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Abstract

Stress is perhaps easiest to conceptualize as a process which allows an organism to accommodate for the demands of its
environment such that it can adapt to the prevailing set of conditions. Psychological stress is an important component with
the potential to affect physiology adversely as has become evident from various studies in the area. Although these studies
have established numerous effects of psychological stress on physiology, a global strategy for the correlation of these
effects has yet to begin. Our comparative and systematic analysis of the published literature has unraveled certain
interesting molecular mechanisms as clues to account for some of the observed effects of psychological stress on human
physiology. In this study, we attempt to understand initial phase of the physiological response to psychological stress by
analyzing interactions between innate immunity and metabolism at systems level by analyzing the data available in the
literature. In light of our gene association-networks and enrichment analysis we have identified candidate genes and
molecular systems which might have some associative role in affecting psychological stress response system or even
producing some of the observed terminal effects (such as the associated physiological disorders). In addition to the already
accepted role of psychological stress as a perturbation that can disrupt physiological homeostasis, we speculate that it is
potentially capable of causing deviation of certain biological processes from their basal level activity after which they can
return back to their basal tones once the effects of stress diminish. Based on the derived inferences of our comparative
analysis, we have proposed a probabilistic mechanism for how psychological stress could affect physiology such that these
adaptive deviations are sometimes not able to bounce back to their original basal tones, and thus increase physiological
susceptibility to metabolic and immune imbalance.
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Introduction

Physiological homeostasis is a dynamic equilibrium of the body

maintained by the interplay of various biological processes and

interactions with the environment. When this state of dynamic

equilibrium is perturbed, adaptive responses try to overcome

threats from the challenge with the goal of restoring the original

state [1]. Stimuli that perturb homeostasis can be considered as

stressors that affects physiology and can make individuals

susceptible to diseases [2,3]. Although there are reports which

correlate stress with disease susceptibility [4,5,6,7,8], a systematic

analysis is required in order to understand the molecular and

genetic basis of such correlation as well as to develop a strategy for

future work in establishing the predictability of stress-induced

disease susceptibility. This view is supported by the fact that the

traditional notions about the immune system as a closed system

have evolved, the recent views being that there exists multi-

directional communication among various physiological processes

namely, immunity, metabolism and neurological signaling [9].

Under the influence of stressors, specific molecules and cells are

produced as a requirement for activation of immune and other

physiological processes, which in turn demands high energy

utilization for rebalancing of physiological homeostasis. Such

energy requirements may cause global alterations at the systems

level (such as a shift in the energy balance) in order to maintain

homeostasis. It is important to mention here that the increased and

altered energy demands affect various physiological processes of

which metabolism and immunity are two critical components in

maintaining health.

Psychological stress affects physiological energy balance via

activation of the Hypothalamic-Pituitary-Adrenocortical (HPA)

and/or the Sympathetic-Adreno-Medullary (SAM) axes by

producing different stress hormones such as cortisol, epinephrine

and norepinephrine [10,11,12]. Energy utilization and balance

can also be modulated by alterations in many other processes

during the stress response, for example, feeding behavior [13,14],

metabolism [15,16] and reproductive behavior [14,16,17]. It is

reported that the endocrine system together with the nervous

system might play a significant role in the modulation of

metabolism and energy distribution [18]. These studies have

established that it is the inflammatory innate immune responses

that is activated first when the body is subjected to psychological

stress [19]. There are also indications that innate immunity and

acute phase responses are integrated with the neuro-endocrine

system [20]. Hence, we believe that there should be a very

sophisticated mechanism by which communication among these

processes would regulate homeostasis, making it possible for the

physiology to perceive and accommodate fluctuations in its

internal environment during the adaptive response to psycholog-
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ical stress such that physiologic integrity is maintained. In an

attempt to understand this delicate balance among various

physiological processes, we bagan with an analysis of the cross-

talk between innate immunity and metabolism which, based on

the above arguments, should be important frontiers for any

adaptive response to psychological stress.

There are numerous isolated investigations reporting complex

data regarding genes, pathways and networks affecting innate

immunity [21,22], metabolism [23,24] and psychological stress

[25,26]. Most of the investigations carried out so far have

measured aspects of immunity, metabolism or other processes in

relation to psychological stress in an isolated manner. However,

studies attempting to correlate psychological stress with physio-

logical processes such as innate immunity, metabolism and their

relationship at the genomic and molecular levels are scarce [27]. It

is, therefore, important not only to identify candidate genes

associated with adaptive response to stress, but also to understand

the gene networking to determine impact on physiology by

analyzing the molecular and causative functional relationships

among apparently unrelated candidate genes. The current report

has (a) analyzed results existing in this area, and (b) extended

biological information obtained from various studies reported so

far. The current approach has used gene-association networks in

an attempt to visualize a more global picture in order to better

understand the effects of psychological stress and the maintaining

of balance between metabolic and innate-immune processes in

humans. This work will provide a basis and better define a

direction for future research in the area.

Over last few years, information concerning the human

interactome has grown rapidly (e.g. KEGG, HPRD, BIND,

MINT, miRBase, BIOMART databases, to name but a few).

