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Polygenic loading for major depression is associated with
specific medical comorbidity
TH McCoy1, VM Castro1,2, L Snapper1, K Hart1, JL Januzzi3, JC Huffman4 and RH Perlis1

Major depressive disorder frequently co-occurs with medical disorders, raising the possibility of shared genetic liability. Recent
identification of 15 novel genetic loci associated with depression allows direct investigation of this question. In cohorts of
individuals participating in biobanks at two academic medical centers, we calculated polygenic loading for risk loci reported to be
associated with depression. We then examined the association between such loading and 50 groups of clinical diagnoses, or topics,
drawn from these patients' electronic health records, determined using a novel application of latent Dirichilet allocation. Three
topics showed experiment-wide association with the depression liability score; these included diagnostic groups representing
greater prevalence of mood and anxiety disorders, greater prevalence of cardiac ischemia, and a decreased prevalence of heart
failure. The latter two associations persisted even among individuals with no mood disorder diagnosis. This application of a novel
method for grouping related diagnoses in biobanks indicate shared genetic risk for depression and cardiac disease, with a pattern
suggesting greater ischemic risk and diminished heart failure risk.
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INTRODUCTION
Major depression has been associated with a host of non-
psychiatric comorbidities, ranging from cardiovascular disease to
autoimmune disorders. The impact of co-occurrence is often
profound and bi-directional—that is, outcomes of each disorder
tend to be worse in the presence of the other,1–5 despite the
availability of multiple efficacious treatments.6 Thus, understand-
ing the mechanism of such co-occurrence has both scientific and
clinical relevance.
This co-occurrence has a range of possible explanations. It is

possible that depression increases risk for some disorders, either
directly (for example, via changes in cortisol or immunosuppres-
sion) or indirectly (for example, via changes in health behaviors).7,8

Conversely, the presence of a medical disorder can represent a
stressor increasing risk for depression.9 Yet, a third model posits a
shared liability—i.e., the same factors that increase risk for one
disorder may increase risk for the other.10 Multiple twin or family
investigations support this shared liability, at least for cardiovas-
cular disease.11–13 In reality, it is likely that all three mechanisms
play a role in co-occurrence of some disorders, but confirming the
presence of at least one mechanism would represent a key first
step in understanding these relationships.14

Multiple novel genetic loci associated with major depression in
individuals of Northern European ancestry at a genome-wide level
of significance have recently been reported.15 These newly
reported loci allow for direct examination of the possibility that
aggregated genetic liability for depression, in addition to
depression itself, is associated with risk for disorders other than
depression. The present study aims to test the association
between such liability and medical comorbidity, using a novel

method for deriving this comorbidity. Specifically, we drew on
these newly reported genetic associations to construct estimates
of common-variant genetic loading in the large medical biobanks
from two academic medical centers. We then tested these
depression loading measures for association with empirically
derived groups of diagnoses, or topics, that tend to co-occur with
each other.

MATERIALS AND METHODS
Clinical phenotype derivation
Standard phenome-wide association studies (PheWAS) test all diagnostic
codes against all predictors—typically individual risk variants or genome-
wide common variants.16 This approach risks either inflation of type I error
(by testing 1500+ diagnostic codes), or type II error (by correcting for 1500
+ diagnostic codes). Further, it fails to take into account correlation
between individual coded diagnoses, and the highly variable reliability of
many such codes.
As an alternative, we developed a method that applies latent

Dirichilet allocation (LDA) to reduce categorical diagnostic ontologies to
a finite set of topics on which these codes load.17,18 This form of
unsupervised machine learning has most commonly been applied in
natural language processing to capture the topics expressed in documents;
it presumes that individual tokens or terms (here, diagnostic codes) reflect
an underlying topic, and that the record of an individual patient reflects a
combination of latent topics. Figure 1 depicts the process of conceptualiz-
ing patient medical records as a 'bag' of observed diagnostic code counts
from which unobserved latent topics are inferred using LDA. Thereafter,
the inferred topics are treated as the phenotype in analysis.
Here we extracted all ICD-9 diagnostic codes for biobank participants

