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New insights from monogenic
diabetes for “common” type 2
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Molecular Biology, Hyderabad, India

Boundaries between monogenic and complex genetic diseases are becoming
increasingly blurred, as a result of better understanding of phenotypes and their genetic
determinants. This had a large impact on the way complex disease genetics is now
being investigated. Starting with conventional approaches like familial linkage, positional
cloning and candidate genes strategies, the scope of complex disease genetics has
grown exponentially with scientific and technological advances in recent times. Despite
identification of multiple loci harboring common and rare variants associated with
complex diseases, interpreting and evaluating their functional role has proven to be
difficult. Information from monogenic diseases, especially related to the intermediate
traits associated with complex diseases comes handy. The significant overlap between
traits and phenotypes of monogenic diseases with related complex diseases provides
a platform to understand the disease biology better. In this review, we would discuss
about one such complex disease, type 2 diabetes, which shares marked similarity of
intermediate traits with different forms of monogenic diabetes.

Keywords: simple/Mendelian diseases, complex diseases, type 2 diabetes, monogenic diabetes, maturity onset
diabetes of the young

Introduction

Genetic diseases have been historically categorized into simple, monogenic and complex, polygenic
diseases. This straight forward classification of inherited diseases based on the number of
genes involved in precipitating a diseased state proved to be useful in the identification and
development of effective diagnostic, genetic counseling strategies, and drug target genes. Studies
on single gene- Mendelian disorders have greatly benefitted our understanding of disease causing
variants, gene functions and various regulatory mechanisms involved in the normal physiological
functioning of the body (Weatherall, 2000). However, this distinction between rare monogenic
and common complex diseases is now unclear with blurring boundaries defining these categories
(Cooper et al., 2013). One of the best examples driving this point is sickle cell anemia which
is caused by single base substitution that replaces glutamic acid with valine in the β-globin
(Ingram, 1957). However, marked clinical heterogeneity cannot be explained by this single
global mutation but to an extent by different haplotype background in the gamma-globin
gene (Steinberg, 2005). Interestingly, the differences among different gamma-globin haplotypes
correlate with differences in mean levels of fetal hemoglobin (HbF), which is known to influence
the disease severity. Early linkage studies identified Xmn1-HBG2 and HBS1L-MYB loci and
genome-wide association studies (GWAS) identified polymorphisms at BCL11A locus, which
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predict higher HbF levels and a milder disease course in sickle
cell anemia patients (Lettre et al., 2008; Sedgewick et al., 2008;
Uda et al., 2008). Together, they account for 20–50% of the
variance in HbF levels, illustrating the importance of other
genetic loci in modifying disease severity (Menzel and Thein,
2009; Thein et al., 2009). Thus, sickle cell anemia, which was
once considered as the simplest of all Mendelian diseases,
now strikes as an example of complex disease where multiple
factors influence a particular patient’s clinical outcome. The
story of sickle cell anemia highlighting limitations in the age-old
classification of inherited diseases doesn’t stand in isolation. This
example can now be extrapolated to other Mendelian disorders
like phenylketonuria, cystic fibrosis etc. where mutations in one
primary gene are present inmost of the cases but the phenotype is
influenced by allelic heterogeneity and/or mutations at multiple
modifier genes (Dipple and McCabe, 2000a).

In today’s world, genetic diseases represent a continuum
where the phenotype is influenced by the number of loci
involved and the extent of environmental participation. This
also has direct relation to the methods used for understanding
genetic diseases (Dipple and McCabe, 2000b). Techniques
utilized for investigating single gene disorders may be
applied to identification of genes influencing intermediate
traits related to complex diseases. Similarly, methodologies
typically used for complex trait analysis like GWAS and
next-generation sequencing (NGS) technologies may be
applied for identification of modifier genes that influence
the phenotypes in monogenic disorders. In this review, we
will discuss about one such disease, where defects in single
gene are known to cause relatively rare, monogenic forms of
diabetes and polymorphisms at several loci are associated with
polygenic forms of diabetes. Significant overlap of phenotypes
between monogenic diabetes and commonly occurring type
2 diabetes (T2D) provide a great platform to investigate
pathophysiological mechanisms underlying development
of T2D.

Diabetes: A Complex, Chronic Metabolic
Disease

Diabetes is the most prevalent metabolic disease characterized by
hyperglycemia due to primary defects in insulin secretion and/or
insulin function. Diabetes has reached pandemic proportions
with 347 million people affected worldwide which can be traced
back to rapid rise in obesity and life style changes like physical
inactivity (American Diabetes Association, 2014). Inadequate
treatment is potentially devastating due to micro- and macro-
vascular complications. Total deaths due to diabetes is expected
to rise by 50% in the coming decade projecting it to be the
7th leading global cause of death by 2030 (Mathers and Loncar,
2006). High rate of morbidity and mortality in diabetes is due to
the direct and indirect effects of hyperglycemia on the vasculature
which include retinopathy causing loss of vision, nephropathy
causing renal failure, peripheral neuropathy and autonomic
neuropathy and macrovascular complications such as stroke and
atherosclerosis (Forbes and Cooper, 2013).