However, the data still remains largely incomplete lacking

systematic information about connectivity at molecular level

[27,28,29]. Many other tools also exist that can identify candidate

genes for a particular phenotype by mining the available

interactome data (e.g. Endeavour, SUSPECTS, GeneSeeker,

PROSPECTR) [25,30], but they do not provide the required

gene networking which is essential in understanding the relation-

ships involved in a complex response. Databases like STRING

[31], which use known and predicted protein-protein interaction

data, do provide gene networks based on the identified candidate

genes. However, they lack robust user-controlled query systems

which are required for association of genes to the phenotypes

under study. Network-based methodologies have been developed

for the prediction of genes associated with diseases [32,33],

however, these are limited by lack of exhaustive disease-gene

annotation for many diseases in OMIM [34,35,36]. A few recently

developed methods [37] exist that identify gene-phenotype

associations using BIOMART instead of gene-disease association

for pulling out the causative genes and associating them with the

phenotypes. Despite these improvements in the available tools,

developing a systematic understanding of data connectivity is still

only partial. This is due to the fact that all disease phenotypes are

not completely annotated and many are yet to be listed in OMIM,

on which the learning framework of these tools largely depends.

To address the above challenges, literature based data-sets have

also been used [38,39,40] as an aid since they are much richer in

interaction data compared to the annotated databases. Text-

mining, if used solely for identifying candidate genes and their

phenotype associations, might induce bias towards more explored

diseases and phenotypes. Moreover, text-mining alone will not be

able to identify all functionally related genes if reports are absent in

the literature, which can be overcome by data-mining of bio-

ontology databases [41,42].

We have, therefore, used a strategy (Schema S1) that establishes

connectivity in the information scattered across the pertinent

literature through an unique meta-analysis approach following

four major steps: 1) Identifying candidate genes for metabolism

and innate immunity based on training genes which have already

been established to be associated with those processes from the

human interactome by data-mining, 2) Screening for associations

of candidate genes, within the biological contexts of interest, using

user controlled context-based information in the published

literature, 3) Building of an association among the elements of

the context-dependent screened data and 4) Enrichment analysis

of the screened data to form associations for evident cues on the

relationship between innate immunity and metabolism in the

context of psychological stress. The current report helps our

understanding of the inter-dependence and balance between

innate immune system and metabolic processes, when perturbed

by psychological stress, at systems level. The uniqueness of the

current study lies not in the use of network-based approaches, but

in using the existing tools for candidate gene identification and

network generation. This approach overcomes the limitations of

the existing methods and increases the confidence level of

predictions based on these methodologies (see materials and

methods). The networks thus established can help to develop a

preliminary understanding of biologically relevant information in

order to identify important patterns hitherto hidden and

subsequently help us in designing effective future strategies to

understand stress dependent disease susceptibility. Information in

the current report could also be used for elucidating, in part or in

whole, any possible predictive mechanisms which would serve a

critical role, in answering key biological questions pertaining to

human physiology.

Methods

In the absence of high throughput data in the context of

psychological stress and the afore-mentioned physiological pro-

cesses, we decided to analyze existing data in the literature through

data-mining and text mining to create gene-association networks

for identifying the genes associated with innate immunity,

metabolism and psychological stress. Efficient screening of data

requires extracting data from both structured repositories (data-

bases) as well as from unstructured textual documents. Powerful

exploratory techniques like data-mining are used for automatic

discovery of patterns from structured databases. For handling

unstructured data, text-mining comes in handy since it uses

language-based techniques to parse textual data and identify

patterns. A number of data-mining and text-mining tools exist that

cover different aspects of information extraction from databases

and from biomedical literature in a variety of domains but, none of

these are customized for an integrated approach that combines

both mining techniques to extract information in relation to

specific contexts and, at the same time, build associations from the

extracted terms. We have taken a unique dual approach in

combining data-mining and text-mining techniques which could

overcome their individual short-comings and at the same time

build associations among these screened elements, thereby forming

association networks. Drawing any biologically relevant informa-

tion from these networks requires a detailed analysis which could

help us identify hidden patterns in the huge data-sets created by

the above mentioned mining techniques. We have focused on a bi-

facetted analysis of the networks in 1) identifying biological

modules (complexes with high relative significant local density as

compared to a less dense background) through topological

distinctions by analyzing the gene association network structure

Effects of Psychological Stress
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and 2) carrying out an enrichment analysis for identification of

over-represented Gene Ontology terms. This is then followed by

an analysis which identifies any correlation between these modules

and the over-represented GO-terms. The overall schematic for the

approach developed is presented in figure 1.

Searching and Selection
Data-mining. Since, there are no extensive direct studies

which explore the relationship between innate immunity and

metabolism, we used an indirect association-based approach

which sorts data to build a model based on the annotation profile

of training-set genes that have established associations with each of

these processes. The annotation profile obtained from this model

was then used to pull out a list of candidate genes from a defined

background. This approach is based on the extrapolation of

annotation profiles of genes associated with similar biological

function or those involved in the same pathways due to their

regulation and expression [43]. Endeavour, freely available at

http://homes.esat.kuleuven.be/,bioiuser/endeavour/index.php,

was used for identifying the candidate genes (see Supplementary

Information) from the whole human genome based on their

similarity/association with the ‘‘training set’’. Top ranking

candidate genes were then used for text mining and association

network generation.

Association network generation through text-

mining. To further ensure that the candidate genes were

actually biologically related to the processes we aimed to analyze,

we used an approach that could query published literature in

relation to the context, and at the same time build an association

network based on the text-mining results. This added more

robustness to our data by serving as an additional step to filter out

any unrelated genes from the candidate gene sets that might have

been pulled in because of possible algorithmic limitations.

