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Background. There is still a lack of knowledge regarding the association between hypertension and ferroptosis. A single-cell
approach was used to study the changes in neuropeptide expression as they might contribute to the mechanisms leading
to ferroptosis in a hypertensive microenvironment. Methods. We analyzed 11798 cells from the SHR group and 12589 cells
from the WKY group of mouse arterial cells. CellPhoneDB was used for cell communication analysis, and the SCENIC
method was used to identify key transcription factors in neurons. The correlation between Ntrk2 and ferroptosis-related
genes was further analyzed and validated via quantitative polymerase chain reaction. Results. The arterial cells were
clustered into six cell types. Ligand-receptor analysis suggested that Ngf, Ntf3, Cxcr4, and Ntrk2 were key neuropeptide-
related genes involved in the communication between vascular smooth muscle cells and neural cells. In the hypertensive
microenvironment, the neuronal transcription factor Creb3l1 appears to play a key role in the upregulation of Ntrk2 to
promote the interaction between neurons and vascular smooth muscle cells. An association between Ntrk2 and the
ferroptosis death inhibitor Gpx4 was suggested. RT-qPCR experiments confirmed that Ntrk2 downregulation in neural cells
was followed by downregulated expression of Gpx4. Conclusions. Creb3l1, a key transcription factor in vascular neurons,
may upregulate Ntrk2 to promote vascular smooth muscle cell-neuron interaction and thereby potentially prevent
ferroptosis in neurons.

1. Introduction

Hypertension is an important risk factor for many cardio-
vascular and cerebrovascular diseases. In hypertension, a
combination of platelet activation due to blood flow stagna-
tion, endothelial cell damage, and abnormal shear stress
causes coagulation in and damage to the arteries, which
stimulates the bone marrow to strengthen its ability to pro-
liferate platelets. This stimulation persists for a long time,
maintaining the platelet count at high levels in patients with
hypertension. This synergistic effect of hypertension
increases the risk of cardiovascular disease [1, 2].

The prevalence of stroke has been increasing year over
year. A large body of literature has previously reported that
hypertension is significantly more likely to be complicated
by thromboembolic diseases such as myocardial infarction
and stroke than by hemorrhagic disease. This trend may be
related to the presence of a prethrombotic state (PTS) in
hypertension. The PTS (prethrombotic state) is a pathologi-
cal process in which the body’s hemostatic and coagulation
functions are rendered dysfunctional caused by various fac-
tors [3]. The pressure load generated by a long-term increase
in blood pressure causes direct damage to the vascular wall
and endothelium, resulting in the activation of the
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coagulation and fibrinolytic system, which ultimately
induces the formation of a PTS [4]. Hypertensive disease-
related PTS is inextricably linked to hypertensive target
organ damage—especially the heart and brain—and long-
term prognosis.

The key to the occurrence of thrombosis is vascular
endothelial damage, and its formation is a complex process.
The vast majority of clinical or basic research now suggests
that thrombosis occurs as a result of a combination of fac-
tors that include damage to the vascular endothelium, acti-
vation of procoagulant factors, diminished anticoagulant
function, dysregulation of the fibrinolytic system, and
altered blood rheology. The modified “damage response”
theory proposed by Ross states that endothelial damage,
especially endothelial dysfunction, was the initiating link of
thrombosis formation. Following this, changes in endothe-
lial permeability, adhesion, and blood coagulation would
begin a series of chain reactions, supported by the release
of large amounts of cytokines and growth factors secondary
to endothelial damage. This cascade can, in theory, be pre-
vented by protecting the endothelium [5, 6].

Neuropeptides are associated with endothelial damage.
They are also known to be regulated by hypertension, and sev-
eral neuropeptides are closely linked to the cardiovascular sys-
tem. PACAP, for example, is a potent vasodilator that can
relax the blood vessels of many organs, such as the brain, eyes,
lungs, kidneys, skin, and ovaries. In addition, it also has the
effect of lowering blood pressure, reducing vascular resistance,
and increasing local blood flow [7]. It has additionally been
shown that hypertension can cause endothelial damage via
neuropeptides but the exact mechanism is still unknown.