Majority of diabetic cases are broadly classified into two
etiological categories: type 1 diabetes (T1D) where lack of
insulin secretion due to auto-immune mediated destruction
of beta cells causes hyperglycemia and T2D where insulin
resistance and inadequate insulin secretory response result in
raised circulating glucose levels (American Diabetes Association,
2014). T1D represents around 5–10% (Atkinson et al., 2014) and
T2D accounts for about 90% of the diabetic cases worldwide
(Wild et al., 2004). Autoimmune destruction of beta cells has
multiple genetic predispositions (Onengut-Gumuscu et al., 2015)
and effect of environmental factors is still being understood
in T1D (Knip et al., 2005; Vaarala et al., 2008). However,
markers of immune destruction like islet cell auto-antibodies,
auto-antibodies to insulin, GAD65, and tyrosine phosphatases
IA-2 and IA-2b and rise in circulating levels of C-peptide
help in reasonably accurate diagnosis of T1D and determine
their clinical course (Arvan et al., 2012; American Diabetes
Association, 2014; Atkinson et al., 2014). In the latter case,
decreased insulin secretion and insulin resistance frequently co-
exist in patients. T2D, on the other hand is characterized by
resistance to insulin action in tissues like liver, skeletal muscle and
adipose tissue, which leads to other features such as dyslipidaemia
and central obesity (Thomas and Philipson, 2015). Impaired
fasting glucose (IFG) or impaired glucose tolerance (IGT) can
provide indications of derangements in glucose metabolism
(American Diabetes Association, 2014). Patients spend a long
asymptomatic period characterized by hyperglycemia, which is
undetectable but sufficient to cause pathological changes.

T1D and T2D are polygenic in nature and caused due
to interaction between genetic and environmental factors.
Monogenic diabetes, on the other hand represents rare,
heterogeneous group of disorders due to genetic defects in
single genes causing pancreatic beta cell dysfunction and marked
hyperglycemia (Thomas and Philipson, 2015). Around 2–5% of
global cases correspond to monogenic diabetes. Maturity onset
diabetes of the young (MODY) and neonatal diabetes mellitus
(NDM) represent two different classes of monogenic diabetes
where hyperglycemia is either due to defects in insulin secretion,
decrease in beta cell mass or both (Schwitzgebel, 2014). MODY
is characterized by features like autosomal dominant inheritance
pattern, positive familial history, early age of onset, absence of
auto-immune antibodies and insulin resistance (Owen, 2013).
Its shared features (Table 1) with other forms of diabetes often
results in misdiagnosis of MODY patients as T1D or T2D
patients (van der Zwaag et al., 2015). NDM on the other hand
is characterized by onset of hyperglycemia in the first few weeks
of life and can be either transient neonatal diabetes mellitus
(TNDM) or permanent neonatal diabetes mellitus (PNDM).
TNDM is a mild form and usually resolves by 18 weeks of age but
the patients are at risk of developing diabetes in the adult stages
of life where as PNDM requires life-long treatment and can result
in isolated hyperglycemia or may present with extra-pancreatic
features depending on the gene mutated (Greeley et al., 2011).

In addition to these categories, few monogenic forms of
insulin resistance such as primary lipodystrophic syndromes and
insulin receptor defects leading to Donahue syndrome, Rabson–
Mendenhall syndrome or Type-A insulin resistance display
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TABLE 1 | Characteristic features of different types of diabetes.

Features Type 1 diabetes (T1D) Type 2 diabetes (T2D) Maturity onset diabetes of the young
(MODY)

Age of onset Any age/more frequent childhood and
adolescence

More frequent in adults and obese
children

Usually before the age of 25 years

Parents affected Rarely multigenerational Rarely multigenerational Usually minimum three generations affected

Inheritance Polygenic Polygenic Monogenic, autosomal dominant/recessive

Beta cell autoantibodies Present Absent Absent

C-peptide Undetectable/low Normal/high Normal

Insulin production Absent Present Present*

Obesity Usually absent Frequent (>80%) Very rare

Diabetic ketoacidosis Common Rare Rare

First line treatment Insulin Oral hypoglycemic agents (Metformin) Depends on sub-type of MODY

*Low levels when pancreatic agenesis occurs due to gene mutations.

features of metabolic syndrome and are associated with insulin
resistant T2D (Hegele, 2003).

Genetics of Monogenic Diabetes: A
Success Story

Linkage studies in families with above diagnostic criteria
identified mutations in several genes leading to MODY.
Mutations in hepatocyte nuclear factor 4 alpha, (HNF4A,
MODY1), glucokinase (GCK, MODY2), hepatocyte nuclear
factor 1 alpha (HNF1A, MODY3) result in most common forms
of MODY (Shields et al., 2010; Pihoker et al., 2013). Mutations
in genes like pancreatic and duodenal homeobox 1 (PDX1,
MODY4), hepatocyte nuclear factor 1 beta (HNF1B, MODY5)
neurogenic differentiation 1 (NEUROD1, MODY6) and insulin
(INS, MODY10) cause relatively rare forms of MODY (Naylor
and Philipson, 2011). Fine mapping studies and the advent of
NGS technologies like whole-exome sequencing, not only rapidly
increased themutational spectrum of causal genes but also helped
in the identification of novel MODY genes (Bamshad et al., 2011;
Ku et al., 2011; Bonnefond et al., 2012; Johansson et al., 2012).
Currently, Online Mendelian Inheritance in Man (OMIM) lists
13 different causal genes that result in distinct sub-phenotypes of
MODY as described in Table 2.