Additionally, it allowed extension of the scope of analysis by

pulling in those genes into the network, which have a high degree

of association with identified candidate genes. The Agilent

Literature Search plug-in contained in Cytoscape was used for

text-mining literature using structured queries and for generating

gene-association networks based on the text-mining results. Four

primary gene association networks were generated using four

different query structures. These networks included: networks for

genes associated with innate immunity ‘‘II’’, genes associated with

innate immunity and psychological stress ‘‘II(S)’’, genes associated

with metabolism ‘‘M’’, and genes associated with metabolism and

psychological stress ‘‘M(S)’’. The literature search plug-in allows

the user to control the search options, and provides for custom-

made query construction so that the biological relevance of the

context can be tightly regulated. Biologically relevant contexts

were provided as context terms in the context panel, while the

genes from the candidate gene-set were used as search terms. Text

mining for each query set is done using PubMed search engines for

fetching literature documents which are then parsed into

sentences. A lexicon set is used for defining gene names (concepts)

and interaction terms (verbs) of interest. The parsed sentences are

analyzed for known interaction terms and an association is

extracted for every sentence containing at least two concepts and

one verb. The concepts and verbs represent the nodes and edges

respectively on the Cytoscape canvas [44]. The query structures

thus built were as follows:

Innate immunity. Gene name AND ((‘‘innate immunity’’

AND (Homo sapiens OR human)) OR (inflammation AND

(Homo sapiens OR human))).

Figure 1. Methodological schema. The step-by-step schematic of the approach developed to identify functional modules that could be used to
understand the relationship between innate immunity and metabolism in normal physiological conditions as well as in relation to psychological
stress.
doi:10.1371/journal.pone.0043232.g001
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Metabolism. Gene name AND ((‘‘metabolism’’ AND (Homo

sapiens OR human)) OR (‘‘metabolic syndrome’’ AND (Homo

sapiens OR human))).
Innate immunity and psychological stress. Gene name

AND ((‘‘innate immunity’’ AND ‘‘psychological stress’’ AND

(Homo sapiens OR human)) OR (inflammation AND ‘‘psycho-

logical stress’’ AND (Homo sapiens OR human))).
Metabolism and psychological stress. Gene name AND

((‘‘metabolism’’ AND ‘‘psychological stress’’ AND (Homo sapiens

OR human)) OR (‘‘metabolic syndrome’’ AND ‘‘psychological

stress’’ AND (Homo sapiens OR human))).

The maximum engine match limit was set to 100 for ‘II’ and

‘M’, while for ‘II(s)’ and ‘M(s)’ it was set to 500. Maximum

engine matches is the number of articles that are searched for each

query. The concept lexicon was limited to Homo sapiens, so that

only articles containing studies or data related to humans would be

pulled out.
Validity assessment. The text-mining strategy shapes the

confidence of the association network data, since it determines the

nature and number of literature references that are used for

building the associations. Although it reduces bias in such studies,

publication bias might still skew the interpretations towards the

more widely studied areas. This risk has been overcome to some

extent by limiting the maximum number of searches per query to

an optimal number such that the evidence for less studied areas is

not masked by those of the well studied ones and also through

careful choice of context. The confidence on each of these text-

mining based association networks was calculated as follows:

Network Confidence (C)

~
Total number of references actually pulled out by text{ min ing

Number of references �e�x�p�e�c�t�e�d to be pulled out by text{ min ing

~
(UzR)

(Q|M)

Where,

U = Number of unique references drawn,
R = Number of redundant references drawn,
Q = Number of queries used in the text-mining and
M = Maximum number of references searched per

query.
Data abstraction. Understanding the biological relationship

between innate-immunity and metabolism in the absence and

presence of psychological stress require analysis of networks.

Therefore, first four primary association networks were used for

generation of more networks as intersection and/or union function

of these networks. The derived networks can be described as

follows:

II\M: Intersection of innate immunity and metabolism

network

II(S)\M(S): Intersection of innate immunity (stress) and

metabolism (stress) network

II|M: Union of innate immunity and metabolism network

II(S)|M(S): Union of innate immunity (stress) and metabo-

lism (stress) network

Advanced Network Merge plug-in was used in Cytoscape

for generation of networks as union or intersection derivates of

these primary networks. The force-directed layout tends to expose

the inherent structure of the network in way that facilitates

identification of clusters of tightly connected nodes which suggest

functional modules and hub nodes which have many interactions

and mainly represent functionally important genes. But, it does not

eliminate unconnected or sparsely connected nodes that might

lead to many false positive predictions. Hence, MCODE

(Molecular Complex Detection) plug-in in Cytoscape was

used which allows retention of an edge in the network only if the

given edge is among the highest scoring candidate edges for both

genes [45]. This is referred to as the ‘‘top overlap’’ method and it

helps in overcoming the issue of false positives. The significant

modules, that is modules with MCODE score more than 2.5 and a

minimum of 4 nodes (numbers shown in Table S3), were then

further analyzed for functional annotation.

Quantitative data synthesis. Network Analysis plug-in was

used for measuring the node degree (the number of connections of

a node) and the clustering co-efficient (degree involvement of a

node in the participating clusters) of the nodes in these networks

after applying a clustering algorithm to them. It has provisions for

visual representation of node degree and relationship to function.

Networks thus generated indicate the associations between genes

and their degree involvement in the participating clusters, thereby

guiding in the singular functional annotation but, does not

however give a lead in extracting biological processes, such as

metabolic pathways, immune-activation processes, and stress

responses.

