
(57, 82)

0.62
(0.53–0.71)

Berlin 75
(64, 85)

62
(50, 72)

63
(51, 73)

75
(63, 84)

0.70
(0.63–0.80)

NoSAS 97
(90, 100)

41
(30, 52)

58
(49, 67)

94
(81, 99)

0.79
(0.72–0.86)

ypercent, 95% confidence interval; sensitivity, specificity, PPV, NPV were calculated from the following cutoffs for positive screen: ESS � 11, STOP � 2, STOP-BANG � 3
Berlin � 2 areas positive, NoSAS � 8.
AUC = area under the curve of receiver operating characteristic curve; ESS = Epworth Sleepiness Score; NPV = negative predictive value; PPV = positive predictive value;
STOP = 4 point scale on snoring; daytime fatigue; observed apneas; and hypertension; STOP-BANG = 8 binary questions on snoring; daytime fatigue; observed apneas;
hypertension; BMI; age; neck circumference; and gender.
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Table 3
Performance characteristics of novel models in the validation paroxysmal atrial fibrillation cohort (n = 50) for AHI � 15 and AHI � 5.

Model Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC (95%CI)

AHI � 15
STOP-BANGy 70

(46, 88)
77
(58, 90)

67
(43, 85)

79
(60, 92)

0.81
(0.64, 0.91)

STOP-BANG HRy 45
(23, 68)

80
(61, 92)

60
(32, 84)

69
(51, 83)

0.74
(0.59, 0.86)

STOP-BANG LAy 55
(32, 77)

89
(71, 98)

79 (49, 95) 73
(54, 87)

0.79
(0.63, 0.9)

NABS 65
(41, 85)

93
(78, 99)

87
(60, 98)

80
(63, 92)

0.88
(0.76, 0.96)

NABS-HR 70
(46, 88)

83
(65, 94)

74
(49, 91)

81
(63, 93)

0.85
(0.73, 0.93)

NABS-LA 60
(36, 81)

89
(71, 98)

74
(49, 91)

81
(63, 93)

0.84
(0.69, 0.93)

AHI � 5
STOP-BANG 97

(84, 100)
6
(0, 27)

65
(49, 78)

50
(1, 99)

0.73
(0.55, 0.87)

STOP-BANG HR 84
(67, 95)

11
(1, 35)

63
(47, 77)

29
(4, 71)

0.64
(0.49, 0.8)

STOP-BANG LA 94
(79, 99)

27
(8, 55)

73
(57, 86)

67
(22, 96)

0.64
(0.5, 0.81)

NABS 97
(84, 100)

44
(22, 69)

76
(60, 88)

89
(52, 100)

0.82
(0.68, 0.92)

NABS-HR 94
(79, 99)

28
(10, 53)

70
(54, 83)

71
(29, 96)

0.77
(0.62, 0.88)

NABS-LA 97 (84, 100) 27 (8, 55) 74 (49, 91) 81 (63, 93) 0.79
(0.61, 0.89)

y STOP-BANG model predictor values were re-estimated using training dataset.
AUC = area under the receiver operating characteristic curve; NABS = continuous variables for neck circumference; age; body mass index; and snoring; NABS-HR = NABS score
with continuous variable for heart rate; NABS-LA = NABS with continuous variables for left atrial volume; NPV = negative predictive value; PPV = positive predictive value;
STOP-BANG = an OSA screening instrument of 8 dichotomous questions; STOP-BANG HR = STOP-BANG score with added continuous variable for heart rate; STOP-BANG
LA = STOP-BANG score with continuous variable for left atrial volume.
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in those with poor AF control as evidenced by higher heart rate and
left atrial volume since previous studies suggest untreated SA can
aggravate AF pharmacologic control and progression.[9,34] How-
ever, addition of variables associated with AF rate control and car-
diac structure – i.e. heart rate and left atrial volume – did not
improve performance. Utility of heart rate was perhaps not appar-
ent due to AV-nodal blockade medication usage in AF as evidenced
by decreased heart rate in those with AF compared to controls. Left
atrial volume can be affected by several disorders (e.g., AF, heart
failure, coronary artery disease) and may, therefore, not be suffi-
ciently specific to improve screening performance.