TNDM is most commonly caused due to over-expression of
imprinted genes, PLAGL1 and HYMAI at 6q24 due to paternal
uniparental disomy of chromosome 6 or duplication of 6q24
on the paternally inherited allele or hypomethylation of the
maternally inherited 6q24 allele (Temple and Shield, 2002).
Other rarer causes of TNDM include heterozygous mutations in
genes encoding sub-units of ATP-sensitive potassium channel:
potassium channel, inwardly rectifying subfamily J, member 11
(KCNJ11) (Flanagan et al., 2007), ATP-binding cassette, sub-
family C, member 8 (ABCC8) (Patch et al., 2007) and bi-allelic
mutations in zinc finger protein 57 (ZFP57) (Mackay et al.,
2008). In addition, rare mutations in INS may also cause a
phenotype which can be described as TNDM (Stoy et al., 2007).
More than 50% of PNDM cases are due to activating mutations
in KCNJ11 and ABCC8, while majority of mutations genes

associated with PNDM are de novo in origin (Gloyn et al., 2004;
Babenko et al., 2006; Edghill et al., 2010). Approximately 20%
of PNDM is attributed to mutations of INS (Stoy et al., 2007).
Rarely PNDM is caused by inactivating mutations of PDX1 and
glucose transporter2 (SLC2A2) (Nicolino et al., 2010). As of date,
mutations in close to 20 genes are known to cause diabetes in the
first year of life (Table 2).

Hyperglycemia is a common consequence of mutations in
these genes; nevertheless, they are associated with distinct
phenotype and characteristic clinical presentation. For instance,
mutations in HNF4A are associated with increase in birth
weight, macrosomia, hypoglycemia at birth and adolescent onset
of diabetes (Pearson et al., 2007). Patients exhibit progressive
beta cell failure and long term treatment with low dose
sulphonylureas is proven to be more effective than insulin
treatment (Fajans and Brown, 1993). In addition to the above
features, patients carryingHNF-1Amutations present with severe
dysfunction of hepatocytes and renal tubular cells resulting
in glycosuria with high incidence of vascular complications.
Patients with HNF1A mutations are also extremely sensitive to
low doses of sulphonylureas (Pearson et al., 2000). Mutations
in HNF1B are associated with renal defects with cystic renal
disease, pancreatic agenesis and genitor-urinary abnormalities.
But these patients are insensitive to treatment with insulin
sensitizers and require early treatment with insulin (Edghill
et al., 2006). In contrast to the mutations in various HNF
genes, glucokinase mutations result in mild, stable, fasting
hyperglycemia from birth and small elevations in post-prandial
glucose levels. Insulin secretion remains intact and vascular
complications are not commonly observed in these patients and
hence they do not require any pharmacological intervention
and dietary intervention is usually sufficient to maintain stable
glycosylated hemoglobin levels (HbA1c) levels (Stride et al., 2002;
Murphy et al., 2008). ActivatingKCNJ11mutations are associated
with a number of clinical features ranging from isolated
diabetes to more severe phenotypes such as developmental
delay-epilepsy-neonatal diabetes syndrome (Gloyn et al., 2006).
Neonatal patients identified with KCNJ11 and ABCC8mutations
show little endogenous insulin secretion and non-detectable
C-peptide levels and hence used to be put on long-term insulin
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treatment. However, understanding of mechanism of action
of sulphonylureas led to shift of therapeutic regimen from
insulin injections to high sulphonylureas with improved glycemic
control, lower costs of treatment and better quality of life (Sagen
et al., 2004; Pearson et al., 2006; Mlynarski et al., 2007; Rafiq et al.,
2008). This stands as a classical example of application of genetic
information for personalized medicine.

The success in the field of monogenic diabetes can largely
be attributed to a distinct phenotype associated with each sub-
class, and strong genotype-phenotype correlation that allowed
room for better diagnostic- and genotype- based management
options. Genetic dissection of different forms of monogenic
diabetes sheds light on beta cell physiology and improved
understanding of insulin secretion and its regulation. With
rapid advances and decreased cost of the NGS technologies, it
is expected that screening of people affected with monogenic
diabetes would unravel novel genetic etiologies of pancreatic beta
cell dysfunction (Bamshad et al., 2011; Ellard et al., 2013).