Gene Ontology enrichment anaLysis and visuaLizAtion(GOR-

ILLA) is freely available at the website http://cbl-gorilla.cs.

technion.ac.il/. It was used for enrichment analysis to interpret the

behavior of one or a combination of clusters or even the whole

network such that meaningful biological clues could be identified

suggestive of possible mechanisms elucidating the role of various

biological processes [46]. Comparison of the genes associated with

metabolism, innate-immunity and psychological stress with a

background consisting of the whole genome would give a wrong

representation of the involvement of these genes in psychological

stress in terms of Gene Ontology enrichment. So, innate immunity

and metabolism genes associated with psychological stress were

compared against a background that consisted of a complete set of

genes associated with innate immunity and/or metabolism

irrespective of their association with psychological stress. GO

terms with a minimum enrichment p-value of 1027 were included

in the analysis.

Results

Identification of Candidate Genes and Generation of
Association Network

The top 100 and 200 genes, from the candidate gene set for

innate immunity and metabolism, respectively, were used in the

generation of text-mining based association networks II and M,

respectively. The list of training-set genes for metabolism and

innate-immunity as well as the candidate genes thus pulled out for

each training set are provided in the supplement (Tables S1 & S2).

Text-mining association networks thus generated, do not contain

experimentally determined interactions. Rather, these have more

general association types and offer an alternative network source

where interaction data are limited [44]. A view to the topologies of

the first four primary association networks is shown in figure 2 and

their network statistics are given in Table 1. As can be seen from

the reference distribution shown in figure 3, the network

confidence (C) for M(S) [metabolism and psychological stress]

and II(S) [innate immunity and psychological stress] networks is

much lower compared to that of the M [metabolism] and II
[innate immunity] networks, respectively. This is due to the

keyword ‘‘psychological stress’’ that is used as an additional filter

which indicates that far fewer studies have been done on

psychological stress in relation to innate immunity and metabo-

lism. This, together with the assessment of the screened references

revealed that keyword search-based text-mining did not draw non-
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contextual data-points and thus this helps validate our method-

ology. It was interesting to note that even though network II
contained fewer nodes compared to the M network, the number of

edges is more for the II network. This indicates that either the

nodes representing genes in the II network are multifunctional, or

that there is more literature present in relation to the nodes in

network II. Since the unique reference distribution does not reflect

significant differences between the II and M networks (II-8153,

M-7052), the chances that genes which have been so far associated

with innate immune functions of being multi-functional is more

likely. Tables S5–S10 describe the detailed contributions of the

literature references as well as for nodes and edges.

Network Analysis
Identification of the modules provided another level of

functional annotation above the guilt-by-association methods used

for generation of text-mining based association networks [45] [47],

where, any false positive association pulled out could lead to faulty

functional annotation of those genes. Figure 4 shows the topologies

of the derived networks (i.e. II\M, II(S)\M(S), II|M and

II(S)|M(S)) after applying clustering algorithms and normaliz-

ing for proper representation of node degree and clustering-

coefficient in these networks (see methods) [original Cytoscape

cluster data are provided as supplementary files in PSI-MI XML

format, see PSI-MIData S1]. It can be seen that data points with

lower confidence have been removed, leaving only those nodes

and edges that participate in cluster formation (their retention is

owing to their MCODE 4 high scores) for functional analysis.

Table 2 details the numbers of nodes, edges and clusters in each

network after clustering and normalization to significant values.

Enrichment analysis of II\M against the II|M background

showed the GO terms enriched due to genes that are associated

both with innate immunity and metabolism, irrespective of their

association with psychological stress. However, genes that have

been extensively implicated in relation to psychological stress and

lack enough evidence for their association with innate immunity

and metabolism would not be presented in the enriched terms.

This situation called for an enrichment analysis of II(S)|M(S)
against the II|M background to identify such genes and it

revealed that among all other genes CNR1, HTR1B, HTR2A,

CCL2 were consistently present in most of the enriched terms.

Enrichment analysis of II\M (enriched GO biological processes

represent genes involved in regulating both innate-immunity and

metabolism only) and II(S)|M(S) (enriched GO biological

processes represent genes common to both innate immunity and

metabolism and at the same time are associated with psychological

stress) against a background of II|M revealed certain specific

consensus clusters that were consistently enriched (shown in

figure 5). The details of the enrichment terms and genes associated

with these clusters are shown in Table S3 (details of the complete

Figure 2. Primary text-mining association network topologies. Network topologies (after applying force-directed layout) of the text-mining
association networks obtained by using the Agilent literature search plug-in have been shown here. The networks consist of genes associated with A)
Innate Immunity, B) Innate immunity and psychological stress, C) Metabolism and D) Metabolism and psychological stress. Four different query
structures were used to generate A, B, C and D.
doi:10.1371/journal.pone.0043232.g002
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set of enrichment terms have been included in the supplement in

PSI-MI XML format, see PSI-MIData S1 ). Detailed analysis of

these consensus enriched clusters highlighted tight sub-clusters

populated with high MCODE score-bearing genes within select

few clusters as shown in figure 6. It was seen that in cluster 1 of the

II(S)|M(S) network (refer to Table S3), a tight sub-cluster was

formed by the genes coding for inflammatory cytokines (marked as

‘a’), which was connected to another sub-cluster formed by the 5-

HT receptor family genes (marked as ‘b’) via the POMC gene.