The NABS model - a simplified, short-item screening instrument
consisting of neck circumference, age, BMI, and snoring – improved
screening accuracy for SA over existing questionnaires. Reduced
screening tool performance in the AF population may be a problem
of the feature set rather than poorly calibrated parameter esti-
mates of the variable set in the current screening tools. Age and
BMI are well-known risk factors for SA and AF. SA prevalence stea-
dily increases with age [35,36]. Even modest improvements in
weight decrease the AHI [37]. Neck circumference and snoring
are oft-used clinical surrogates for a collapsible upper airway.
Breathing disturbances are further exacerbated by rostral fluid
shifts throughout the night leading to neck edema as occurs in car-
diac disease [38]. Sex does not seem to be a substantial predictor of
SA in the AF population, which is unanticipated. It is possible that
the pathophysiology of AF and SA share common factors. NoSAS,
which has not been tested in the AF or high SA-prevalence popula-
tions, is similar to the NABS instrument developed in our current
work, but additionally includes sex [27,28]. However, NoSAS per-
forms worse in this PAF cohort than the NABS, which indicates that
including sex does not improve, but rather worsens, model perfor-
mance. It is possible that in other populations inclusion of sex
would improve screening tool performance. Therefore, validation
studies in other AF cohorts are needed to evaluate the NABS
screening tool.
This study highlights the need to evaluate SA screening tools in
various clinical populations and improve SA screening methods in
those with cardiovascular disease. Previous work has identified a
lack of ‘‘classic” symptoms including sleepiness and snoring in
those with cardiovascular disease [39–42]. Our findings of worse
SA screening tool performance in the AF group compared to con-
trols is consistent with previous findings [3,43]. Once an SA screen-
ing tool with adequate performance measures is validated, it
would presumably be incorporated into practice. Given that 20–
80% of those with AF have SA and SA portends worse AF control
[44], integration into clinical practice may be operationalized by
using electronic medical record systems. Within the electronic
medical system, screening tools can be incorporated to be auto-
matically calculated as long as the input variables are available.
To aid in SA diagnosis and reduce provider burden, this tool may
be integrated into decision/knowledge support systems in the elec-
tronic medical record. This integration would assist with identifi-
cation of high SA risk and even offer appropriate next steps (i.e.,
referral to a sleep medicine clinic for testing) for the provider to
order if they see fit. This type of implementation may be particu-
larly effective in primary care and cardiology clinics.

Several study strengths and limitations are worth noting. This
current study specifically systematically enrolled individuals with
PAF and matched controls, which allows for evaluation of current
SA screening tools in these two populations. Furthermore, data
included in several common SA screening questionnaires were col-
lected, enabling us to simultaneously test several screening strate-
gies. Cardiac structure and function were evaluated by
echocardiography allowing assessment of SA-related anatomic
remodeling impact in AF. There are also several limitations. Only
those with PAF were enrolled and, therefore, may not be generaliz-
able to persistent, longstanding persistent, or permanent forms of
AF. Participants were clinically stable with well-controlled heart
rates secondary to beta-blocker and calcium channel blocker use,
which may belie the utility of heart rate. The limited sample size
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may preclude a more granular assessment of potentially important
predictors of SA in this population. The control group, while with-
out AF, had a high proportion of underlying cardiovascular risk or
disease and may not be reflective of the primary care population.
Despite this, standard SA screening instruments did not perform
as well in those with PAF compared to the control group.

Current SA screening instruments have suboptimal perfor-
mance in people with AF. Using a model with fewer continuous
variables derived from the STOP-BANG screening improved SA
screening in patients with PAF. Study findings should be broadened
by examining a population with a spectrum of AF subtypes, i.e. per-
sistent, longstanding persistent, and permanent AF. External vali-
dation of this novel screening tool in larger cohorts is necessary
before implementation in clinical practice. Future work may be
more globally relevant if machine learning algorithms are applied
to populations not well characterized by standard SA screening
tools (e.g., heart failure, stroke) to integrate novel combinations
and multiple patient characteristics or endophenotypes (e.g., phys-
iologic variables, demographics, anthropometry) to improve accu-
racy of SA screening.
5. Conclusions

Commonly used screening instruments for SA (e.g., Berlin and
STOP-BANG) perform suboptimally in the PAF population. An
abbreviated screening, NABS, including neck circumference, age,
BMI, and snoring improves on the performance of standard SA
screening tools in AF participants.
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