Type 2 Diabetes Is a Syndrome, Not a
Single Disease

From the above section, it is evident that monogenic diabetes
has a clear genetic basis and a reasonably distinct phenotypic
presentation for each sub-class. T1D also has clear autoimmune
origin leading to absolute insulin deficiency in vast proportion of
cases. These facts have guided benefits of early intensive glycemic
control (HbA1c below 6%) compared to conventional approach
(HbA1c between 7 and 7.9%) in T1D patients as demonstrated in
Diabetes Control and Complications Trial (DCCT) and follow-
up Epidemiology of Diabetes Interventions and Complications
(EDIC) clinical trials which showed significant reduction in the
risk of developing both micro and macrovascular complications
associated with chronic hyperglycemia (Diabetes Control and
Complications Trial, 2005).

In a sharp contrast, T2D does not have a known directly
identifiable cause. It is characterized by progressive insulin
resistance in insulin responsive tissues, dyslipidaemia, abdominal
obesity, and rise in pro-coagulant and pro-inflammatory factors
(Thomas and Philipson, 2015).Multitude of studies have revealed
the confounding effects of risk factors like age, sex, physical
inactivity, smoking, diet, ethnicity, family history, and gestation.
Adding to the complexity, chronic exposure to stress, low socio-
economic status and psycho-social factors are also shown to be
risk factors for T2D from recent environment-wide association
studies. The diagnosis of T2D can rather be considered “waste
basket diagnosis”—not because there is no-cause, but because
there is no-one-cause. The rate of disease progression and advent
of long-term complications is not similar in all patients and
hence treatment regimen needs individual tailoring based on
suitable assessment of risk factors involved. While follow-up of
United Kingdom Prospective Diabetes Study (UKPDS) showed
that tight glycemic control decreases macrovascular end points
in patients with T2D (Group UKPDS, 1998), other studies like
Action to Control Cardiovascular Risk in Diabetes (ACCORD)
and Action in Diabetes and Vascular Disease (ADVANCE) trials
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did not provide consistent results. Type 2 diabetics with intensive
blood glucose-lowering treatment arm had an increased risk of
cardiovascular death in ACCORD trial compared to those in the
conventional treatment arm (Ismail-Beigi et al., 2011). Although
the ADVANCE trial did not exhibit increased mortality, it did
not reveal any significant benefit on macrovascular outcome
(Zoungas et al., 2009). All these observations strongly indicate
that T2D is not a single disease, but, a conglomeration of
metabolic disorders characterized by a combination of multiple
intermediate traits like increased IFG, IGT, body mass index
(BMI), waist-hip-ratio (WHR), dyslipidemia and hypertension.
This very reason led to a paradigm shift in the field of genetics of
T2D, which is discussed in detail in the next section.

Genetics of Type 2 Diabetes: An
Unexpected Failure or a Missed
Opportunity

Several lines of evidence support the principle of inherited
genetic susceptibility as an important risk factor for T2D.
Offspring of a parent with T2D face a 40% lifetime risk of
developing T2D, which increases to 70% when both parents
have T2D. High concordance rate obtained in monozygotic
twins (96%) suggests a strong genetic component of this multi-
factorial disease (Barnett et al., 1981). Furthermore, 40% of first-
degree relatives of T2D patients develop diabetes as compared to
6% in the general population (Kobberling and Tillil, 1982). Its
substantial genetic component propelled geneticists from all over
the globe to devote huge efforts for the hunt of T2D susceptibility
genes.

Initial attempts were through genome-wide familial
linkage-based approaches using multi-generational pedigrees
and/or affected sib-pairs studies where the analysis relies
on shared chromosomal regions inherited from common
ancestors to identify familial genetic variants with large
consequences. While this method largely helped in genetic
studies of monogenic diabetes, its application to common
T2D has been a limited success. Several chromosomal regions
showed evidence of linkage, but positional cloning of the
putative causative genes has not been successful for most of
the regions except few like HNF4A, calpain 10 (CAPN10),
ectonucleotidepyrophosphatase/phosphodiesterase 1 (ENPP1),
adiponectin, C1Q and collagen domain containing (ADIPOQ)
and transcription factor 7 like 2 (TCF7L2) (Florez et al.,
2003). Parallel to linkage studies, candidate gene approach was
employed by researchers to identify T2D risk associated genes.
Selection of candidate genes was typically based on hypothesis
about biological mechanisms that are putatively involved in T2D
pathogenesis, hence, it was plausible to conceive that variants
in these genes could predispose to disease or related phenotype.
Genes influencing pancreatic beta cell function, like ABCC8,
KCNJ11, SLC2A2, HNF4A, INS, and genes influencing insulin
action like PPARG, INSR, PIK3R1, IRS1, IRS2, and SOS1 were
among the initially identified candidate genes that significantly
alter disease susceptibility (McCarthy, 2004). Despite many
positive reports, associations could be replicated rarely in other

studies mainly because of the small sample sizes used in these
studies. Furthermore, poor functional characterization of much
of the genome made it impossible to make fully informed
decisions while selecting candidate genes for association studies.