Similarly, GSK3, SLC2A1, AKT1, IRS1, IRS2, PTEN and GYS1

formed a tight sub-cluster (marked as ‘d’), while HSD11b2,

IFNa1, ACTIN, CD80, CD86 and IFNg formed another tight

sub-cluster (marked as ‘c’) in cluster 4 of the II\M network (refer

to Table S3). A detailed study of the annotation profiles of these

sub-clusters provided important basis for predictive assignment of

function to individual relevant genes which will be discussed in a

later section. Enrichment analysis of II(S)\M(S) against a

background of II\M and II|M, however, resulted in very few

clusters and these had very low MCODE scores due to lower

number of genes in the II(S)\M(S) network. Details of the

significantly enriched terms (only those GO terms with a minimum

enrichment p-value of 1027 have been included in the functional

analysis) obtained in the enrichment analysis of II(S)\M(S)
against a background of II|M case have been provided in Table

S4.

Predictive Assignment of Function using Annotation
Profile of Sub-clusters

The node-degree is defined as the number of edges from a node,

while the average clustering co-efficient is the tendency of a node

to form a cluster in a network. A gene connected with more than

one associative gene would be expected to exhibit a higher node-

degree and therefore high node-degree correlates with a possible

multi-functional role of the gene. Again, the genes of a module are

usually associated with the same biological function. Therefore, a

gene having a high clustering coefficient in a module can be

assigned a predictive function in the direction of the functional

profile of that module. The overall functional profile of the genes

from sub-cluster ‘d’ (figure 6) in cluster 4 of the II\M network

indicates their involvement in lymphocyte activation (namely

inflammation) [48] as well as positive regulation of catabolic

activities (glycogen and glucose breakdown) for release of energy.

However, the enrichment analysis showed that GSK3b and GYS1

are the two genes not present in the significantly enriched GO

terms, indicating that the role of these two genes in both of the

above mentioned areas has not been well established. Interestingly,

the association network data revealed that both of these genes have

high MCODE scores (2.370 each) and the highest node degrees (7

each) within the sub-cluster, which indicates their high degree of

contribution to the sub-cluster. On reviewing the literature, it was

found that GSK3b has been implicated in neuro-inflammation in

addition to its reported role in glycogen metabolism which

matches with the functional profile of the sub-cluster, thereby

confirming the efficiency of this unique functional annotation

strategy. GYS1 (Glycogen Synthetase 1) has been implicated in the

storage of muscle glycogen that provides critical energy during

bursts of activity and sustained muscle exertion but there have

been no direct reports of its involvement in inflammation or cell

activation as of yet. Following the principles of functional profile

similarity in the sub-cluster, we can, therefore, also assign a

predictive involvement of the GYS1 gene during inflammation.

Similarly, in the same cluster the functional profile of another sub-

cluster ‘c’ shows the role of involved genes in inflammation and

lipid metabolism. By the same principles as for sub-cluster ‘d’,
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IFNa1 which is already known to be involved in inflammation (but

not many reports of its involvement in the regulation of

metabolism are present), can be predicted to have an association

with lipid metabolism. Again HSD11b2, reported to be involved in

lipid metabolism and carbohydrate metabolism but not with

inflammation, can be assigned a predictive function associated

with inflammation. These genes need not have a direct

involvement in predicted functions like lymphocyte activation,

inflammation or lipid and carbohydrate metabolism. They might

indirectly contribute to regulation of these prediction-based

assigned functions, which then need to be established by

experimental evidences. Our analysis throws light on the most

probable as yet unexplored functional avenues of these genes.

Discussion

Hints of Compensatory Mechanisms in Psychological
Stress Manifestation

Enrichment analysis of II(S)\M(S) with II|M as back-

ground revealed that most of the enriched terms were populated

by the following genes: IL6, IL1B, IL10, IL13, TNF and IFNG.

These are the genes which are involved in the inflammatory

response. Owing to the very high enrichment of the inflammatory

cytokines, the data thus hints at the association of inflammatory

response with psychological stress manifested in the body, as has

already been observed and reported in the literature. Critical to

this observation is the fact that while IL6, IL1B, TNF and IFNG

are pro-inflammatory cytokines generally involved in acute

inflammatory response, IL10 and IL13 are believed to be anti-

inflammatory cytokines. This would suggest that both pro-

inflammatory and anti-inflammatory cytokines are associated with

the stress response (as is also justified by the enrichment of GSK3

in cluster 4 of the II(S)|M(S) network [49]), which seems

contradictory. But, this observation is quite relevant in the context

of psychological stress since, pro-inflammatory cytokines are

produced in response to a psychological stressor, but if they

continue to be produced, they can have a damaging effect on the

body which includes septic shock. Therefore, the body must

counter-balance the effects of pro-inflammatory cytokines by

inducing an anti-inflammatory response. The enriched GO terms

also show the up-regulation of protein secretion and transport in

addition to regulation of the acute inflammatory response as would

be quite expected during body’s inflammatory responses. It is

already known that CARS (Compensatory Anti-inflammatory

Syndrome) develops in response to SIRS (Systemic Inflammatory

Response Syndrome) to protect the body from the harmful effects

of pro-inflammatory cytokines and acute phase proteins to restore

the basal homeostasis of the body. In the case of psychological

stress, it seems quite logical that the body’s adaptive response

follows the same rule as can also be observed from the pattern of

enriched GO terms in the enrichment analysis.

