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Enantioselective [3+3] atroposelective annulation
catalyzed by N-heterocyclic carbenes
Changgui Zhao1, Donghui Guo1, Kristin Munkerup 2, Kuo-Wei Huang 2, Fangyi Li1 & Jian Wang 1

Axially chiral molecules are among the most valuable substrates in organic synthesis. They

are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for

the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed

transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic

carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC

precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing

axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities.

Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are

employed to atroposelectively assemble chiral biaryls and such a methodology may be

creatively applied to other useful NHC-catalyzed asymmetric transformations.
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Axial chirality, a key stereogenic element, is widely observed
in natural products1–3 and often determines the phar-
macological properties in biologically active molecules

(e.g., Maxi-K channel openers, (R)-Streptonigrin; Fig. 1)4. Among
them, axially chiral biaryls are recognized as one of fundamental
entities of chiral ligands, catalysts, and other useful reagents5.
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Fig. 1 Representative molecules and synthetic protocols. a Two representative axially chiral molecules. b NHC-catalyzed transformations via the use of
unsaturated acyl azolium intermediate. c Our synthetic proposal via [3+3] atroposelective annulation. NHCs react with ynals to generate chiral alkynyl acyl
azolium intermediates to further react with cyclic 1,3-diones
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Table 1 Optimization of the reaction conditionsa

15 mol% cat. A
150 mol% DQ

200 mol% nBu4NOAc
20 mol% Mg(OTf)2
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Entry Deviation from standard conditionsa Yield 3 (%)b er 3 (%)c Yield 4 (%)b Yield 5 (%)b Yield 6 (%)b

1 None 70d 90:10 <5 <5 <5
2 No cat. A 0 − 0 0 0
3 B instead of A <5 − <5 <5 <5
4 C instead of A <5 − <5 <5 60
5 D instead of A 44 −77:23 <5 30 20
6 No Mg(OTf)2 60 90:10 <5 <5 18
7 LiCl instead of Mg(OTf)2 58 90:10 <5 <5 <10
8 In(OTf)3 instead of Mg(OTf)2 63 90:10 <5 <5 <10
9 Sc(OTf)3 instead of Mg(OTf)2 60 90:10 <5 <5 <10
10 Zn(OTf)2 instead of Mg(OTf)2 61 90:10 <5 <5 <10
11 CHCl3 as solvent 40 80:20 <5 15 23
12 THF as solvent 54 85:15 <5 <10 19
13 Dioxane as solvent 20 − <5 <5 50
14 No nBu4NOAc 0 − 0 0 0
15 DIPEA as base 45 80:20 <5 17 20
16 Cs2CO3 as base 40 75:25 <5 20 22
17 KOtBu as base <10 − <5 <5 <5
18 F instead of E <5 − 76 <5 <5
19 G instead of E <5 − 70 <5 <5
20 10 mol% A 69e 91:9 <5 <5 13
21 2b instead of 2a 60f 75:25 <5 <5 18
22 2c instead of 2a 60g 71.5:28.5 <5 <5 <5

aStandard conditions: 1a (0.11 mmol), 2a (0.10 mmol, R=Me), nBu4NOAc (0.2 mmol), oxidant E (0.15 mmol), Mg(OTf)2 (20mol%), cat. A (15 mol%), toluene (2.0 mL), room temperature, N2, 24 h
bIsolated yield
cDetermined by chiral HPLC
d3aa as major product
e48 h
f3ab as major product
g3ac as major product
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Over the past few decades, numerous efforts have been devoted to
constructing these axially chiral biaryls, but successful examples
are relatively scarce in contrast to their great potential in various
applications6–25. In 1984, Meyers and coworkers reported the first
example of central-to-axial chirality conversion in biarylic

systems26. Later on, the direct asymmetric cross-coupling of two
aryls has proven to be a feasible method27–33. However, the poor
enantiocontrol and low coupling efficiency greatly limit their
applications. More recently, an elegant route to synthesize axially
chiral biaryls was demonstrated via an aromatic ring
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Fig. 2 Scope of cyclic 1,3-diones. Reaction conditions: a mixture of 1b–g (0.11 mmol), 2a (0.10 mmol), nBu4NOAc (0.2 mmol), oxidant E (0.15 mmol), Mg
(OTf)2 (20mol%), and cat. A (15 mol%) in toluene (2.0mL) was stirred at room temperature under N2 for 24 h
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formation34,35. Despite these advances, this field is still in its
infancy and efficient synthetic routes still need to be identified.

Chiral N-heterocyclic carbenes (NHCs) as versatile catalysts
have been well studied in last few decades36–43, but most of the
reports are only focused on the assembly of central chirality.