There is still a lack of knowledge regarding the associa-
tion between hypertension and ferroptosis. Ferroptosis, a
concept first introduced by Dixon in 2012, is an iron-depen-
dent, nonapoptotic form of cell death characterized by the
accumulation of lipid reactive oxygen species (ROS) [8].
Lipid peroxides, particularly Fe2+, oxidize lipids in a Fenton
reaction, generating large amounts of ROS and promoting
ferroptosis. Recent studies have revealed that aberrant
expression of some neuropeptides may be critical in the
induction of ferroptosis in cells [9, 10]. Dysfunction of vas-
cular neurons is an important feature of the hypertensive
microenvironment [9]. Recent studies have identified hyper-
tension as a potential cause of ferroptosis in cardiovascular
neurons [11]. We speculate that the hypertensive microenvi-
ronment may contribute to the development of vascular
neuronal ferroptosis, which may be a key cause of vascular
endothelial injury in the hypertensive microenvironment.

With the establishment and development of single-cell
genome sequencing, the understanding of diseases and the
analysis of genomic features have entered the single-cell level
[12, 13]. Single-cell sequencing technology is a powerful tool
for studying cellular heterogeneity since it can reveal the
gene structure and expression status of individual cells
[14–16]. This technology has been used to unravel the cellu-
lar composition, immune cell status, cellular phenotype
transformation processes, and complex intercellular mecha-
nisms, laying the theoretical foundation for the cause, devel-
opment, and treatment of hypertension [17].

This study aims at investigating, using a single-cell
approach, the changes in neuropeptide expression and the
mechanisms leading to endothelial damage in the hyperten-
sive environment. In doing so, we hope to reveal the princi-
ples of hypertension that lead to thrombosis and arterial
obstruction.

2. Materials and Methods

2.1. Data Collection. Data of single arterial vascular cells
were obtained from the GSE149777 dataset of the GEO data-
base. The dataset contains spontaneously hypertensive rats
(SHR) and healthy control Wistar (WKY) rats aged 16–17
weeks [18]. The cellular heterogeneity in the mesenteric
artery (MA) and aortic artery (AA) was reported by this
database. A total of 11798 cells from the SHR group and
12589 cells from the WKY group were reported.
Neuropeptide-related genes were based on the search results
from GeneCards (https://www.genecards.org/) database
using the keyword “Neuropeptides” and a cutoff score of 2.
Ferroptosis-related genes were also obtained as described
in previous studies [19–21].

2.2. Construction of a Cell Subpopulation Distribution Map.
The percentage of mitochondria in the cells was analyzed.
The Seurat algorithm package for R was used for further
regression analysis of the expression data using log normal-
ization to correct for potential intersample sequencing batch
effects. The dispersion and expression values of genes were
calculated to obtain high-variable genes (HVGs). Based on
principal component analysis (PCA) of the scale data of
the first 2000 HVGs, tSNE downscaling analysis was per-
formed using the first 11 principal components to visualize
and map the tSNE localization of single cells and key mole-
cules for all samples. Normalized cell matrices were obtained
by Seurat normalization to calculate cell communication sig-
nificance and significance means. The FindMarkers function
and Wilcoxon rank-sum test were used to identify differen-
tially expressed genes between samples using the settings
logFC > 0:25, p < 0:05, and minimum pct > 0:1. The study
of Cheng et al. was referenced for cell annotation [18].

2.3. Analysis of Intercellular Communication. Ligand-recep-
tor analysis is a good way to understand the state of interac-
tion between different types of cells in the
microenvironment [15, 22, 23]. To systematically analyze
the cell-cell communication network, we used CellPhoneDB,
a public knowledge base of ligands, receptors, and their
interactions, for the annotation of membrane proteins,
secreted proteins, and peripheral proteins clustered at differ-
ent time points and for the calculation of their significance
means and cell communication significance [24].

