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the intensity was higher in glioblastomas than low-grade 
gliomas. We could not detect an association with overall 
survival in patients with grade II and III tumors. Double-
immunofluorescence stainings in glioblastomas revealed 
co-expression of JAM-A with CD133, SOX2, nestin, and 
GFAP in tumor cells as well as some co-expression with 
the microglial/macrophage marker IBA-1. In conclusion, 
JAM-A expression was higher in glioblastomas compared 
to low-grade gliomas and co-localized with recognized 
stem cell markers suggesting an association of JAM-A with 
glioma aggressiveness. No significant association between 
JAM-A expression and overall survival was found in grade 
II and III gliomas. Further research is needed to determine 
the function and clinical impact of JAM-A in gliomas.

Keywords  Astrocytic brain tumors · Glioma · Junctional 
adhesion molecule-A · Tumor stem cell · Prognosis

Introduction

Gliomas are the most frequent type of primary tumors in 
the central nervous system (CNS) [1]. The aggressive-
ness of gliomas has been suggested to be associated with 
brain tumor-initiating cells (BTICs) that have the ability 
to self-renew and give rise to new tumors [2–4]. BTICs 
are relatively treatment-resistant and are thought to be 
located mainly in perivascular and hypoxic niches [5–8]. 
These niches may be maintained by adhesion molecules 
e.g., integrin-α6 and laminin-α2 [8, 9]. Junctional adhe-
sion molecule-A (JAM-A, also known as JAM-1) is a 
transmembrane protein with both extra- and intracellular 
domains belonging to the immunoglobulin superfamily 
[10–13]. Using high-throughput flow cytometry screen-
ing, JAM-A has been found to be a glioblastoma (GBM) 
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niche adhesion factor influencing the tumorigenic poten-
tial of BTICs [14]. In a follow-up study, it was reported 
that JAM-A overexpression could drive self-renewal and 
was suppressed by microRNA-145 [15]. Messenger RNA 
data from the National Cancer Institute REpository for 
Molecular BRAin Neoplastic Data (NCI REMBRANDT) 
suggested that high levels of JAM-A are associated with 
poor outcome in glioma patients, and we recently dem-
onstrated that high JAM-A protein expression is associ-
ated with shorter survival in patients with GBM [14]. 
JAM-A was initially identified on platelets and later on 
endothelial and epithelial cells [16, 17] and has been 
associated with different functions like monocyte/leu-
kocyte transmigration [10, 17–19], but its function in 
cancer remains unclear, as both high and low expres-
sion levels have been associated with poor prognosis. In 
lung and nasopharyngeal carcinomas, high expression 
has been correlated with poor prognosis [20, 21], but in 
kidney, pancreatic, and gastric cancer high expression is 
associated with a better outcome [22–24]. In breast car-
cinomas, both high and low expression levels have been 
correlated with poor outcome, most likely due to the 
selection of patients with different tumor types [25–27]. 
Functional studies in triple-negative breast cancer cells 
demonstrated that JAM-A was necessary and sufficient 
for self-renewal [28].

The aim of the present study was to investigate the 
expression and prognostic value of JAM-A in two gli-
oma patient cohorts using immunohistochemistry and 
advanced quantitative image analysis. The Region of 
Southern Denmark (RSD) glioma cohort is population-
based and includes astrocytic and oligodendroglial 
tumors, whereas the Odense University Hospital (OUH) 
cohort contains astrocytic tumors. First, we focused on 
expression and prognostic value of JAM-A  in World 
Health Organization (WHO) grade II or III gliomas using 
the RSD cohort, and then on its expression and prognos-
tic value in patients with diffuse (DA) and anaplastic 
astrocytoma (AA) using the OUH cohort. The expres-
sion of JAM-A was assessed using advanced automated 
image analysis, a method previously used by our group 
to investigate biomarkers resulting in continuous meas-
urements [29–33]. To explore the association of JAM-A 
with stemness, a double-immunofluorescence panel was 
established consisting of BTIC markers: CD133 [34, 
35], SOX-2 [36, 37], and nestin [38, 39], an astrocytic 
marker: glial fibrillary acidic protein (GFAP), and a 
microglial/macrophage marker: ionized calcium-binding 
adapter molecule-1 (IBA-1). Being highly malignant 
and containing the highest frequency of BTICs, this was 
investigated in GBMs.

