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Abstract

Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an impor-
tant component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In
the present study we investigated the effect of soluble CD14 on the response of human
PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimu-
lated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and
the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemo-
kine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was com-
pared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The
response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced
by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to
two kinds of LPS was observed. These responses were significantly lower compared to that
to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS
was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The
response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of
sCD14 could be an important factor for modulation of the host response against periodontal
pathogens.

Introduction

Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate in osteo-
blasts, adipocytes, and chondrocytes and express characteristic pattern of surface markers
[1]. MSC-like cells are found in all dental tissues, including dental pulp, gingival tissue, peri-
odontal ligament and others [2,3]. Periodontal ligament stem cells (PDLSCs) have a fibro-
blast-like shape, express characteristic mesenchymal stem cells surface markers, and exhibit
the ability to differentiate into different cell types in vitro [4]. As recently reviewed, PDLSCs
play an important role in periodontal tissue homeostasis and regeneration and similar to
MSCs also possess immunomodulatory ability [5]. Noteworthy, cells isolated from
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periodontal ligament are used in research in numerous studies (for review, see [6]). The com-
mon characteristic of these cells is their ability to differentiate into osteoblasts [7] and there-
fore might contain some population of multipotent progenitor cells. It is rather difficult to
discriminate mesenchymal stem cells from common fibroblasts in vitro, because both cell
types share common surface markers [8].

Periodontitis is an inflammatory disease leading to periodontal tissue destruction and even-
tually to tooth loss [9,10]. Periodontitis is associated with gram-negative bacteria in the dental
pocket but the major reason of tissue destruction seems to be an inappropriate unregulated
host response to bacterial pathogens [11]. P. gingivalis is a gram-negative bacteria and plays an
important role in the development of periodontitis [12]. P. gingivalis LPS is considered as one
of the major virulence factor of these bacteria. The structure and virulence activity of P. gingi-
valis LPS is strikingly different from those of most gram negative bacteria, it contains tetra-
and pentaacetylated lipid A species and might activate both toll like receptor (TLR) 2 and TLR
4 [13,14]. In contrast, LPS of common enterobacteria E. coli activates only TLR4 [15]. The acti-
vation of TLR2 by P. gingivalis LPS is sometimes related to insufficient purity of LPS prepara-
tions (e.g. [16]).

As recently reviewed, mesenchymal stem cells might be involved in the progression of
periodontal disease and their immunomodulatory properties are considered as a potential
therapeutic approach for periodontitis [17]. Therefore, interaction of periodontal patho-
gens, particularly P. gingivalis LPS, with periodontal ligament stem cells might play an
important role in the progression of periodontal disease but it was not investigated inten-
sively. A recent study shows that prolonged treatment of hPDLSCs with P. gingivalis LPS
enhances the production of IL-6 and CXCL8 by human PDLSCs and inhibits their osteo-
genic differentiation [18]. The inhibition of osteogenic differentiation by LPS seems to be
mediated through TLR-4 and might be associated with an increased expression of miRNA-
138 [19]. Interestingly, the most pronounced response of PDLSCs to LPS is observed at con-
centration of 10 pug/ml, whereas at concentrations up to 1 ug/ml LPS is not always effective
[18]. The low reactivity of PDLSCs to bacterial LPS could be explained by the fact that these
cells by definition do not express membrane bound CD14 [5], which is an important co-fac-
tor of TLR-4 activation by LPS [20]. Beside membrane form, there is also a soluble form of
CD14 [21]. We hypothesized that soluble CD14 might influence the response of human
PDLSCs to P. gingivalis LPS. In the present study, we investigated the effect of soluble CD14
on the production of IL-6, CXCL8, and CCL2 by human PDLSCs in response to P. gingivalis
LPS. The effect of P. gingivalis LPS was compared with that of TLR-4 agonist E. coli LPS and
TLR-2 agonist Pam3CSK4.