2.4. Identification of Key Transcription Factors in Neurons.
Single-cell regulatory network inference and clustering
(SCENIC) is a method to compute single-cell transcriptome
data for gene regulatory network (GRN) reconstruction and
cell state identification based on gene regulatory network
and motif analysis [25–27]. A GRN consists of the TF and
cofactor with its regulatory target gene, which determines
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the transcriptional state of the cell in a given state. The SCE-
NIC process consists of three steps: (1) use of GENIE3 or
GRNBost to infer coexpression modules between transcrip-
tion factors and candidate target genes based on coexpres-
sion, (2) cis-regulatory motif analysis and TF-motif
enrichment analysis performed for each coexpression mod-
ule using RcisTarget to identify direct targets, and (3) scor-
ing each cell for each regulon activity using the AUCell
algorithm. The result generates a binary regulon activity
matrix that may be used to identify key transcription factors
in neurons.

2.5. Cell Culture. Immortalized lines of transmissible mouse
hippocampal neuronal HT22 cells were cultured in DMEM
complete medium containing 10% fetal bovine serum at
37°C in a volume fraction 5% CO2 cell culture incubator
and digested with 2.5 g/L trypsin when confluence was
between 70 and 80%. Subsequently, about 5000 cells per well
were inoculated into the wells of 96-well plates for subse-
quent experiments.

2.6. Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-qPCR). DNAMAN software was used to calcu-
late the typical sequence of the CDS region of different tran-
scripts of the same gene obtained from the PubMed website
and designed the upstream and downstream primers that
could span the intron of the gene using Oligo software.
Finally, the specificity of the primers was verified by the
BLAST function on the PubMed website and OligoCalc
was used to check online whether the primers formed a hair-
pin structure and whether the 3′ ends formed a complemen-
tary structure. SYBR Green and upstream and downstream
primers were mixed in clean Eppendorf tubes. The total
amount of SYBR Green and upstream and downstream
primers required was calculated based on the number of
wells spiked for each indicator. After centrifugation, the
samples were spiked on ice. After spiking, the samples were
again centrifuged at 2000 rpm for 1 minute at 4 degrees. The
program setting on the qPCR machine was adjusted to read
the cycle threshold value of each well.

2.7. Data Analysis. Statistical and visual analyses were per-
formed using R software (version 3.6.0) and GraphPad 6.0.
The significance levels of the results of gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis were calculated using Fisher’s exact test,
and the significance threshold was defined as p < 0:05. Sam-
ples with normal distribution were analyzed using a t-test
between two independent samples; if they were nonnormally
distributed, nonparametric tests were used. The results were
expressed as the mean ± standard deviation (mean ± SD).
Correlation analysis was done using Pearson’s analysis, with
statistical significance defined as p < 0:05.

3. Results

3.1. Determination of Each Subpopulation of Mouse Arterial
Cells. We analyzed 11798 cells from the SHR group and
12589 cells from the WKY group of mouse arterial cells,
and the RNA expression profile is shown in Supplementary

Figure 1A. The distribution states of each sample and
cluster after the canonical correlation analysis (CCA)
integration analysis to remove the batch effect are shown
in Figures 1(a) and 1(b). Then, PCA identified 20 PCs with
an estimated p value < 0.05 (Figure 1(c)). A tSNE
downscaling analysis was performed using the top 11
principal components, and the tSNE localization of single
cells and key molecules was visually mapped for all
samples (Figure 1(d)). Based on the study by Cheng et al.,
these cells were clustered into six cell types: SMCs, MSCs,
EC, macrophages, monocytes, monocytes, and neurons
[18] (Figure 1(d)). The enrichment of tissue samples in
each cluster and the expression of marker genes in the
different subgroups are shown in Figure 1(e). The
distribution characteristics of the cells in the SHR and
WKY are shown in Supplementary Figure 1B. The
enrichment of tissue samples in each cluster and the
expression of marker genes in different subgroups are also
shown (Figure 1(e) and Supplementary Figure 1C).