Materials and methods

Tissue samples

The RSD glioma cohort consists of 433 patients diagnosed 
with primary gliomas between 01.01.2005 and 31.12.2009. 
Of these, 43 patients with WHO grade II and III gliomas 
had a sufficient amount of viable tumor tissue available for 
JAM-A immunohistochemical analysis including patients 
with DA (n = 11), oligodendroglioma (OD) (n = 11), AA 
(n = 16), and anaplastic oligodendroglioma (AOD) (n = 5). 
The cohort is well-characterized and has been used in other 
studies [29–31, 40, 41].

The OUH astrocytoma cohort consists of 111 patients 
diagnosed with primary astrocytic tumors between 1994 
and 2005. Of these, 32 patients with DA (n = 21) and AA 
(n = 11) had a sufficient amount of viable tumor tissue 
available for JAM-A immunohistochemical analysis. The 
OUH astrocytoma cohort has been used for previous bio-
marker studies [33, 42].

For both cohorts, no treatment was received prior to sur-
gical resection. All tumor samples were reclassified accord-
ing to the 2016 WHO classification [1]. Patient characteris-
tics are shown in Table 1.

Normal brain tissue specimens were obtained from two 
adult patients at autopsy. Cause of death was not related to 
diseases in the CNS.

This study was approved by the local Committee on 
Health Research Ethics and the Danish Data Protection 
Agency. Use of tissue was not precluded by any patients 
according to Danish Tissue Application Register.

Immunohistochemical staining

Fresh tissue was fixed in 4% neutral buffered formaldehyde 
and paraffin-embedded. Three micrometer sections were 
cut on a microtome and stained routinely with haematoxy-
lin-eosin to define representative tumor regions.

Paraffin sections were stained on a Dako Autostainer 
Universal Staining System (Dako, Denmark). The sections 
were deparaffinized, and heat-induced epitope retrieval 
(HIER) was performed by incubation in a buffer solu-
tion consisting of 10  mmol/L Tris-base and 0.5  mmol/L 
ethylene glycol tetraacetic acid, pH 9. After blocking of 
endogenous peroxidase activity with 5% hydrogen perox-
ide, the sections were incubated for 60  min with primary 
antibody against JAM-A/F11R (2E3-1C8, 1 + 400, Sigma-
Aldrich, USA). The same antibody clone was used for both 
cohorts. Detection and visualization of antigen–antibody 
complex was performed using PowerVision (Novocastra, 
United Kingdom) and diaminobenzidine (DAB) as chro-
mogen, respectively. Finally, sections were counterstained 
with Mayers Haematoxylin. Omitting primary antibody and 
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isotype control served as negative controls as well as con-
trols for non-specific staining related to the detection sys-
tem (Online Resource 1). A tissue microarray consisting of 
nine different GBMs as well as normal colon, cerebellum, 
placenta, and rat hippocampus was used as positive/nega-
tive control and to monitor inter-run staining variation.

Quantification

Slides were scanned on a Digital Slide Scanner (Hama-
matsu Photonics, Japan). The JAM-A staining was ana-
lyzed using the Tissuemorph module in the software 
program Visiopharm Integrated System (Visiopharm, 
Denmark). Sample images were collected using systemic 
uniform random sampling (meander fraction-based). Sam-
pling was performed at 20× magnification with a sample 
fraction of 10% as previously described [29]. Images were 
reviewed ensuring high image quality and sampling of 
vital tumor tissue only. Images were excluded according 
to the following criteria: less than 50% vital tumor tissue 
due to presence of normal brain tissue, infiltration zones, 
and necrotic areas as well as substantial non-specific back-
ground staining and staining artifacts. Blood vessels were 
removed manually in each image. Five tumors had less than 
five images available and were resampled with a sample 
fraction of 30%.

Pixel-based software classifiers were trained based on 
nuclear identification. The cytoplasm/membrane was iden-
tified in a radius of three micrometers from the nucleus as 
previously described [29, 33]. The classifier labeled the 
nucleus with green and the perinuclear area with light blue. 
The classifier was trained on different types of gliomas to 
take the heterogeneity of gliomas into account. The mean 
intensity of the perinuclear light blue area of all identified 

cells per tumor was measured resulting in a mean estimate 
of the JAM-A staining intensity.