At this instance, completion of the Human Genome and
International HapMap Projects came as a major boon to the then
growing field of T2D genetics. Identifying genetic associations in
a genomic fashion i.e., GWAS became a reality. Based on the
“common variant- common disease (CVCD) hypothesis” that
the genetic risk for common complex diseases is often due to
disease producing alleles found at relatively high frequencies
(>1%), GWA studies were designed to pick upmultiple common
variants associated with disease risk (Reich and Lander, 2001).
The first wave of GWAS was conducted in Europeans and
identified a dozen loci, of which 8 T2D susceptibility loci have
been replicated acrossmultiple ethnic groups:TCF7L2, SLC30A8,
HHEX, CDKAL1, IGF2BP2, CDKN2A/B, PPARG, and KCNJ11
(Cauchi et al., 2007; Lee et al., 2008; Ng et al., 2008; Wu et al.,
2008; Hu et al., 2009; Rong et al., 2009; Chauhan et al., 2010;
Han et al., 2010). In parallel, strong association between FTO
variants and T2D was replicated in three independent studies,
but the association signal weakened after adjustment for BMI,
suggesting that variants mediate risk partly through increased
adiposity (Dina et al., 2007; Frayling et al., 2007; Scuteri et al.,
2007). While the first wave of studies employed logistic analyses
and investigated T2D as a dichotomous phenotype in cases and
controls, the second wave of GWAS loci were identified from
linear analysis of continuous glycemic traits and anthropometric
traits in participants without diabetes. Different consortia were
formed to increase the sample size, which facilitated detection of
low-effect common variants associated with T2D risk. One of the
early consortiums was the DIAbetes Genetics Replication And
Meta-analysis consortium (DIAGRAM) aimed at characterizing
genetic basis of T2D, mainly in individuals of European descent
and identified 31 novel loci associated with increased T2D risk
(Saxena et al., 2007; Sladek et al., 2007; Zeggini et al., 2008;
Voight et al., 2010; Morris et al., 2012; Scott et al., 2012).
Another major collaborative effort to dissect loci that impact
glycemic and metabolic traits was the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC). Several loci
influencing traits like fasting plasma glucose (FPG), fasting
insulin, 2h glucose and HbA1c were identified and many of
them like ADCY5, PROX1, GCK, GCKR, and DGKB-TMEM195
also influenced risk of T2D (Dupuis et al., 2010; Soranzo et al.,
2010; Strawbridge et al., 2010; Manning et al., 2012; Scott
et al., 2012). The Genetic Investigation of ANthropometric Traits
(GIANT) consortium dedicated efforts to identify genetic loci
that modulate obesity related traits like height, BMI, WHR,
WHR adjusted for BMI and waist and hip circumference. So
far, common genetic variants at hundreds of loci associated with
above anthropometric traits have been identified (Berndt et al.,
2013; Randall et al., 2013; Locke et al., 2015; Shungin et al., 2015).

In parallel to these studies, GWAS and meta-analyses of
GWAS performed in other ethnicities (i.e., East Asians, South
Asians, and African Americans) revealed multiple new T2D-
associated genes (Billings and Florez, 2010). For example, six
novel signals GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2, and
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HNF4A loci were identified from a meta-analysis of GWAS
in South Asian population (Kooner et al., 2011). Interestingly,
many, but not all of the variants identified in Europeans have
been replicated in non-Europeans and amongst the replicated
loci, differences in allelic frequencies and effect sizes have been
observed (Yajnik et al., 2009). Put together, these results highlight
similarity in genetic susceptibility as well as ethnic differences
indicating that genetic variability strongly influences magnitude
of the effect of GWAS risk loci in different populations. Adding
to the complexity, amongst close to 80 loci associated with
T2D risk (Data Sheet 3 in Supplementary Material), other than
TCF7L2, there is absence of any large single-gene effects (Billings
and Florez, 2010). Together these loci account for less than
20% of the T2D heritability due to their small effect sizes and
point to reasons for the “missing heritability” in T2D (Manolio
et al., 2009). Furthermore, resolving functional mechanism of
the genetic association and establishing causality has proven
to be extremely challenging, primarily because of the fact that
large percentage of associations are determined by non-coding
variants. This hugely supported the notion that high-penetrant
rare-variants (minor allele frequency<1%) could be the primary
players in common diseases and may have a strong impact on
disease risk (Pritchard and Cox, 2002; Carlson et al., 2004).

While GWAS have implicated previously unknown genes
and pathways in T2D pathogenesis, next generation sequencing
studies like whole genome and exome sequencing aimed at
identifying variants of low frequency with large effect size
and likely elucidate disease causing mechanisms (Cirulli and
Goldstein, 2010; Steinthorsdottir et al., 2014). Whole genome
sequencing of Icelanders has identified low-frequency and
rare sequence variants in CCDN2, PAM and PDX1 that are
associated with altered T2D risk (Flannick et al., 2014). Similarly,
genotyping of ∼150,000 individuals across 5 ancestry groups
has identified 12 loss of function mutations in SLC30A8 which
decrease risk of T2D (Majithia et al., 2014).Exome sequencing of
PPARG in 19,752 T2D cases and controls from multiple studies
and ethnic groups identified rare variants which are associated
with decreased activity in adipocyte differentiation and increased
T2D risk (Claussnitzer et al., 2014). While these technologies
identify additional genetic changes that contribute to risk of T2D,
obtaining a huge sample size for the detection of low frequency
variants remains a huge challenge.