Material and Methods
Cell Culture and Reagents

Primary periodontal ligament cells were isolated from periodontally healthy patients aged 18-
20 years undergoing routine extraction of their third molar teeth. Patients were informed in
detail before the surgical procedures and gave their written agreement. The study protocol was
approved by the Ethics Committee of the Medical University of Vienna. Periodontal ligament
tissue was scraped from the teeth root surface with a scalpel, cut into small pieces and digested
by collagenase/dispase (Sigma, St. Louis, MO, USA) for 30 min at 37°C. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum
(FBS), streptomycin (50 pug/ml) and penicillin (100 U/ml) under humidified air atmosphere of
5% CO, at 37°C. Cells isolated from 7 different donors were used; cells from passage levels 3-6
were used in the experiments.
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Commercially available P. gingivalis LPS (standard preparation), E. coli LPS (ultrapure
preparation), and TLR-2 agonist Pam3CSK4 were purchased from Invivogen (San Diego,
USA). Human soluble CD14 was purchased from Sigma (St. Louis, MO, USA).

Characterization of periodontal ligament stem cells by flow cytometry

hPDLSCs were stained with one of the following monoclonal antibodies (all from eBiosciences,
San Diego, CA, USA): phycoerythrin (PE)-conjugated mouse anti-human CD29, PE-conju-
gated mouse anti-human CD90, PE-conjugated mouse anti-human CD105, PE-conjugated
mouse anti-human CD146, PE-conjugated mouse IgG1 K isotype control, fluorescein isothio-
cyanate (FITC)-conjugated mouse anti-human CD14, FITC-conjugated mouse anti-human
CD31, FITC-conjugated mouse anti-human CD34, FITC-conjugated mouse anti-human
CD45, FITC-conjugated mouse IgG1 K isotype control.

Stimulation protocol

Primary hPDLSCs were seeded in a 24-well plate at a density of 5x10* cells per well containing
0.5 mL of DMEM medium supplemented with 10% FBS and 1% P/S. After 24 h, medium was
changed to serum-free DMEM with 1% P/S. Cells were stimulated with P. gingivalis LPS (0.01-
1 pg/ml), E. coli LPS (1 pg/ml), or Pam3CSK4 (1 pug/ml) in the presence or in the absence of
sCD14 (250 ng/ml) for 24 h. In some experiments, sCD14 was used also in concentrations of
2.5 and 25 ng/ml. After stimulation, the cellular mRNA expression levels of IL-6, CXCL8, and
CCL2 in cells as well as the content of corresponding proteins in the conditioned media were
determined.

Quantitative PCR and ELISA

The mRNA expression levels of IL-6, CXCL8, and CCL2 were determined by qPCR as described
previously [22,23], taking the B-actin encoding gene as internal reference. Isolation of mRNA
and transcription into cDNA was performed using the TagMan Gene Expression Cells-to-CT kit
(Ambion/Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instruc-
tions. This kit provides good accuracy and superior sensitivity of gene-expression analysis [24].
qPCR was performed on an ABI StepOnePlus device (Applied Biosystems) in paired reactions
using the Tagman gene expression assays with following ID numbers (all from Applied Biosys-
tems): IL-6, Hs00985639_m1; CXCL8, Hs00174103_m1; CCL2, Hs00234140_m1; B-actin,
Hs99999903_m1. qPCR reactions were performed in triplicate in 96-well plates using the follow-
ing thermocycling conditions: 95°C for 10 min; 40 cycles, each for 15 s at 95°C and at 60°C for 1
min. The point at which the PCR product was first detected above a fixed threshold (cycle thresh-
old, C,), was determined for each sample. Changes in the expression of target genes were calcu-
lated using the 2"*4“* method, where AAC, = (Ctmget—Ctﬁ‘aCtm)smple—(Cttargﬂ—Ctﬁ'am“)comml,
taking an untreated sample as a control.

Commercially available ELISA Ready-Set-Go! kits (eBioscience, San Diego, CA, USA) were
used for measurements of IL-6, CXCL8, and CCL2 levels in the conditioned media.