Detection of isocitrate dehydrogenase (IDH) mutations

Sections from all patients included in the two cohorts were 
stained with an antibody against the most common IDH 
mutation IDH1-R132H (mIDH1R132H, clone H14, 1:100, 
Dianova, Germany) using the BenchMark Ultra IHC/ISH 
staining system (Ventana Medical Systems Inc, USA) as 
previously reported [40, 41]. When no IDH1-R132H muta-
tion was detected immunohistochemically, next generation 
sequencing (NGS) was performed to detect other mutations 
in the IDH1/2 genes. The gene panel used included 20 gli-
oma-associated genes and is described in detail by Zacher 
et al. [43]. NGS libraries and analyses were done as previ-
ously reported [43].

Detection of ATRX and p53

Nuclear expressions of a-thalassemia/mental retardation 
X-linked syndrome (ATRX) and p53 were demonstrated 
immunohistochemically using a rabbit polyclonal antibody 
(HPA001906, 1:100, Atlas Antibodies, Sweden) and a 
monoclonal antibody (DO7, Ready-to-use, Ventana Medi-
cal Systems Inc), respectively. The two immunohistochemi-
cal staining protocols were performed for all tumors using 
the BenchMark Ultra IHC/ISH staining system (Ventana 
Medical Systems Inc).

Detection of 1p19q deletions

Testing for co-deletion of chromosomal arms 1p19q was 
performed on all tumors that showed retained nuclear 

Table 1   Clinicopathological 
characteristics

n.d. not determined, OUH Odense University Hospital astrocytoma cohort, RSD Region of Southern Den-
mark glioma cohort
a   Oligodendroglial tumors were diagnosed based on the 2016  WHO classification and thus defined as 
tumors with IDH mutation and 1p19q co-deletion

RSD glioma cohort OUH astrocytoma cohort

WHO II WHO III WHO II WHO III

Number of patients 22 21 21 11
Median survival (months) 65.2 28.2 57.1 14.1
Age (median) 38.5 53.6 45.1 50.7
Sex (male/female) 13/9 17/4 14/7 7/4
Performance status (0–1/2–4) 16/6 18/3 n.d n.d
Endpoint (alive/dead) 8/14 2/19 5/16 0/11
IDH status (mutated/wildtype) 20/2 15/6 12/9 2/9
ATRX status (retained/loss) 13/9 10/11 6/15 7/4
P53 status (positive/negative) 8/14 13/8 8/13 3/8
Subtype (astrocytic/oligodendrogliala) 11/11 16/5 21/0 11/0
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expression of ATRX. 1p19q status was determined by 
fluorescence in  situ hybridization (FISH) on formalin-
fixed paraffin embedded tumor tissue using the Vysis LSI 
1p36/LSI 1q25 and LSI 19q13/19p13 Dual-Color Probe 
(Abbott Molecular, Vysis, USA). The FISH procedure was 
performed using the Dako Histology FISH Accessory Kit 
K5799. For some tumors, FISH analysis was inconclusive, 
and 1p19q status was determined by accessing copy num-
ber variation of chromosomes 1 and 19 using the Infinium 
Methylation 850K EPIC BeadChip array (Illumina, USA) 
according to manufacturer’s description.

Double‑immunofluorescence

Double-immunofluorescence was performed on tissue 
microarray containing nine GBMs. The preparations as 
well as the first step in the stainings are as described above. 
After detection of JAM-A (1 + 200) using Catalyzed Signal 
Amplification II kit with FITC (CSA II, Dako), sections 
were incubated with antibodies against nestin (196,908, 
1 + 200, R&D systems, USA), CD133 (W6B3C1, 1 + 40, 
Miltenyi Biotec, Germany), GFAP (Z0334, 1 + 8000, 
Dako), SOX-2 (245,610, 1 + 400, R&D systems), or 
IBA-1 (019-19741, 1 + 4000, Wako Pure Chemical Indus-
tries, Japan) followed by Tyramide Amplification Signal 
Cyanine-5 (TSA-Cy5, Perkin Elmer, USA). Nuclei were 
counterstained with 4.6-diamidino-2-phenylindole (DAPI) 
(VWR International, USA). Fluorescence images were 
taken with a Leica DM6000B microscope connected to 
an Olympus DP72 1.4 Mega Pixel CCD (Olympus, Japan) 
camera using DAPI (Omega XF06, Omega Optical, USA), 
FITC (Leica, Germany), and Cyanine-5 (Omega XF110-2) 
filters. Due to cross-reaction, a different JAM-A antibody-
clone (EP1042Y, 1 + 400, Abcam, United Kingdom) was 
used for the double staining with CD133.