from the inpatient and outpatient electronic medical records of
Massachusetts General Hospital and Brigham and Women's Hospital and
grouped them into 1667 PheWAS disease categories.19 All participants had
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signed written informed consent for biobank participation, including
consent for release of deidentified data under a Data Use Agreement to
qualified investigators, as approved by the hospitals' Institutional Review
Board. We eliminated PheWAS codes occurring in o1% of individuals or
more than 99% of individuals in the first cohort, leaving 508 codes for topic
model construction. We then trained a 50-topic model, and scored cohorts
one and two. (The decision a priori to select 50 topics is discussed further
below; the optimal number of targets remains an area of research in
unsupervised learning20–23). The LDA was performed using the Gensim
implementation.24,25 Importantly LDA allows for the possibility of all codes
with respect to all topics. The distinction between topics is in the expected
probabilities of each code. As such, we focus on the most probable
diagnostic codes given each topic as a means of interpreting the topics.
When individual topics are mentioned in the text they are named using
the most strongly loaded code with the suffix ‘++’ to indicate that a topic
comprises many codes, each contributing to membership in that topic.

Molecular methods
All subjects were genotyped using either the Illumina MEGA (cohort 1,
n= 4931) or the Illumina MEGA-EX (cohort 2, n= 4428) array (Illumina;
San Diego, CA, USA). Each cohort was cleaned, imputed, and analyzed
separately to minimize batch effects. We retained subjects with geno-
typing call rates exceeding 99% and no evidence of relatedness based on
identity by descent (IBD).26 We likewise retained any SNPs with call rate of
95% or greater, and Hardy–Weinberg equilibrium P-value41× 10− 10.
Genotypes were next imputed using the Michigan Imputation Server
implementing Minimac3, based on all population subsets from 1000
Genomes Phase 3 v5 as reference panel.27–29 Phasing of haplotypes used
SHAPEIT.30

We generated principal components, as implemented in PLINK 1.9, to
identify the first 10 components of the variance-standardized relationship
matrix among genotyped SNPs in each cohort.31 After overlaying HapMap
populations, only those individuals falling within the Northern European
cluster were included in subsequent analysis.

Analysis
We generated polygenic risk scores (PRS), estimates of polygenic loading
for MDD, using seven tranches of SNPs (5 × 10− 8, 1 × 10− 7, 1 × 10− 6,
1 × 10− 5, 1 × 10− 4, 1 × 10− 3 and 1× 10− 2, S1–S7) drawn from our prior
publication reporting 15 genome-wide associations with depression.15 The
value for each P-value tranche represents the maximum P-value that is
included in that tranche. This list was linkage-disequilibrium pruned using
the 'clump' function as implemented in PLINK 1.9, with a 250 kb window
and minimum r2 set at 0.5 by default.32

We used linear regression to examine association between depression
polygenic score and each of the 50 topics. We fit both unadjusted models
and models incorporating the first 10 MDS components, and present the
meta-analyzed result of the two genotyping cohorts.
As this analysis was intended as a hypothesis-generating effort, we

present uncorrected P-values in all results. For purposes of interpretation,
Bonferroni correction for 50 topics would require a P-value of 0.05/50, or
0.001, for significance. The seven PRS tranches are correlated so do not
represent seven independent tests per phenotype; since the average r
between them is ~ 0.65, we consider a fully corrected P-value threshold for
significance to be 0.00042.33,34 To further elucidate the statistical
significance of any associations identified we utilized permutation to
calculate empirical P-values as well as an experiment-wide P-value. To do
so, we randomized the relationship between the topics (phenotype) and
the MDS adjusted PRS (genotype) and calculated association in the full
cohort between all tranches and all topics 100 000 times under this
simulated null.

RESULTS
In the first genotyping cohort, there were 3728 individuals,
including 2165 females (58.1%) and 997 individuals (26.7%) with a
mood disorder. Cohort 2 included 2712 individuals, including 712
(49.2%) females and 779 individuals (28.7%) with a mood disorder.

Figure 1. Illustration of the process of topic modeling as applied in this study.
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Mean age in cohort 1 was 57.6 (s.d. 16.8) years; mean age in cohort
2 was 62.2 (s.d. 15.9) years.
Figure 2 illustrates the distribution of associations with PRS by

topic and minimum P-value (that is, PRS threshold yielding
strongest evidence of association). For consistency with other data
clustering methods, topics are named according to predominant
terms, adding the suffix ‘++’ to indicate that topics may contain
overlapping terms as well as apparently unrelated terms. Three
topics—mood disorder++ (03), heart failure++ (21) and cardiac
ischemia++ (27)—met an experiment-wide threshold for
association (Table 1). PheWAS diagnostic codes contributing to
these topics are listed in Table 2, ranked by order of contribution
(that is, weighting of each code for a given topic, from greatest
to least). (Supplementary Table 1 reports all topics by all
PRS tranches, sorted by association P-value). Permuted topic
level associations matched those of the primary analysis
(Supplementary Figure 1). In experiment-wide permutation
analysis the number of significant topics was itself statistically
significant (permuted P= 0.02).
In secondary analysis, we excluded any individuals with a mood

disorder PheWAS code (n= 1776) and repeated these analyses.
Association P-values are indicated in Table 1 (right), and visualized
in a heat map in Figure 3. As anticipated, the mood disorder topic
(03) was no longer significant, suggesting that the additional
codes in that topic do not contribute meaningfully to association;
the two cardiac topics demonstrate persistent association.