3.2. Neuron-Related Cellular Communication. CellPhoneDB
was used for cell communication analysis between neuronal
cells and other cell subpopulations (Figure 2(a)). These key
ligand-receptor interaction genes were extracted for Venn
diagram analysis (Figure 2(b)). The results suggested that
Ngf, Ntf3, Cxcr4, and Ntrk2 were key neuropeptide-related
genes involved in the communication between vascular
smooth muscle cells and neurons. A schematic representa-
tion of the interactions between these key neuropeptides
and their ligands or receptors in vascular cell communica-
tion is shown in Figure 2(c).

3.3. Creb3l1 Was Found to Be a Key Transcription Factor
Regulating Ntrk2 in Neuron. The SCENIC method was used
to analyze key transcription factors in neurons. The top five
transcription factors were identified as Tcf21, Mafk, Twist2,
Foxp2, and Creb3l1 (Figure 3(a)).

All the identified key transcription factors were clus-
tered into different modules. Foxp2, Twist2, Creb3l1, and
Tcf21 were found to be located in the M2 module, with
Ntrk2 possibly being regulated by these TFs. Meanwhile,
Ets, Klf16, and Sp1 were located in the M5 module and
possibly regulated NTF3 (Figure 3(b)). It should be noted
that M2 and M5 refer to cell clustering based on tran-
scription factors rather than specific cell types. The tSNE
distribution of Ngf, Ntf3, Cxcr4, and Ntrk2 and their
expression in each subpopulation of cells are shown in
Figure 3(c). Ntrk2 was found to be enriched in neurons,
while Cxcr4 was found to be enriched in macrophages.
Meanwhile, Ngf, Ntf3, and Ntrk2 were all found to be
enriched in SMCs.

Finally, the tSNE distribution of Ets1, Klf16, Sp1, and
Creb3l1—the main transcription factors regulating Ntrk2
and NTF3—and their expression in each subpopulation
of cells were shown in Figure 3(d). Creb3l1 was found to
be highly expressed in MSCs and neurons. Thus, Creb3l1
may act as a key transcription factor in neuronal cells
upregulating Ntrk2.
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Figure 1: Continued.
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3.4. Ntrk2 Upregulation Was Found to Be Associated with
Ferroptosis-Related Pathways. Ferroptosis is an iron-
dependent form of programmed cell death distinct from
apoptosis, cell necrosis, and autophagy. Ferroptosis is
marked by a decrease in the levels of glutathione peroxidase
4 (Gpx4), the regulatory core enzyme of the antioxidant or
glutathione system [28]. We have tried to explore the associ-
ation of Creb3l1 and Ntrk2 with ferroptosis. Correlation
analysis of Ntrk2 and ferroptosis-related genes suggested
that Ntrk2 expression was found to be significantly associ-
ated with Gpx4 (Figure 4(a)). In vascular neurons, Gpx4
expression was found to be positively correlated with
Creb3l1 and Ntrk2 (Figure 4(b)). The RT-qPCR experiments
indicate that after Ntrk2 expression was downregulated in
HT22 cells, the expression of Gpx4 was also downregulated
(Figure 4(c)). We thus come up with a hypothesis that
Creb3l1, a key transcription factor in neurons, may upregu-
late Ntrk2 in the hypertensive microenvironment to pro-
mote vascular smooth muscle cell-neuron interactions and
thereby potentially prevent ferroptosis in neurons
(Figure 4(d)).

4. Discussion

This study identifies by SCENIC that Creb3l1 may upregu-
late Ntrk2 to promote vascular smooth muscle cell-neuron
interaction and thereby potentially prevent ferroptosis in
neurons.

SCENIC is a method to compute single-cell tran-
scriptome data for gene regulatory network reconstruction

and cell state identification based on gene regulatory net-
work and motif analysis. CREB3L1 (cAMP-responsive
element-binding protein 3-like 1) is a transcriptional pro-
moter of AVP expression under the regulation of cAMP
[29]. This suggests that CREB3L1 may play an important
role in blood pressure regulatory functions. However, varia-
tions on the expression of CREB3L1 in hypertensive patients
remain to be investigated. Under the positive regulation of
cAMP, Creb3l1 activates the Avp promoter, which increases
AVP expression.