The Cancer Genome Atlas (TCGA)

mRNA expression levels of JAM-A (F11R) in primary, sec-
ondary, and recurrent GBMs were investigated using Glio-
Vis (https://gliovis.bioinfo.cnio.es). Data were available for 
497 primary, 7 secondary, and 16 recurrent GBMs, and the 
dataset was exported directly from GlioVis [44].

Statistical analysis

Comparison of JAM-A intensity among tumor types and 
grades was done using the one-way analysis of variance 
followed by Bonferroni’s multiple comparison test or Stu-
dent’s unpaired t-test. JAM-A intensity data for normal 
brain and GBMs from the RSD cohort have been pub-
lished earlier [14], but was included for comparison with 
grade II and III gliomas. The univariate relationships were 

illustrated by Kaplan–Meier plots and differences in over-
all survival (OS) compared using log-rank test. The median 
JAM-A intensity was used as a pre-specified cut-off value 
in the survival analyses. Multivariate Cox proportional haz-
ard regression analyses were performed for patients with 
grade II and III tumors separately. All assumptions were 
tested, and all analyses were carried out in STATA.

Patients were followed until death; patients still alive 
were censored in May 2017 for the RSD glioma cohort and 
April 2017 for OUH astrocytoma cohort. OS was defined 
as time from primary surgery until death or censoring.

Results

JAM‑A expression in normal brain

In normal brain tissue, the ependymal layer of the ventri-
cles expressed JAM-A, and a few cells below the ependy-
mal layer were positive (Fig. 1a). Neurons in the neocortex 
were positive (Fig. 1b), and the neuropil showed weak posi-
tivity (Fig. 1b). Only a few positive cells were identified in 
the white matter (Fig. 1c). The endothelium in blood ves-
sels was positive, whereas the muscular layer was negative.

JAM‑A expression in gliomas

The overall histological pattern revealed a weak to intense 
staining of a low to high fraction of the tumor cells. JAM-A 
was expressed in the cytoplasm and the membrane of 
tumor cells in all gliomas (Fig.  1d–i). For grade II glio-
mas, different staining patterns were observed. Some had a 
weak staining, while others had intense staining. This was 
the case for DAs with gemistocytic tumor cells (Fig. 1d) as 
well as ODs with small oligodendrocyte-like tumor cells 
(Fig. 1e).

Both AAs (Fig. 1f) and AODs (Fig. 1g) showed weak to 
moderate JAM-A positivity, while most GBMs had mod-
erate to intense JAM-A expression including glomeruloid 
tufts (Fig.  1h, i). In the infiltration zones, small positive 
cells as well as positive neurons were noticed (not shown).

JAM‑A and tumor grade

The pixel-based classifier successfully detected the nuclei 
for measurement of JAM-A intensity in the surround-
ing cytoplasm/membrane (Fig.  2a, b). The quantitative 
analysis supported the qualitative observations illustrating 
both inter- and intratumoral variations in JAM-A intensity 
(Fig.  2c–f and Online Resource 1). In the RSD cohort, 
JAM-A intensity was higher in grade II (p < 0.001), grade 
III (p < 0.001), and grade IV gliomas (p < 0.001) compared 
to normal brain tissue (Fig. 2c). Further, JAM-A intensity 

https://gliovis.bioinfo.cnio.es
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was significantly higher in grade IV tumors than grade II 
tumors (p < 0.05). No significant differences in JAM-A 
intensity were seen among the different glioma subtypes 
(Fig.  2d). In the OUH astrocytoma cohort, no difference 
was observed in JAM-A levels between DAs and AAs 
(Fig. 2e). Similar was found when subdividing the DAs and 
AAs based on IDH status (Fig. 2f).

To further investigate the association between JAM-A 
and tumor aggressiveness, we used the TCGA dataset com-
paring the JAM-A mRNA expression level in primary, sec-
ondary, and recurrent GBMs. JAM-A expression was sig-
nificantly higher in recurrent GBMs than primary GBMs 
(p < 0.001), while secondary GBMs tended to have a higher 
expression level than primary GBMs (p > 0.05) (Online 
Resource 2).

JAM‑A and survival

In the RSD glioma cohort, JAM-A intensity was not asso-
ciated with OS in grade II (HR 1.92; 95% CI 0.63–5.87; 
p = 0.26) (Fig.  3a) or grade III tumors (HR 1.15; 95% CI 
0.46–2.85; p = 0.76) (Fig.  3b). Looking only at patients 
with DA, high JAM-A intensity tended to correlate with 
shorter survival when divided at the median (HR 2.72; 
95% CI 0.67–11.01; p = 0.16) (Fig.  3c). In patients with 
AA, JAM-A did not correlate with survival when dichoto-
mized at the median (HR 1.07; 95% CI 0.38–2.97; p = 0.90) 
(Fig. 3d).