MODY and T2D: Common Loci-Common
Mechanisms

The GWAS and post-GWAS era witnessed tremendous
advancements made on the technological front and parallel
developments in statistical methodology and inference,
analytical frameworks, and computational tools, yet translation
of the research findings for accurate risk prediction and
subsequent disease prevention, discovery of new drug targets,
personalization of medicine remains an unsolved challenge.
Increasing efforts are now being devoted to understand the
functional mechanisms underlying genetic association of loci
with T2D risk and associated quantitative glycemic and/or

anthropometric traits. Owing to the large number of associations
found with genetic variants in the non-protein coding region
or gene desert regions, special focus is laid on decoding the
nature of these non-coding variants (Fogarty et al., 2014).
Recent fine mapping and functional characterization of GWAS
variants provide several evidences where cis-regulation is a
common mechanism underlying these associations and most
frequently affected elements include transcriptional enhancers
and silencers (Winckler et al., 2007; Fogarty et al., 2013, 2014).
Thus, identification of target genes of cis-regulatory variants is
necessary to understand the functional mechanisms by which
these variants act.

As these efforts continue, gaining novel insights from the
molecular genetics of monogenic forms of diabetes would help
propel research in the field of common T2D genetics toward
a translational level. From the research efforts in identifying
genes responsible for monogenic forms of diabetes and findings
from GWAS for T2D, strong evidence has emerged that several
loci implicated in monogenic diabetes are also involved in
mediating risk of polygenic T2D. As a matter of fact, most of
the T2D susceptibility genes identified in the pre-GWAS era are
key players in the development of some forms of monogenic
diabetes; KCNJ11, HNF4A, SLC2A2, PPARG, and INSR. Recent
studies identified few other monogenic diabetes loci likeHNF1A,
HNF1B, GCK, PDX1, GLIS3, WFS1, PAX4, and LMNA which
harbor variants associated with T2D risk (Sidransky, 2006;
Sandhu et al., 2007; Wegner et al., 2007; Voight et al., 2010; Rees
et al., 2011; Cho et al., 2012). Interestingly, several variants in
these loci influence intermediate glycemic and anthropometric
traits associated with T2D like FPG, insulin related traits, lipid
related traits, Hb1Ac levels, C-reactive protein, homocysteine
and waist circumference. Complete list of loci common between
T2D and monogenic diabetes and associated phenotypes is
presented in Table 3.

It is interesting to observe that loci common/shared
between monogenic diabetes and T2D affect physiological
processes like pancreatic beta cell development and function,
glucose sensing mechanisms and their coupling with insulin
release/secretion and endoplasmic reticulum (ER) stress. Most
of the common loci are transcription factors, which play key
role in beta cell development. For example, PDX1 directs the
early embryonic development of pancreas and differentiation
of insulin-producing islet β cells in endocrine pancreas by
forming cross-regulatory transcriptional networks where FOXA2
and HNF1B, other T2D associated genes are also key players
(Oliver-Krasinski et al., 2009; Arda et al., 2013). It also promotes
expression of INS, SLC2A2, and GCK, which are essential for
insulin synthesis and glucose sensing. HNF1A also controls beta
cell function by regulating target genes like SLC2A2, HNF4A,
pyruvate kinase, and hepatocyte growth factor activator (Servitja
et al., 2009). Genes encoding ATP-sensitive potassium channel
sub-units KCNJ11 and ABCC8 couple cell metabolism with
membrane potential and play a central role in regulation of
insulin secretion in pancreatic beta cells. Mutations in these
genes form high-risk haplotype which affect progression from
IGT to T2D (Laukkanen et al., 2004). WFS1 forms component
of unfolded protein response and maintains homeostasis of the
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TABLE 3 | Genes/loci common between monogenic diabetes and type 2 diabetes and related intermediate traits.

Genes/loci Trait SNP(s) Nature of variant PubMed IDs

GLIS3 FPG and FPG levels adjusted for BMI rs7034200 Intronic 22581228, 20081858

HOMA-B rs7034200 Intronic 20081858

HNF1A Cholesterol, total rs1169288, rs1800961 Missense 20686565

LDL cholesterol rs1169288, rs2650000 Missense 24097068, 19060906

Homocysteine levels rs2251468 Intronic 23824729

C-reactive protein rs1183910, rs7979473,
rs7310409, rs2393791,
rs2259816, rs7305618

Intronic 23844046, 22939635,
21647738, 21196492,
19567438, 18439548,
24763700

rs1169310 3′ UTR 18439552

HNF4A Cholesterol, total rs1800961 Missense 24097068, 20686565

HDL cholesterol rs1800961 Missense 24097068, 19060906,
24097068

C-reactive protein rs1800961 Missense 21300955, 22939635

GCK FPG rs4607517, rs1799884,
rs3757840

Intronic 19060907, 20081858,
23575436, 22399527

FPG adjusted for BMI rs4607517, rs2293941 Intronic 22581228

1-h plasma glucose and 2-h plasma glucose rs1799884 Intronic 23575436

Glycated hemoglobin levels rs1799884, rs730497,
rs4607517

Intronic 24647736, 24244560,
20858683, 19096518

HOMA-B rs4607517 Intronic 20081858

PPARG Fasting insulin adjusted for BMI rs1801282 Missense 22581228

WHR adjusted for BMI in women rs4684854 Intergenic 23754948

LMNA Cholesterol, total rs577492 Intronic 17327437

Waist circumference rs11578696, rs955383 Intronic 17327437

SLC2A2 FPG and FPG levels adjusted for BMI rs11920090 Intronic 20081858, 22581228