The results of the CellPhoneDB ligand-receptor analysis
suggested that Ntrk2 was a key neuropeptide-related gene
involved in the communication between vascular smooth
muscle cells and neurons. Ntrk2 was found to be enriched
in neurons in this study. And Ntrk2 (neurotrophic receptor
tyrosine kinase 2), also known as tyrosine kinase receptor B
(TrkB), and its ligands are novel targets for angiogenic ther-
apy [30, 31]. It is a cell surface receptor that can be activated
through ligand binding and is expressed in endothelial cells
and the smooth muscle cells of the developing and adult
heart [32, 33]. Ntrk2 is aberrantly expressed in endothelial
cells under inflammatory conditions [34]. BDNF is the pre-
ferred ligand for Ntrk2 in the neuronal environment [35].
However, it is not the only neurotrophic factor that can acti-
vate Ntrk2. Ntf3 (neurotrophin-3) can also bind and activate
Ntrk2, which was also found in this study [36].

Our results suggested that Ntrk2 expression was signifi-
cantly correlated with Gpx4. RT-qPCR experiments con-
firmed that when Ntrk2 expression was downregulated in
HT22 cells, Gpx4 expression was also downregulated. In
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the absence of intracellular glutathione, the activity of the
key regulatory enzyme Gpx4 is reduced and the reduction
reaction it catalyzes becomes unable to metabolize lipid per-

oxides. Gpx4, like other selenium-containing Gpx enzymes,
is an antioxidant. Its catalytic center is a tetramer consisting
of a hydrogen bond between the Sec residues and nitrogen
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atoms of asparagine, glutamine, and tryptophan. Loss of
Gpx4 expression or activity through genetic or pharmaco-
logical pathways thus promotes ferroptosis in a lipid ROS-
dependent manner [37]. Recent genetic and epidemiological
studies showed that reduced Gpx4 levels or reduced catalytic
activity led to obesity, cardiovascular disease, and inflamma-
tion [38–40]. Decreased levels of Gpx4 can cause increased
lipid peroxidation, resulting in ferroptosis in vascular endo-
thelial cells, which promotes thrombosis and the develop-
ment of atherosclerosis. Overall, Gpx4 prevents cellular
ferroptosis by eliminating intracellular lipid ROS, while inhi-
bition of Gpx4 induces ferroptosis [41]. The binding of Ntf3
to Ntrk2 increased Gpx4 levels, attenuated fat oxidation,
inhibited ferroptosis, and protected the vascular smooth
muscle cells and neurons.

Creb3l1, a key neuronal transcription factor in a
hypertensive microenvironment, may upregulated Ntrk2
expression. Creb3l1 has been mostly found to be associ-
ated with tumor progression in the nervous system [42].
In other studies, the homeostasis of Creb3l1 has also been
found to play an important role in maintaining the func-
tion of vascular integrity [43]. Our study suggests a potential
function of Creb3l1 in the homeostasis of the hypertensive
microenvironment.

Despite these promising results, there is a need to further
verify the potential regulatory role of Crebl1 on Ntrk2 and
Ntf3. This study is based on single-cell sequencing data
obtained from a single dataset, which has its own limitations.
The data of this study were obtained from a single dataset.
There is a need to integrate multiomics technologies such
as single-cell proteomics, single-cell immunomics, and spa-
tial transcriptomics to better understand the complex inter-
actions between AS initiation, progression, regression, and
plaque rupture. As the cost of single-cell sequencing gradu-
ally decreases, correlations between single-cell sequencing
data and clinical parameters may be established in the future

to translate into clinical applications and eventually develop
new therapeutic strategies for controlling hypertension.

5. Conclusions

We showed that Creb3l1, a key transcription factor in neu-
rons, upregulates Ntrk2 expression in the hypertensive
microenvironment. The binding of Ntf3 to Ntrk2 increases
Gpx4 levels, inhibits ferroptosis, and protects vascular
smooth muscle cells and neurons.
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