In the OUH astrocytoma cohort, no difference in sur-
vival was seen for patients with DA (HR 1.24; 95% CI 
0.46–3.35; p = 0.67) (Fig.  3e) or AA (HR 0.53; 95% CI 

Fig. 1   Examples of JAM-A staining in normal brain and WHO grade 
II-IV gliomas, immunohistochemically stained with JAM-A anti-
body. a Subventricular zone (SVZ) with positive ependymal layer. b 
Weak neuronal staining was seen in cortex. c Few positive cells were 
observed in white matter. d Diffuse astrocytoma (DA) with moderate 
staining showing positive gemistocytes. e Oligodendroglioma (OD) 

with moderate staining intensity. f and g Anaplastic astrocytoma 
(AA) and anaplastic oligodendroglioma (AOD) with moderate stain-
ing intensity. h and i Glioblastoma (GBM) with giant cells showing 
moderate staining intensity, and glomeruloid vessels with staining of 
the endothelium as well as stained cells with tumor cell morphology. 
Scale bar 100 µm
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0.14–2.03; p = 0.36) (Fig.  3f) when dichotomized at the 
median.

Co‑localization of JAM‑A and other markers

Using double-immunofluorescence, we found that a few 
JAM-A+ cells co-expressed CD133 (Fig.  4a–d). Some 
cells expressed both SOX-2 and JAM-A (Fig. 4e–h). How-
ever, many SOX-2+ cells did not express JAM-A. Nes-
tin (Fig.  4i–l) and GFAP (Fig.  4m–p) rarely co-localized 

with JAM-A. The microglial/macrophage marker IBA-1 
co-localized with a few JAM-A+ in GBMs, but most IBA-
1+ cells were did not express JAM-A (Fig. 4q–t).

Discussion

To our knowledge, this is the first study investigating 
JAM-A protein expression in grade II-III gliomas. We 
found that JAM-A was expressed in all gliomas included in 

Fig. 2   Association of JAM-A intensity with tumor type. Using 
immunohistochemical staining JAM-A+ tumor cells were identified. 
a and b When the original image was processed and the algorithm 
applied, nuclei of JAM-A+ cells were represented by green and peri-
nuclear areas by light blue. The staining intensity was measured in 
the perinuclear area. c In the RSD glioma cohort, JAM-A intensity 
increased with tumor grade and was higher in gliomas compared to 
normal brain tissue. d No difference was seen among the different 
types of gliomas in the RSD glioma cohort. e and f In the OUH astro-

cytoma cohort, JAM-A intensity in DAs and AAs did not differ sig-
nificantly from each other, and similar was found when subdividing 
the tumors based on IDH status. *p-value < 0.05, ***p-value < 0.001. 
The vertical lines indicate mean +/− standard error of the mean. AA 
anaplastic astrocytoma, AOD anaplastic oligodendroglioma, DA dif-
fuse astrocytoma, GBM glioblastoma, mIDH mutated isocitrate dehy-
drogenase, NBT normal brain tissue,  OD oligodendroglioma, OUH 
Odense University Hospital, RSD Region of Southern Denmark, 
wtIDH wildtype isocitrate dehydrogenase
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this study. The JAM-A intensity increased with malignancy 
grade, while its prognostic value was limited.

In normal brain tissue, we observed some JAM-A+ cells 
including sub- and ependymal cells, neurons in the neocor-
tex, as well as a few cells in the white matter possibly of 
microglial [45] or oligodendroglial [46] origin. Endothelial 

cells were also shown to express JAM-A in both normal 
[45, 47] and malignant brain tissue.

JAM-A was expressed in both the cytoplasm and mem-
brane of tumor cells. In normal epithelial tissues, JAM-A 
has usually been reported to be localized to the cellular 
membranes [12]. However, in normal colon tissue JAM-A 

Fig. 3   Association between JAM-A intensity and overall survival. 
Kaplan–Meier curves for patients with a WHO grade II and b grade 
III glioma in the RSD glioma cohort. Kaplan–Meier curves for 
patients with c DA and d AA in the RSD glioma cohort. Kaplan–