Statistical Analysis

After confirming normal distribution by Kolmogorov-Smirnov test, the statistical differences
between different groups were analyzed by one-way analysis of variance (ANOVA) for
repeated measures followed by t-test. All statistical analyses were performed using statistical
program SPSS 21.0 (SPSS, Chicago, IL, USA). Data are expressed as mean + S.E.M. Differences
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Fig 1. Representative Expression of surface markers on human periodontal ligament stem cells. Cells were stained with specific antibodies and
the expression of different surface markers was analyzed by flow cytometry. A—staining with mesenchymal markers CD29, CD90, CD105, CD146 and
corresponding isotype control antibody. B—staining with hematopoietic markers CD14, CD31, CD34, and CD45.

doi:10.1371/journal.pone.0160848.9g001

were considered to be statistically significant at p < 0.05. All figures excluding Fig 1 represent a
pooled data of 7 different donors.

Results
Expression of surface markers and differentiation ability of PDLSCs

The representative expression of specific markers on the hPDLSCs surface is shown in Fig 1.
As can be seen, the cells were positively stained to mesenchymal stem cells markers and nega-
tively stained to hematopoietic markers. The following proportions of positively stained cells
with mesenchymal markers were observed: CD29, 89.5+2.4; CD90, 99.6+0.1; CD105, 97.3+0.8;
CD146, 34.2+3.2 (n = 7 for all markers). The following proportions of positively stained cells
with hematopoietic markers were observed: CD14, 1.7+0.5; CD31, 0.9+0.2; CD34, 1.0+0.2;
CD45, 1.1+0.1 (n = 7 for all markers).

The effect of soluble CD14 on the response of hPDLSCs P. gingivalis
LPS, E. coli LPS, and Pam3CSK4

The effect sCD14 (250 ng/ml) on the gene expression levels of IL-6, CXCL8, and CCL2 in
hPDLSCs on response to different stimuli is shown in Fig 2. As can be seen, every stimulus
induced a significant increase in the expression of all genes in hPDLSCs. In the absence of
sCD14, the response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was lower than that to
Pam3CSK4. In the presence of sCD14, the response of hPDLSC:s to both types of LPS was signifi-
cantly increased (p<0.05). Under these conditions, the response to P. gingivalis LPS was signifi-
cantly higher than that to E. coli LPS. The response to TLR2 agonist Pam3CSK4 (1 pg/ml) was
not dependent on the presence of sCD14. In the presence of sCD14, the response to Pam3CSK4
was similar to that of P. gingivalis LPS and significantly higher compared to E. coli LPS.
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Fig 2. Gene-expression levels of IL-6, CXCL8, and CCL2 in hPDLSCs in response to stimulation with P. gingivalis LPS, E. coli LPS, and
Pam3CSK4 in the presence or in the absence of sCD14. Human periodontal ligament stem cells were stimulated by P. gingivalis LPS (Pg LPS), E.
coli LPS (Ec LPS), and Pam3CSK4 in concentration of 1 ug/ml for 24 h in the presence or in the absence of soluble CD14 (250 ng/ml) and the gene-
expression levels of IL-6, CXCL8, and CCL2 were measured by gPCR. Y-axes represent the n-fold expression levels of target gene in relation to
unstimulated cells (control = 1). Data are presented as mean + S.E.M. of 7 independent experiments with cells isolated from 7 different donors. *—
significantly higher than control (non-stimulated cells), p<0.05. #—significantly higher than Ec LPS with sCD14 group, p<0.05. ] - significantly higher
than group without sCD14, p<0.05. Il - significantly higher than Pg LPS without sCD14 and Ec LPS without CD14 groups, p<0.05.

doi:10.1371/journal.pone.0160848.g002
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The content of IL-6, CXCLS8, and CCL2 in the conditioned media upon stimulation with P.
gingivalis LPS, E. coli LPS, and Pam3CSK4 (all 1 ug/ml) in the presence or in the absence of
sCD14 (250 ng/ml) is shown in Fig 3. The measurements of protein levels were in agreement with
the data on the gene expression. The content of all three proteins in the conditioned medium in
response to stimulation with both types of LPS was enhanced by sCD14. In the absence of sCD14,
the response to both P. gingivalis LPS and E. coli LPS was significantly lower than that to
Pam3CSK4. In the presence of sCD14, the response to P. gingivalis LPS and Pam3CSK4 was sig-
nificantly higher than that to E. coli LPS. No significant effect of sCD14 on the protein production
by Pam3CSK4 was observed. In the presence of sCD14, no significant difference in the protein
production between stimulation with P. gingivalis LPS and Pam3CSK4 was observed.