Herein, we report a highly enantioselective NHC-catalyzed [3+3]
atroposelective annulation of ynals with cyclic 1,3-diones44, thus
paving a route toward axially chiral biaryls. It is noteworthy that
the NHC-bounded alkynyl acyl azoliums as active intermediates
are generated from ynals in contrast to unsaturated acyl azoliums
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(Fig. 1) made from ynals via an internal redox reaction, which
have been intensively investigated in organic reactions, such as
esterification, Claisen rearrangement, cycloaddition, etc45–55. Our
mechanistic studies have completely ruled out the route, invol-
ving the formation of unsaturated acyl azolium followed by a
central-to-axial chiral conversion.

Results
Reaction optimization. We began our study with the model
reaction of 5,5-dimethylcyclohexane-1,3-dione (1a) and 3-(2-
methoxynaphthalen-1-yl)propiolaldehyde (2a). Key results are
briefly summarized in Table 1. Using nBu4NOAc as the base, Mg
(OTf)2 as the additive56,57, E as the oxidant, and toluene as the
solvent, a number of chiral NHC catalysts A−D58–62 were initially
screened. No desired product was detected in the presence of
widely used NHC catalysts B and C. Pleasingly, chiral triazolium
NHC precatalyst with N-2,4,6-(Br)3C6H2 substituent (Table 1, D)
provided axially chiral 3aa with a moderate er, but albeit in a low
yield (Table 1, entry 5). Along with the formation of 3aa,
byproducts of 4aa, 5aa, and 6aa, which resulted from different
unexpected intermediates and reaction pathways, were produced
simultaneously. Given the significance of reaction conditions to
the success of a focused catalytic transformation, we carried out a
comprehensive optimization of reaction parameters. As outlined
in Table 1, addition of 1a and 2a to a mixture of catalyst A (15
mol%), oxidant E (1.5 equiv.), and nBu4NOAc (2.0 equiv.) with
Mg(OTf)2 (20 mol%), provided 3aa in 70% yield and 91:9 er
(Table 1, entry 1).

Substrate scope. With the most efficient catalytic conditions in
hand, we next examined the substrate scope (Fig. 2). The R
substituent of cyclic 1,3-dione 1 was investigated firstly. Sub-
strates equipped with cyclic substituents (e.g., four- and six-
membered rings) on cyclic 1,3-dione scaffold gave the corre-
sponding products 3ba and 3ca in good yields but only with
moderate er. In addition, reactions for cyclic 1,3-dione substrates
bearing alkyl chains in different length proceeded smoothly under
standard reaction conditions (3da−fa). While substrate cyclic 1,3-
dione (2g) bearing a long alkyl chain was used, a good yield and
high er value were achieved (Fig. 2, 3ga, 70% yield and 95:5 er).

To address the stability of the products, we conducted several
experiments and the related results verified that the rotation
barrier of the chiral axis was high enough to prevent the
racemization of product 3gh during the reaction or its
purification: with ΔG≠

rot = 119.7 KJ mol−1 at 85 °C, the half-life
of rotation is 7.41 h at 85 °C (Fig. 3; for details, see Supplementary
Discussion).

Further investigation on the scope of ynals was conducted
(Fig. 4). The steric and electronic effects on the aromatic ring of
ynals were evaluated by the variation of substituent patterns.
When examined substrates bear electron-withdrawing or
electron-donating groups at 3-, 4-, 6-, 7-, or 8-substituted
positions on naphthalene rings, moderate to good yields and
high er values were regularly obtained (3gd−gr). When a
substituted phenyl ring replaced the naphthalene ring in ynals,
high er could still be achieved (3gs and 3gt). The absolute
configuration of 3au was determined to be (S) by X-ray
crystallography, and other products were assigned by analogy.
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To demonstrate the utility of above synthesized products, we
successfully converted 8 into commonly used axially biaryls 10.
As shown in Fig. 5, Diels–Alder reaction of 8 and 9 afforded the
corresponding axially chiral naphthyl–phenyl products 10 in
acceptable yields and no racemization was observed.

Mechanistic studies. The origins of chemo- and stereo-selectivity
of this reaction are rationalized by the postulated mechanism
illustrated in Fig. 6 (Path A). The addition of NHC catalyst to
ynal 2 yields an NHC-bounded Breslow intermediate I63,64.

Breslow intermediate I then undergoes oxidation to generate the
firstly proposed intermediate, alkynyl acyl azolium II, which
subsequently reacts with cyclic 1,3-dione 1 to form intermediate
III. III undergoes Michael addition to the alkynyl azolium moeity
to form the allenolate intermediate and after subsequent proton
transfer from the 1,3-dione to the allene, intermediate IV is
reached. Next O–C bond is formed to create V and the NHC can
be released and finally generated product 3. As the generation of
NHC-bounded unsaturated acyl azolium intermediates from
ynals has been reported by Zeitler45, Lupton46,47, Bode48–51,
Scheidt52, and others53–55, an alternative pathway may involve
the direct annulation of NHC-bounded unsaturated acyl azolium
intermediate VI with cyclic 1,3-dione 1 leading to byproduct 4.
However, as highlighted in Fig. 7 (Eq. (1)), the oxidative dehy-
drogenation of 4aa to 3aa does not proceed in the presence of
oxidant alone or under standard reaction conditions. As such, 3aa
cannot be generated from the α,β-unsaturated acyl azolium
intermediate.