Meier curves for patients with e DA and f AA in the OUH astrocy-
toma cohort. AA anaplastic astrocytoma, DA diffuse astrocytoma, 
OUH Odense University Hospital, RSD Region of Southern Denmark
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shows a distinct membrane expression, while it is also 
localized in the cytoplasm in colon cancer [48]. During 
our protocol optimization of the JAM-A antibody, a tis-
sue microarray containing both normal and cancer tis-
sues was stained. We found that e.g., normal liver tissue 
and breast carcinomas had a distinct membrane staining 
(Online Resource 1, shown for breast carcinomas), sug-
gesting that the cytoplasmic staining observed in gliomas 
is a true part of the staining pattern. This change in cellular 

location could be due to the influence of the tumor micro-
environment. A shift in the intercellular junction from the 
inter-endothelial to apical surface has been noticed in brain 
endothelial cells when exposed to cytokines [47]. Gliomas 
are infiltrated with non-tumor cells such as leukocytes and 
microglia both secreting cytokines. Possibly, the cytoplas-
mic staining of JAM-A could also reflect a higher turno-
ver of the protein. One function of JAM-A is to stabilize 
integrins thereby facilitating adhesion between cells [16]. 

Fig. 4   Co-expression of JAM-A in glioblastomas using immuno-
fluorescence. a–d JAM-A/CD133 co-expression was seen, and e–h 
JAM-A/SOX2 co-expression was observed in some areas of the glio-
blastomas. i–l Most tumor cells did not express both JAM-A and nes-

tin. m–p JAM-A+ cells rarely expressed GFAP. q–t The microglial/
macrophage marker IBA-1 was expressed by a few JAM-A+ cells. 
Scale bar 50 µm
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This may be in line with a high expression and an impor-
tant function in tumor-initiating cells, which to some extent 
is supported by our finding that JAM-A co-localized with 
especially CD133 and to a lesser degree with SOX-2, while 
JAM-A seemed to only co-localize with GFAP and nestin 
to a minor degree. Our double-immunofluorescence results 
could suggest that JAM-A expression may decrease when 
the tumor cells become more differentiated. However, this 
needs to be investigated further performing systematic 
analyses on the double-immunofluorescence stainings.

We have previously identified a prognostic value 
of JAM-A protein in GBMs [14]. In the present study, 
JAM-A was not a prognostic marker in grade II and III in 
the RSD glioma cohort, but the number of patients was 
small. We performed an analysis on the astrocytomas 
alone and noticed that, although not significant, the prog-
nostic impact of JAM-A increased in DAs. We therefore 
hypothesized that the association with survival was more 
pronounced in DAs and AAs than in grade II and III glio-
mas in general. Thus, the OUH cohort with 21 DAs and 
11 AAs was stained, but no significant association with OS 
was observed. Interestingly, high levels of JAM-A tended 
to associate with longer survival in patients with AA in the 
OUH astrocytoma cohort, while this was not the case in 
RSD glioma cohort; this could be due to the uneven dis-
tribution of IDH mutated tumors, as most AAs in the RSD 
cohort had mutations in IDH, while most AAs in OUH 
cohort were IDH wildtype.

The prognostic role of JAM-A is debated in other can-
cer types [49]. High expression is associated with poor out-
come in lung and nasopharyngeal carcinoma [20, 21], but 
in kidney, pancreatic, and gastric cancer high expression of 
JAM-A is associated with better prognosis [22–24]. In the 
present study, some IBA-1+ microglia/macrophages also 
expressed JAM-A as expected from the observed cellular 
morphology [10, 47], but the extent of co-expression was 
limited confirming previous findings [45]. Whether this 
may influence results obtained in other studies is unknown, 
but JAM-A labeling of non-tumor cells may be important 
in some cancers. The role of JAM-A in cancer biology thus 
seems complex.

A strength in our study is the use of a software-based 
quantitative approach that is more objective than observer-
based scoring [50]. This approach prevents intra-observer 
variation, and as an advantage JAM-A intensity is meas-
ured on a continuous scale.

In conclusion, we demonstrated that JAM-A expres-
sion is higher in GBMs than in low-grade gliomas and 
that JAM-A co-localizes with recognized BTIC mark-
ers. Further, results from the TCGA showed that JAM-A 
mRNA levels were higher in recurrent GBMs compared 
to primary. Together with the earlier findings showing that 
JAM-A is an independent prognostic factor in GBMs, the 

results suggest a close association between JAM-A and 
glioma aggressiveness. No association was found between 
JAM-A expression and OS in grade II and III gliomas. Fur-
ther research is needed to determine the function and clini-
cal impact of JAM-A in gliomas.
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