DISCUSSION
In this analysis of electronic health record data from 6440
individuals of Northern European ancestry, we identified three
sets of diagnoses (topics) associated with PRS for depression at an
experiment-wide significance threshold. One of these encom-
passes mood disorders, and can be considered a positive control
or indicator of assay sensitivity—though notably, it also includes
related codes (adjustment disorder, tobacco use, and anxiety) that
may reflect true pleiotropy or simply differences in the way mood
and anxiety symptoms are coded. The other two reflect different
elements of cardiac pathology. That cardiac pathology surfaces
from this unsupervised machine learning approach is reassuringly
face valid given the extensive literature relating cardiac and mood
disorders; however, cardiac pathology is subdivided into distinct
associations.1–4 Cardiac ischemia++ (topic 27) largely captures
acute coronary syndromes, including risk factors for such
syndromes (See Table 2 for the codes most strongly associated
with this topic). The data suggest that MDD loading is associated
with greater risk for these acute syndromes (Table 1). Heart failure
++ (topic 21) also reflects cardiovascular pathology but appears to
reflect a more chronic disease course, including heart failure but
not limited to cardiac disease (Table 2). Depressive genetic loading
is inversely associated with heart failure++ (Table 1). This
differential result underscores the complexity of the relationship
between depression and cardiovascular disease.35–37 Importantly,
evidence of association persists even when individuals with a

Figure 2. Distribution of associations of polygenic risk scores (PRS) by topic (x axis) and minimum P-value across seven PRS tranches (y axis).

Table 1. Topics associated with PRS at an experiment-wide threshold for significance in primary analysis (left); follow-up analysis of primary
associations (right)

Topic P-value
tranche

Primary analysis Excluding individuals with
mood disorder diagnosis

Coefficient 95% CI Association
P-value

Coefficient 95% CI Association
P-value

Topic 27: Ischemic Heart Disease++ 1×10− 2 0.046 0.022 0.070 0.000221 0.046 0.017 0.074 0.00185
Topic 21: Heart Failure++ 1 ×10− 4 − 0.046 − 0.070 − 0.021 0.000237 − 0.044 − 0.072 − 0.015 0.00279
Topic 03: Mood Disorders++ 1 ×10− 2 0.045 0.021 0.070 0.000273 − 0.010 −0.039 0.018 0.47953

Abbreviations: CI, confidence interval; PRS, polygenic risk scores.
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mood disorder are excluded, suggesting that the observed
associations are not simply consequences of a mood disorder
diagnosis.
The relationship between depressive disorder and acute coronary

syndromes is well described; however, the mechanism remains
unclear.38–42 Multiple investigations using twin- and family-based
designs have found evidence of shared heritable liability between
MDD and cardiac disease.11–13 One study suggests the complexity
of this relationship, with the extent of liability varying with sex and
age.13 Further complicating efforts to understand comorbidity is the
observation that depression is associated with increased deleterious
behavior such as tobacco use and less exercise - notably tobacco
use, for which risk is likely to be heritable, contributes to both a
mood++ and a cardiovascular++ topic in our results. On the other
hand, in prior studies individuals with major depression exhibit
greater platelet reactivity and prevalent endothelial dysfunction
relative to non-depressed subjects, which is a candidate pathway
for depression increasing cardiac risk directly.43