During the process of optimization, byproduct 5 was found
clearly and confirmed by NMR spectra, presumably generated
through the Knoevenagel condensation of 3 with 1.0 equivalent of
1. To examine this hypothesis, a controlled experiment was
carried out (Fig. 7, Eq. (3)). Surprisingly, the er value of 7 is not
consistent with the er value of 3gs (59:41 er vs. 96:4 er) and this
observation indicates that an alternative pathway may be
operating (Fig. 6, Path C). Building upon intermediate IV, we
suggest that the Knoevenagel condensation process generates
intermediate VI which subsequently leads to 5 via annulation.
Moreover, there is an interesting observation found during the
optimization of reaction conditions with Lewis acids (Table 1,
entry 6). When Mg(OTf)2 is omitted from the reaction condition,
the yield of byproduct 6 increases to 18%, which can be explained
by the fact that 1 can now do a direct ‘O’ attack to the alkynyl on
intermediate II, because the Mg2+ ion is not there to coordinate 1
and II. Therefore, Mg2+ plays a critical role as it reduces the
ketoenolate’s ‘O’ attack (transition state VIII, Path D) and
promotes the ‘C’ attack (intermediate III, Path A, Fig. 6).

Preliminary computational studies were conducted on steps III
to V in Path A assuming an acetate ligand on the magnesium ion
to provide insights into the observed enantioselectivity. It was
found that the energies of all transition states from III to the
allenalate are higher than those of the rest of processes and we
thus hypothesize that the enentioselectivity is determined in this
intramolecular C–C bond forming reaction. Interestingly, in
contrast to other studies on the α,β-unsaturated acyl azolium
analogs, this step creats two components of axial chirality, namely
the allenolate and the 2-methoxynaphthalen-1-yl moiety, in
addition to one chiral center of the 1,3-dione. The twisted alkynyl
acyl azolium plane allows the ketoenolate group to stay away
from the indane ring (Fig. 8), whose role is to discriminate the
strain energy during the formation of the allenolate center rather
than the intuitive effect to block the approach of the nucleophile.

Discussion
In summary, we have successfully developed an NHC-catalyzed
atroposelective annulation of cyclic 1,3-diones with ynals, pro-
viding chiral α-pyrone-aryls in moderate to good yields with high
enantioselectivities. This protocol features good functional group
tolerance, and allows the rapid assembly of axially chiral mole-
cules from simple and readily available starting materials under
mild conditions. Our computational investigation suggests that
the enantioselectivity is determined during the Michael addition
of the ketoenolate to the alkynyl azolium moiety. Further inves-
tigations on axially chiral compounds as hits in medicinal
chemistry or as chiral ligands or catalysts in asymmetric
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Fig. 8 Comparison of transition states. Relative free energy (kcal mol−1) of TS1 and TS1' are displayed in the brackets
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synthesis, as well as a detailed mechanistic study, are currently
underway in our laboratories.

Methods
Synthesis of 3. In a glovebox, a flame-dried Schlenk reaction tube equipped with a
magnetic stir bar, NHC precatalyst A (9.2 mg, 0.015 mmol), nBu4NOAc (60.2 mg,
0.20 mmol), oxidant DQ (62.0 mg), cyclic 1,3-dione 1 (0.11 mmol), ynal 2 (0.10
mmol), and freshly distilled toluene (2.0 mL) were added. The reaction mixture was
stirred at room temperature for 24 h. The mixture was then filtered through a pad
of Celite washed with DCM. After the solvent was evaporated, the residue was
purified by flash column chromatography to afford the desired product 3.

Computational details. All structures and energies were computed using the
Gaussian 09 program package version D.0165. The B3LYP functional together with
the 6-31g(d,p) basis set was used. All structures were optimized to a minimum
confirmed by frequency calculations and all transition state structures were con-
firmed by identifying one imaginary frequency and intrinsic reaction coordinate
(IRC) analysis.

Data availability. For 1H, 13C NMR, and high-performance liquid chromato-
graphy spectra of the compounds in this manuscript, see Supplementary
Figs. 1–167. For the details of the synthetic procedures, see Supplementary
Methods. The supplementary crystallographic data for this paper could be obtained
free of charge from The Cambridge Crystallographic Data Centre (3au: CCDC
1501039) via https://www.ccdc.cam.ac.uk/

Received: 18 June 2017 Accepted: 9 January 2018
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