Role of the Endo-Cannabinoid System (ECS)
As mentioned earlier, the CNR1 gene is consistently present in

most of the enriched terms in the II(S)|M(S) network, which

already hints towards direct or indirect association of this gene with

psychological stress. This gene is one of two components of the

Endo-Cannabinoid System, the other component being CNR2

(though not present in the enriched gene ontology terms).

Interestingly, a review of the relevant literature revealed the fact

that the CNR1 gene is associated with systemic homeostasis and can

be considered a potential candidate bridging the stress response with

energy balance, as it reportedly gets activated after stress as one of

the recovery mechanisms [50]. Interestingly, the enrichment data

shows clear absence of any association of these genes in the II|M
network since, when only ‘‘innate immunity’’ or ‘‘metabolism’’ is

used as the keyword, there were few reports that relate the CNR1 or

CNR2 gene with them indicating that the ECS would be inactive in

physiological conditions. While, when ‘‘psychological stress’’ is used

as a key-word the genes of this system represent the enriched

fraction of the total genes pulled out indicating that ECS is active

only in physiologic conditions associated with stress. Cannabinoid

receptors are expressed mainly in the brain (central receptors), but

some of them are also present in organs involved in energy

Figure 3. Literature reference distribution. The distribution of references, used by the Agilent literature search plug-in for generation of the four
primary networks, is shown. The references that have been used more than once for extracting associations are redundant while those used just once
are unique.
doi:10.1371/journal.pone.0043232.g003
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homeostasis like adipose tissue, liver, gastro-intestinal tract,

pancreas, skeletal muscle, etc (peripheral receptors). The endo-

cannabinoid system has a dual mode of action on metabolism;

activation of central cannabinoid receptors is believed to increase

satiety which may lead to obesity, thereby promoting food energy

efficiency, while activation of peripheral cannabinoid receptors

(adipose tissue, liver, etc) can regulate metabolism and lipid storage

without increasing food intake by some unknown mechanism

[51,52]. Reports also indicate that long-term effects of endo-

cannabinoid system on metabolism could primarily be due to

peripheral cannabinoid receptors [51]. This analysis implies that if

the ECS is activated for longer time frames, it might cause food-

intake independent weight gain (i.e. increased energy efficiency),

which ideally fits within a context of chronic psychological stress.

Reported observations thus lean towards the hypothesis that during

stress, when the body requires instantaneous energy, this system

might be dormant, but post-trauma the body tries to compensate for

the energy expenditure during stress by increasing the activity of the

ECS, thereby promoting storage of fats causing unnecessary energy

conservation. An intriguing question to address here would be

whether the increase in production of endo-cannabinoid ligands or

expression of endo-cannabinoid receptors is responsible for post

trauma enhanced activity of the ECS. Acute stress activates systems

which require more energy, while chronic stress might lead to a

constant over-activation of the ECS, leading to the metabolic

syndromes like excessive weight gain, insulin resistance and

dyslipidemia [53].

Involvement of the Serotonin Receptor in Energy
Homeostasis

The HTR1B and HTR2A genes have been consistently present

in most of the enriched terms in the II(S)|M(S) network,

Figure 4. Derived association network topologies. Network topologies are shown for the derived networks after applying clustering
algorithms using MCODE. A-II|M network containing clusters with a minimum MODE score of 1.5, B- II\M network containing clusters with a
minimum MCODE score of 1.25, C- II(S)|M(S) and D- II(S)\M(S) networks containing all clusters. Larger nodes represent higher node degree, while
warmer colors represent higher clustering co-efficient, where warmer to cooler colors are represented by a gradient from Red to Green.
doi:10.1371/journal.pone.0043232.g004
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thereby hinting at the association of 5-HT receptors (5-Hydroxy-

tryptamine receptors) to psychological stress. 5-HT receptors are

implicated in the regulation of feeding behavior, mood and even

temperature regulation. Interestingly, in cluster 4 of the

II(S)|M(S) network (Table S3 and figure 6), the sub-cluster

formed by the 5-HT receptor family genes (marked as ‘b’) is linked

to the sub-cluster of inflammatory cytokines (marked as ‘a’) via the

POMC gene. It is already clear from previous discussions that

psychological stress seems to induce a systemic inflammatory state

in the body as is also justified by the enriched clusters of

inflammatory cytokines. Inflammation is an energy intensive

process [54] and sickness syndrome (which also includes elevation

of body temperature) can be induced in the body to provide for

this energy demand, since it is one of the energy conservation

strategies of the body. Contrariwise, digestion is also an energy

demanding process and so, it is quite expected that feeding

behavior and digestion would be inhibited during systemic

inflammation. The serotonin receptor HTR1A is known to induce

hyperphagia [55], while HTR1B and HTR2C are known to

reduce food intake [56] [46]. This kind of enrichment again

appears contradictory, but here it should be noticed that this is an

association study and should not be analyzed in the same manner

as in co-expression studies. Enrichment of HTR1A, HTR1B and

HTR2C in the same cluster indicates their association with

POMC and with each other in different studies (i.e. quite possibly

in different physiological conditions), and does not necessarily

need them to be co-expressed under the same situation. While

HTR2C and HR1B might contribute to the anorexigenic effect of

the body during the inflammatory stage, HTR1A might work in

conjunction with CNR1 to increase appetite during an adaptive

response as a compensatory mechanism for energy balance.