HOMA-B rs11920090 Intronic 20081858

INSR Triglycerides rs7248104 Intronic 24097068

SNP, single nucleotide polymorphism; FPG,Fasting plasma glucose; PG, plasma glucose; BMI, body mass index; HOMA-B, homeostasis model assessment of beta cell function; LDL,
low density lipoprotein; HDL, high density lipoprotein; UTR, untranslated region; WHR, waist-hip ratio.

ER in pancreatic beta cells. Inactivatingmutations inWFS1 result
in ER stress causing beta cell dysfunction and recently HNF4A
is also shown to regulate beta cell susceptibility to ER stress
(Fonseca et al., 2005; Takei et al., 2006).

Deciphering a role for genes implicated inmonogenic diabetes
to T2D has the advantage of carrying the benefits along with.
For example, GCK gene product, hexokinase 4 catalyzes the
first step of glycolysis and is expressed in both hepatocytes
and pancreatic beta cells. The beta cell isoform is a glucose
sensor and plays an important role in glucose stimulated insulin
secretion (Matschinsky, 1990, 2002). Common variants in GCK
predict T2D risk by influencing various T2D intermediate
phenotypes like FPG, HbA1c levels, and HOMA-B (Dupuis
et al., 2010; Soranzo et al., 2010; Manning et al., 2012; Chen
et al., 2013). A recent study has revealed that patients harboring
GCK mutations reportedly have a low prevalence of vascular
complications highlighting the probable limited role of isolated,
mild hyperglycemia in mediating diabetic vascular complications
(Steele et al., 2014). In this scenario, it may not be unreasonable to
surmise a possible role for variants in GCK or other monogenic
diabetes associated genes modifying the T2D disease course in
presence of other precipitating factors. However, it is important
to note that these common loci are causal in case of monogenic

diabetes, yet they contribute merely to T2D pathogenesis and
this discrepancy is largely explained by mutational heterogeneity
and the nature of variants at these loci (Sidransky, 2006). While
mostly, coding and rare variants cause monogenic diabetes, non-
coding and regulatory variants at the same loci are associated
with T2D and related intermediate traits. This, in turn, also
accounts for differences in the effect sizes of associated variants
and phenotypic heterogeneity between monogenic diabetes and
T2D. Regulatory nature of variants associated with T2D and
intermediate traits also entails gene-gene and gene-environment
interactions, of which the later mainly results in modulation of
variant effects with various factors like physical activity, nutrition,
stress, etc. (Buil et al., 2015). Thus, in contrast to the monogenic
diabetes, screening for the common variants in these loci to
decide the clinical course of T2D is still a long sought dream.

Role of Environmental Factors: Epigenetic
Regulation of Candidate Genes

Epigenetic mechanisms like DNA methylation, covalent histone
modifications, non-coding RNAs, microRNAs are plausible
means by which environmental factors integrate their effects with
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genetic variants to mediate T2D risk (Ling and Groop, 2009;
Waki et al., 2012). Of all, the most thoroughly studied epigenetic
modification is the methylation of cytosine-phosphatidyl-
guanine (CpG) sites which is associated with post-translational
histone modifications and results in altered chromatin structure
and consequent differences in gene expression (Jaenisch and
Bird, 2003). The loci shared between monogenic diabetes
and T2D serve as good example to study these interactions.
Mutations in transcription factors like HNF1A, HNF1B, HNF4A,
PDX1, and NEUROD1 modulate their affinity for both histone
modifying enzymes and DNA leading to disruption of regulatory
interactions (Ling and Groop, 2009). Several T2D associated
variants either introduce or remove a CpG site, which results
in differential DNA methylation and altered expression of
associated or near-by genes. Tissue specific DNA methylation
of common loci like PPARG, WFS1, IRS1, PDX1, and INS have
been reported in independent studies (Dayeh et al., 2013; Nilsson
et al., 2014). For example, differential methylation has been
observed in common loci like PPARG and IRS1 in adipose tissue
from unrelated T2D patients compared with control individuals
and expression of PDX1 and INS was decreased in pancreatic
islets from diabetics compared to non-diabetic donors (Yang
et al., 2011, 2012). Interestingly, quantitative DNA methylation
analysis also shows consistent differences in DNA methylation
patterns between populations of different ethnicities at common
loci KCNJ11 along with other loci like ADCY5 and FTO which
are attributed to genetic and/or region-specific environmental
factors (Elliott et al., 2013).