Dependency of the response of hPDLSCs to P. gingivalis LPS on the
concentration of sCD14

The dependency of the response of hPDLSCs to P. gingivalis LPS on the sCD14 in the range
from 0 to 250 ng/ml is shown in Fig 4. As can be seen, no significant effect of sCD14 in the con-
centration of 2.5 ng/ml on the hPDLSc response to P. gingivalis LPS was observed. Higher con-
centration of sCD14 (25-250 ng/ml) induced a significant increase in the expression of IL-6,
CXCLS8, and CCL2 in response to P. gingivalis LPS (1 ug/ml). This was observed on both gene
and protein levels. No significant difference between the effect of sCD14 in concentration of 25
ng/ml and 250 ng/ml on the response of hPDLSCs to P. gingivalis LPS was observed.

Concentration-dependent response of hPDLSCs to P. gingivalis LPS in
the presence of CD14

Fig 5 shows the production of IL-6, CXCL8, and CCL2 by hPDLSCs in response to stimulation
with different concentrations of P. gingivalis LPS (0.01-1 pg/ml) measured in the presence of

PLOS ONE | DOI:10.1371/journal.pone.0160848 August 9, 2016

5/13



@’PLOS | ONE

Soluble CD14 Enhances Response of Stem Cells to Lipopolysaccharide

IL-6

CXCLS CCL2

E 103- 104 Il #4045
k=) *#1 #ll x#t
< T ;i 1 *#T
S 102 102 10 «
(®)]
— *1 * * *
© * *
= *
c 10" 104 10
(N
(3)
c
]
© 100 10" 10"
sCD14 - =4+ -+ - + - =4+ -+ - + - =4+ -+ - +
Co PgLPS EcLPS Pam3 Co PgLPS EcLPS Pam3 Co PgLPS EcLPS Pam3

Fig 3. Production of IL-6, CXCL8, and CCL2 by hPDLSCs in response to stimulation with P. gingivalis LPS, E. coli LPS, and Pam3CSK4 in
the presence or in the absence of sCD14. Human periodontal ligament stem cells were stimulated by P. gingivalis LPS (Pg LPS), E. coli LPS (Ec
LPS), and Pam3CSK4 in concentration of 1 pg/ml for 24 h in presence or absence of soluble CD14 (250 ng/ml) and the concentration of IL-6,
CXCL8, and CCL2 in conditioned media were measured by ELISA. Concentrations of IL-6, CXCL8, and CCL2 in conditioned media of
unstimulated cells were taken as control (Co). Data are presented as mean + S.E.M. of 7 independent experiments with cells isolated from 7
different donors. *—significantly higher than control (non-stimulated cells), p<0.05. #—significantly higher than Ec LPS with sCD14 group, p<0.05.
9] - significantly higher than group without sCD14, p<0.05. Il - significantly higher than Pg LPS without sCD14 and Ec LPS without CD14 groups,

p<0.05.

doi:10.1371/journal.pone.0160848.g003

sCD14. As can be seen, significantly increased expression of all three proteins was observed
already after stimulation with P. gingivalis LPS in concentration of 0.1 pg/ml. No significant
difference in the expression of all proteins was observed after stimulation with P. gingivalis LPS
at a concentration of 0.01 pug/ml.

Discussion

In the present study, we investigated the effect of P. gingivalis LPS on the production of IL-6,
CXCLS, and CCL2 by human periodontal ligament stem cells. The effect of bacterial LPS on
the dental-derived MSCs is investigated in some previous studies but their results are rather
controversial (for review, see [25]). Particularly, different effects of LPS on the differentiation
potential and the production of pro-inflammatory factors are reported, and some studies do
not observe any effect of LPS on these parameters [25]. We hypothesized that the effect of P.
gingivalis LPS on the hPDLSC might be enhanced by soluble CD14 (sCD14). Our data suggest
that in the presence of exogenous sCD14 P. gingivalis LPS induces a strong production of
inflammatory mediators by hPDLSC, which might play an important role in the inflammatory
response during periodontitis.