Another effect of HTR1A is induction of various hormones

including cortisol, corticosterone, ACTH, oxytocin and B-endor-

phin. Cortisol and corticosterone are known to suppress the pro-

inflammatory cytokines (thereby causing immune suppression)

[57], while B-endorphin contributes to anti-depressant effects,

Figure 5. Consensus enriched clusters. Networks showing the consensus clusters after enrichment analysis. The Consensus clusters are shown in
boxes in the networks II(S)|M(S) and II\M.
doi:10.1371/journal.pone.0043232.g005

Table 2. Network statistics of the derived networks reflecting the effect of clustering.

Network Nodes Edges Clusters

Before clustering After clustering Before clustering After clustering

II<M 2904 639 22581 3413 30

II(S)<M(S) 158 562 341 143 7

II>M 925 89 1241 265 8

II(S)>M(S) 45 20 75 29 4

The networks derived as union functions have been allowed to retain clusters with minimum MCODE score 1.25, while all the clusters have been retained in the
networks derived as intersection functions (see materials and methods).
doi:10.1371/journal.pone.0043232.t002
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thereby controlling inflammation and enabling the body to revert

back to basal levels of metabolism. There are different reported

mechanisms by which HTR1A causes activation of CRH,

followed by activation of ACTH, finally inducing secretion of

cortisol [58]. As has already been pointed out, many other proteins

which might be acting during the compensatory response viz.

CNR1 might also contribute to the activation of CRH and thereby

lead to cortical/corticosterone production. Now, if the compen-

satory phase stretches beyond certain physiological limits, which

might be the case in chronic stress, there could be a continuous

over-activation of the ECS, serotonin receptor signaling and many

more process which could have a possible role in the post-stress

recovery system [59]. This could then cause obesity, dyslipidemia,

insulin resistance and many more metabolic syndromes as well as a

state of reduced immune resistance [54].

The Feed-back Loop in Chronic Stress
Production of cortisol or corticosterone suppresses inflammatory

cytokine responses and mobilizes glucose out of the cells, while

high levels of glucose is known to induce production of IL6 (a pro-

inflammatory cytokine) from monocytes. Even acute hyperglyce-

mia in non-diabetics has been reported to elevate plasma IL6 and

TNFa concentrations [60]. The data indicate that the glucose level

in plasma is elevated during psychological stress as an effect of the

HPA activity by corticosteroids. It has been reported that an

inflammatory condition is created in the body when the plasma

glucose level rises beyond a certain limit. The likelihood of this

inflammation occurrence increases under hyper-corticoidism or a

chronic stress situation [61]. This inflammatory condition could

then again lead to activation of compensatory phase response

which would now stretch beyond its normal range due to frequent

induction (priming). The consequence of such an extended

response might lead to obesity and many other associated

metabolic syndromes [62].

Based on the above observations and discussions, a hypothetical

model has been proposed for explaining the interplay between

various biological processes going on inside the body when a body

is subjected to psychological stress and its manifestations on the

body in long run (Figure 7). Basal tone of inflammatory state and

energy efficiency in terms of body mass index are represented by

L0. In the presence of psychological stress, inflammatory response

is evoked (shown as ‘d’) by activation of innate defense responses

and increase in production of pro-inflammatory cytokines. At the

same time, a sickness behavior [63] is induced in the body which

cuts down all energy expensive processes including food intake and

digestion. This sickness situation can raise body temperature and

can make the body socially withdrawn to conserve energy. The

initial phase of such behavior is dominated by production of flight-

fright hormones (catecholamines) which trigger lipolysis, glyco-

genolysis [64]. All these processes are aimed at providing the

energy required for maintenance of the high inflammatory state by

reducing the energy efficiency in terms of body mass (shown by

‘a’). Flight- fright response is followed by an increase in the

production of cortisol which tends to raise the glucose level in

blood by stimulating catabolic processes. Rising cortisol has

inhibitory effects on the production of pro-inflammatory cytokines,

which leads to a brake on the increasing slope of inflammatory

state (only after attaining the threshold concentrations in blood) to

reach a plateau (‘e’) and then declines (‘f’). The ECS and other

stress recovery systems get activated by some unknown mecha-

nism(s), which increase appetite, reduce the sickness behavior and

increase energy efficiency by inducing weight gain (‘c’) to bring the

body back to its basal tone (L1). However, the reasons, to initiate

the transition from ‘b’ to ‘c’ and consequently to activate ECS and

Figure 6. Sub-cluster identification and analysis from enriched clusters. Cluster 4 from the II\M and Cluster 10 from the II(S) |M(S)
networks are shown here. Various sub-clusters are shown for (a) inflammatory cytokines, (b) serotonin receptors, (c) genes involved in inflammation
and metabolism and (d) genes involved in lymphocyte activation as well as positive regulation of catabolic processes.
doi:10.1371/journal.pone.0043232.g006