In addition, epigenetic modifications are proposed as key
mechanisms in mediating effect of nutritional disturbances that
result in fetal programming and/or metabolic programming
for future risk of cardio-metabolic disorders and is current
topic of scientific probity. The fetal environment is influenced
by several factors and maternal under and/or over nutrition,
and interaction between fetal and maternal environment were
found as major determinants mediating metabolic programming
(Aagaard-Tillery et al., 2008; Yajnik and Deshmukh, 2012).
Several epidemiological and animal studies provide evidence for
impact of suboptimal uterine environment and early neonatal
life on the offspring susceptibility to chronic diseases like
T2D in adult life (Snoeck et al., 1990; Breier et al., 2001;
Ozanne and Hales, 2002). Epigenetic mechanisms, especially
changes in DNA methylation have been shown to modulate
effect of these determinants on the altered expression of key
genes involved in fetal metabolism and development (Burdge
et al., 2007; Gonzalez-Bulnes and Ovilo, 2011). The critical
issue is that fetal programming is even transmitted to the
next generations highlighting the possibility of transgenerational
epigenetic inheritance of disease susceptibility (Waki et al., 2012).
Studies on human cord blood samples from neonates with
intrauterine growth restriction due to maternal low protein diet
has shown dysregulation of HNF4A methylation and other loci
encoding HNF4A-interacting proteins (Sandovici et al., 2011).
Similarly, maternal and paternal high fat diet consumption is
associated with global methylation changes and induces glucose
intolerance and insulin resistance in offspring (Aagaard-Tillery
et al., 2008; Gallou-Kabani et al., 2010; Ng et al., 2010). Effect

of maternal micronutrients like folic acid (FA) and vitamin
B12 (B12) on fetal development and increased obesity risk is
already established (Yajnik et al., 2008). Maternal micronutrient
deficiency (FA and vitamin B12) results in global methylation
changes in livers of pups leading to decrease in expression of
PPARα and PPARγ genes and supplementation of omega-3 fatty
acid to these pups reduced the global DNA methylation and
restored the expression of these transcription factors highlighting
the role of poly unsaturated fatty acids and their interaction
with one-carbon metabolism (Kulkarni et al., 2011). All the
above results indicate strong role of epigenetic modifications
not only in mediating the effects of common variants in shared
loci but also in programming fetus for future risk of metabolic
disturbances.

Future Perspectives

Developments in the field of T2D genetics have undoubtedly led
to identification of new loci like GLIS3 (Cho et al., 2012), PAX4
(Ma et al., 2013), and GCK (Muller et al., 2014) that are common
between monogenic diabetes and T2D. However, expanding
mutational spectrum of these common loci using techniques
like whole exome sequencing has now reached a point of
saturation. At this point, understanding intricate mechanisms of
interaction of these common variants with environmental factors
in manifesting a syndrome like T2D would help us expand basis
of phenotypic heterogeneity in the background of mutational
heterogeneity. A recent study provides experimental evidence
for a new functional approach to investigate epigenetics of T2D
(Fogarty et al., 2014). Epigenetic conservation of dysregulated
loci in high fat diet fed mice and obese humans as observed in
this study substantiates usage of animal models to understand
effect of various environmental factors in modifying disease
risk. Moreover, overlap between epigenetically regulated regions
with nominally associated T2D risk loci suggests that present
approach can complement human genetic studies to assess
clinical risk of such loci. Besides mediating epigenetic changes,
variants in these common loci also explain significant proportion
of variance in response to treatment options currently available
for T2D. KCNJ11 and PPARG variants provide evidence of
a successful pharmacogenetic approach for treatment of T2D
(Gloyn et al., 2001; Bluher et al., 2003). Several common
polymorphisms in genes like KCNJ11, ABCC8, WFS1, GLIS3,
HNF4A, HNF1B and GCK that have common antecedents
in monogenetic diabetes and T2D have influence on the
glycemic outcomes of metformin treatment (Jablonski et al.,
2010). Common variants in KCNJ11, ABCC8, NEUROD1 and
PAX4 predict response to repaglinide for glycemic outcomes
like glycated hemoglobin, fasting glucose and post-prandial
glucose (He et al., 2008; Florez et al., 2012; Gong et al.,
2012). Though, these examples foster the potential for utilization
of these variants in common loci to personalize medicine,
understanding diversity of drug responders, metabolic and
signaling pathways associated with a drug’s action supported
by clinical observations is required for tailoring therapeutic
needs. In addition, exploring new avenues like brain centered
glucose regulation and investigating the role of common loci
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in central regulation of glucose metabolism would help us
expand our horizons and improve our understanding of disease
biology.

Conclusions

To conclude, no genetic disease is monogenetic now, thanks
to better understanding of the clinical phenotype and to the
various technological advances that allow the whole “OME” to
be investigated. Understanding and utilization of single gene
effects on specific traits that conglomerate into a complex
phenotype is currently the best way to understand the genetic
basis at functional level and be of any use for disease prevention
and management. However, lot of factors such as mutational

heterogeneity, nature of variants, ethnic differences etc. need to
be understood before this becomes a practical reality.
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