Surprisingly, in the present study depression loading is inversely
associated with more chronic forms of cardiac disease (heart
failure++; topic 21). Although it is speculative, the divergences
between acute and chronic cardiac pathology may reflect the
tension between genetic and behavioral determinates of health. In
the chronic phases of cardiac disease, personality is an important
determinate of outcome.44–46 Alternatively, those with heart
failure and comorbid depression might in fact have substantially
higher mortality risk, obscuring a chronic link between the two
diagnoses due to attrition.
In interpreting these associations, it is important to recognize

that the methodology itself identifies co-occurring codes; the
application of names to the underlying (that is, latent) concepts
requires human intervention. Moreover, codes are associated,
even if only negligibly, with all topics. This characteristic
represents both a feature and a limitation of the methodology:

it does not require manual curation of topics, and thus can
discover relationships in data not specified a priori; on the other
hand, it requires interpretation of results that may not be intuitive.
Concretely, we would not have expected acute and chronic
cardiac disease to primarily occur in distinct topics. This surprise
bespeaks the hypothesis-generating potential of unsupervised
machine learning, which still requires interpretation and follow-up.
For ease of reading, by convention we name each topic by the
most strongly-loading code, but again emphasize that a topic is
not simply a single code and note that visualization and
interpretation of probabilistic topics remain an area of active
investigation in machine learning.47 Conversely, for testing specific
hypotheses about a particular set of diagnoses, merely testing a
curated code or set of codes would be most interpretable, but
preclude discovery of new or unanticipated relationships.
Latent Dirichilet allocation has been applied extensively in

natural language processing to identify topics reflected in blocks
of text; however, to our knowledge, it has not been utilized for
genetic investigation. The present study suggests the utility of this
method for understanding the relationship between psychiatric
and comorbid disorders, and we hope this study will prompt
further investigations in larger biobanks and in using other
polygenic risk measures. Still, an important caveat to this work is
the inability to determine causation. Specifically, we cannot
distinguish between the case of shared genetic liability for
depression and comorbidities, and depression ‘causing’ the
observed comorbidity. However, we are able to render the third
possibility (the comorbidity causes the depression) less likely, by
conditioning on an aggregate measure of genetic depression
liability. A further caveat is the likelihood that other parameters
would yield differing results—i.e., the application of 10 or 100
topics. Here, we selected 50 as a plausible number of disease
groups a priori, and based on prior work with LDA in other
contexts. Understanding the extent to which other, nonlinear

Table 2. List of top 20 PheWAS codes contributing to topics associated with PRS

Topic 3: Mood disorders++ Topic 21: Heart failure++ Topic 27: Ischemic heart disease++

Mood disorders Heart failure Ischemic Heart Disease
Anxiety phobic and dissociative
disorders

Cardiomyopathy Cardiac conduction disorders

Substance addiction and disorders Ill-defined descriptions and complications of
heart disease

Tobacco use disorder

Pervasive developmental disorders Cardiac conduction disorders Pulmonary collapse; interstitial/compensatory
emphysema

Schizophrenia and other psychotic
disorders

Cardiomegaly Ill-defined descriptions and complications of heart
disease

Adjustment reaction Ischemic Heart Disease Hyperplasia of prostate
Tobacco use disorder Pulmonary congestion and hypostasis Congenital musculoskeletal anomalies
Back pain Renal failure Hypotension
Malaise and fatigue Pleurisy; pleural effusion Cardiomegaly
Other headache syndromes Pulmonary collapse; interstitial/compensatory

emphysema
Vertiginous syndromes and other disorders of
vestibular system

Sleep disorders Other forms of chronic heart disease Pleurisy; pleural effusion
Abdominal pain Heart valve disorders Syncope and collapse
Acute upper respiratory infections Disorders of fluid electrolyte and acid-base

balance
Symptoms/disorders of the urinary system

Superficial cellulitis and abscess Other anemias Benign neoplasm of colon
Constipation Hypotension Overweight
Alcohol-related disorders Diabetes mellitus Sleep disorders
Disorders of sweat glands Pneumonia Malaise and fatigue
Other nutritional deficiency Shock Varicose veins
Neurological disorders due to brain
damage

Symptoms involving skin and other
integumentary tissue

Other dermatoses

Delirium dementia and amnestic
disorders

Syncope and collapse Heart valve disorders

Abbreviation: PRS, polygenic risk scores.
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means of weighting diagnoses, or specifying other numbers of
topics, would yield differing results merits further study.
Taken together, our results suggest the complexity of the

relationship between mood disorders and comorbid somatic
illness, and indicate specific groups of diagnoses that may travel
along with genetic risk for major depression. They further illustrate
the application of a novel approach to aggregating diagnoses,
applicable to any large clinical data set, which may be more
tolerant of heterogeneity in diagnostic codes and sensitive to
groups of diagnoses that travel together. At the same time, the
observed association with mood disorders may be considered
further replication of the previous report of depression liability
genes.15 The application of topic modeling therefore appears to
be a promising strategy.
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