Effects of Psychological Stress

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e43232



other stress recovery systems, are yet to be resolved. The proposed

model (figure 7) suggests that extremely high levels of cortisol in

blood during ‘b’ might trigger the activation of stress recovery

systems and initiate transition from ‘b’ to ‘c’. This transition also

indicates the condition where cortisol levels start declining and

reach basal levels (L1) by time t1. It is important to note that excess

of glucose levels are known to increase production of pro-

inflammatory cytokines [65,66]. Blood glucose levels might be one

of the mechanisms involved in controlling cortisol levels (since

excess of cortisol can create a hyperglycemic state). Proposed

model seems fitting to explain the mechanisms of restoring

homeostasis when perturbed by psychological stress. The scenario,

however, may not remain simple if the physiology is repeatedly

experiencing challenges such as psychological stressor or if the

challenge itself persistently lasts extending over a significantly

longer period. Figure 7 reveals that an individual when encounters

the challenge for second time, the slope of increasing inflammatory

state (d’) and decreasing energy efficiency (a’) decreases. This

observation suggests that the physiological response following the

challenge is slower. The plateau stage also probably extends for a

longer time (b’), which implies that cortisol acts for a longer period

and hence suppresses the inflammatory cytokines below the basal

levels (f’). In this situation, body glucose levels would not be able to

regulate cortisol levels by feed-back mechanisms, since most

probably the stress recovery systems which act longer now (c’) use

up the excess blood glucose for anabolic activities for increasing

energy efficiency. Thus, by time t4 or at longer interval depending

on the individual physiology both these process reset the

physiological basal tone at L2, which denotes a higher energy

efficiency in terms of body mass, and a lower than normal

inflammatory state. Again when the body encounters the challenge

a third time, the basal tone becomes reset at a much deviated level,

L3 by time t6. Thus with each cycle, a damping effect on these

systems is most likely to be exhibited if they are frequently

stimulated. This dampening effect causes the compensatory

mechanisms to deviate from the basal tone and become reset

such that the body weight is increased and the innate immune

responses are lowered down.

The hypothetical model proposed is based on various experi-

mental data reported in the literature. While development of a

probabilistic model would lead to more elaborative detailed studies

and certainly would be beyond scope of the current report, we

have suggested a general empirical mathematical model to explain

the model proposed in this report. The relationship of action and

counter actions to maintain homeostasis is following a rule which

can be formulated as.

y~+SQRT ½2(x{ti){(x{ti)
2�

Where, ‘y’ is the effect and ‘x’ is the cause and ‘ti’ is time interval

of experiencing the cause at different interval ‘i’. In the current

model, at i = 0 value of ‘to’ is zero and the first phase cycle ends at

i = 1 or at t1, similarly, second phase of stress, if experienced, starts

at t2 it will end at t3 and so on until the effects of stress experience

becomes long enough in terms of time interval so that it is

considered as stress invariant or in other words defined as chronic

stress. In the current equation for any phase, effects on

Figure 7. Meta-analysis based prediction model of psychological stress and associated homeostatic imbalance. A hypothetical model
is developed to establish coping and adaptive responses to understand psychological stress as a challenge to normal physiology. Colored solid lines
indicate the actual deviations from the basal tone, colored dotted lines represent expected, non-deviated basal tone after each cycle, while colored
dashed lines show actual deviations from basal tone in case of a psychological stress challenge extending over a long time-period.
doi:10.1371/journal.pone.0043232.g007
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perturbation and restoration of homeostasis will have three time

intervals. For example, at (a) to, x ranges between 0 and 1, (b) x = 1

for x ranges between 1 and 1+to and (c) x ranges between 1+t0 and

t1 ( = 2+to). For subsequent phases, time interval will be longer and

determining the stage for an individual to transform from acute

phase to chronic. Sign (6) of the final effect will determine upward

to downward effects based on the physiological consequences.

Physiologically, this mechanism has the potential to explain the

reason which might increase susceptibility to infection and might

lead to obesity and other metabolic syndromes. However, detailed

analysis and studies are yet to be established and beyond scope of

the current report. An important point to note here is that body’s

adaptive response might also depend on the interval between two

challenges viz. t12t2 and t42t5, which might also decide where the

body’s basal tones are being reset after each cycle. However, in the

case of a challenge which extends over a long time-period t12t3
(shown by dashed lines), where cortisol acts longer and thereby

suppresses the inflammatory state below the basal tone, while the

compensatory stress recovery system works longer in response to it

and the body’s basal tone becomes rest at L1’ instead of L1 at time

t3. This suggests a justified explanation for infectious disease

susceptibility [1,67], obesity [68] and other metabolic syndromes

associated with chronically stressed people. This also hints to the

aberrant weight loss, withdrawn behavior and flu-like symptoms

(due to acute phase response) seen in people have short-term acute

stress shown by the initial fluctuations from basal tone when body

encounters psychological stress. Based on this model, physiological

homeostasis of our body can assumed as an elastic system, which

rebounds to its original shape after the stress stimuli is withdrawn.

But when the body tries to push beyond the elastic limits of its

adaptive scope, a hysteresis loss (biologically exemplified by mal-

adaptation/dysfunction) is expected, which is well supported by

the analysis based on observations so far in literature related to

psychological stress.

Limitations

The mechanisms suggested here are based on systematic review

which is dependent on studies which have already been done and

reported in the literature. It is not ruled out that studies may not

have been attempted in many areas which might have important

implications to the understanding of psychological stress and the

associated physiology. On the contrary, it is also possible that due

to extensive studies on select biological processes, certain genes

might be over-represented. These can definitely induce a bias in

an analysis such as the one presented here, but our approach was

designed to minimize such bias by introducing special strategies of

data refinement. Experimental cross-validation of these suggestive

mechanisms would be helpful in understanding the molecular

signaling of these events which could aid in designing intervention

techniques [69] to tackle the numerous manifestations of

psychological stress.
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