Membrane bound CD14 (mCD14) is a GPI-anchored protein on the cell surface [26].
Beside the membrane-bound form, there is also a soluble form of CD14 (sCD14) [21]. The
major function of CD14 is to facilitate binding of LPS to the transmembrane TLR4 receptor
[27]. Another function of CD14 is a control of TLR4 internalization and activation of MyD88
independent pathway [28]. In agreement with these criteria of MSCs [1], we did not observe
the expression of CD14 on the surface of PDLSCs. The proportion of CD14" cells in our sus-
pension was about 1.7%, which was slightly higher compared to a recent study showing that a
population of CD14 positive cells in PDLSCs suspension does not exceed 0.3% [29]. This dif-
ferences might be explained by the observation that mesenchymal stem cells express some
CD14 reactive epitopes and might bind some CD14 antibodies despite they do not express
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Fig 4. Response of hPDLSCs to stimulation with P. gingivalis LPS in the presence of different amounts of sCD14. Human periodontal
ligament stem cells were stimulated by P. gingivalis LPS in concentration of 1 ug/ml for 24 h in the presence of different amounts of sCD14 ranging
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measured by ELISA. Data are presented as mean + S.E.M. of 7 independent experiments with cells isolated from 7 different donors. *—
significantly different between groups, p<0.05.

doi:10.1371/journal.pone.0160848.9004

CD14 protein [30]. The absence of surface expression of mCD14 in hPDLSCs can explain the
relatively low response of these cells to bacterial LPS. The response of hPDLSc to both types of
LPS was significantly enhanced by soluble CD14. Soluble CD14 facilitate interaction of LPS
with membrane TLR4 [31], whereas there is no evidence that sCD14 facilitate activation of
TLR2. Therefore, we assume that a sCD14-dependent response to bacterial LPS could be medi-
ated mainly by TLR4.

Although the response of both P. gingivalis LPS and E. coli LPS was markedly enhanced by
sCD14, some differences in the response of hPDLSCs to these different LPS might be detected.
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In the absence of sCD14, both P. gingivalis LPS and E. coli LPS induced a production of IL-6,
CXCLS8, and CCL2, which was however, significantly lower than that to TLR2 agonist
Pam3CSK4. Since hPDLSc do not express mCD14, it can be assumed that this activation occurs
in a CD14-independent manner. The ability of E. coli LPS to activate the host response in
CD14-independent manner was already shown in studies using blocking anti CD14 antibodies
as well as on CD14-deficient animals [32,33]. In the present study, we used a standard
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commercially available P. gingivalis LPS preparation. Although some studies report that this
preparation is free of lipid contamination [34], the presence of some lipid traces, which are
potential activators of TLR2, is still assumed by the supplier. Therefore, it cannot be excluded
that these contaminations contribute to hPDLSCs response to P. gingivalis LPS in the absence
of sCD14. In the presence of sCD14, the response of hPDLSCs to P. gingivalis LPS was
markedly higher than that of E. coli LPS. In other words, potentiating effects of sCD14 is higher
for P. gingivalis LPS than for E. coli LPS. The reason for this observation is not entirely clear.
First, structural differences between P. gingivalis LPS and E. coli LPS [13,35] might be responsi-
ble for the different effects of sSCD14 on their interaction with TLR4. Second, it is possible that
some contaminating lipids in P. gingivalis LPS preparation, which are potential activators of
TLR2, might augment sCD14-mediated response to P. gingivalis LPS. This hypothesis is sup-
ported by the observation that interaction of TLR2 and TLR4 might play an important role in
LPS-induced TLR4-mediated response [36].

In the presence of sCD14, a significant increase in the production of IL6, CXCL8, and CCL2
is observed already after stimulation with P. gingivalis LPS at the concentration of 0.1 ug/ml.
This concentration range is lower than working concentration of P. gingivalis LPS observed in
other studies on stem cells of dental origin, in which exogenous sCD14 was not added. Activa-
tion of NF-kappaB in human PDLSCs and bone marrow MSC is induced by P. gingivalis LPS
at a concentration of 10 pg/ml [37]. In human dental pulp stem cells P. gingivalis LPS at a con-
centration of 1 pg/ml induced only modest changes in the phosphorylation of IkBa [38]. A
study on dental follicle progenitor cells reports that P. gingivalis LPS in concentrations up to
50 pug/ml does not influence the production of IL-6 by these cells [39]. LPS isolated from other
species also influences dental stem cell only at high concentrations in the absence of exogenous
sCD14. Particularly, an inhibition of osteogenic differentiation of hPDLSC by E. coli LPS was
observed at concentration of 10 pg/ml [40]. Thus, the presence of sCD14 increases the affinity
of dental stem cells to bacterial LPS and they can sense lower LPS concentrations.

The dependency of the hPDLSC response to bacterial LPS on sCD14 suggests that the local
levels of this protein might play an important role in the progression of periodontal disease.
Clinical studies show that the local and systemic CD14 levels are substantially affected by peri-
odontal disease. Particularly, periodontitis patients with higher levels of sCD14 in GCF have
fewer deep pockets [41]. The same study reports a negative correlation between sCD14 level in
GCF and periodontal pocket depth [41]. Another study shows that the levels of sCD14 in
whole saliva is higher in periodontitis patients than in healthy controls and that salivary CD14
level exhibit a significant positive correlation with clinical measurements of periodontitis [42].
Finally, serum sCD14 levels are higher in patients with periodontitis than in healthy subjects
[43,44].

The physiological role of the cytokine production by hPDLSCs in response to bacterial LPS
still remains to be elucidated. Two different aspects might be especially taken into consider-
ation. On the one hand, the production of IL-6, CXCL8, and CCL2 might promote inflamma-
tory response in periodontitis. We focused on the measurements on the expression of IL-6,
CXCLS8, and CCL2, which are thought to play an important role in the progression of peri-
odontal disease. IL-6 is a pro-inflammatory cytokine, which plays a key role in acute inflamma-
tion phase and promotes bone resorption [45]. CXCL8 (also called interleukin 8) and CCL2
(also called monocyte chemoattractant protein 1) are chemoattractants, which induce migra-
tion of neutrophils and monocytes, respectively, to the inflammation site and promote the
development of acute inflammation [46,47]. On the other hand, recent studies suggest that IL-
6 and CCL2 might be involved in the MSC-mediated immunosuppression. Particularly, IL-6
might be involved in T-cell suppression [48], whereas CCL2 might mediate MSC-induced T-
cell apoptosis [49]. Some previous studies show that immunomodulatory properties of MSCs
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are influenced by TLRs activation [50], which might play a role in the progression of periodon-
titis. This assumption is strengthened by studies showing that hPDLSCs isolated from peri-
odontitis patient possess impaired immunomodulatory abilities [51,52].

The response of periodontal ligament stem cells to the P. gingivalis LPS in the presence of
soluble CD14 is observed already at the concentration range of ng/ml and therefore might be
physiologically relevant. The levels of sCD14 used in our study seem to be also physiologically
relevant. A previous study reports that sCD14 concentration in GCF ranges from 0.16 to
51.74 pg/ml [41]. Another study reports that the levels of sCD14 in blood serum are in the
range of few pg per milliliter [43]. Changes in the levels of sCD14 might be an important mech-
anism influencing the response to periodontal pathogen, but its exact role need to be further
investigated. Moreover, the presence of sCD14 might also influence the regenerative potential
of resident MSC-like cells of dental tissues, particularly their proliferation and differentiation
ability. The effect of sCD14 on these parameters must be investigated in future studies.

Summarizing, our data show that the response of human periodontal ligament stem cells
(hPDLSCs) to bacterial lipopolysaccharide (LPS) is significantly enhanced by soluble CD14.
CD14 is an important factor involved in the activation of TLR4 by bacterial LPS and hPDLSCs
usually are not expressing this protein on their surface. In the presence of physiologically relevant
levels of soluble CD14, hPDLSCs exhibit a significant response even to rather low LPS concentra-
tions. Changing in the extracellular levels of soluble CD14 might influence the responsiveness of
hPDLSC to different pathogens and might have a potential effect on their immunomodulatory
properties, which might play an important role in the pathogenesis of periodontitis.
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