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A B S T R A C T   

Clinical diagnostics for SARS-CoV-2 infection usually comprises the sampling of throat or nasopharyngeal swabs 
that are invasive and create patient discomfort. Hence, saliva is attempted as a sample of choice for the man-
agement of COVID-19 outbreaks that cripples the global healthcare system. Although limited by the risk of 
eliciting false-negative and positive results, tedious test procedures, requirement of specialized laboratories, and 
expensive reagents, nucleic acid-based tests remain the gold standard for COVID-19 diagnostics. However, ge-
netic diversity of the virus due to rapid mutations limits the efficiency of nucleic acid-based tests. Herein, we 
have demonstrated the simplest screening modality based on label-free surface enhanced Raman scattering (LF- 
SERS) for scrutinizing the SARS-CoV-2-mediated molecular-level changes of the saliva samples among healthy, 
COVID-19 infected and COVID-19 recovered subjects. Moreover, our LF-SERS technique enabled to differentiate 
the three classes of corona virus spike protein derived from SARS-CoV-2, SARS-CoV and MERS-CoV. Raman 
spectral data was further decoded, segregated and effectively managed with the aid of machine learning algo-
rithms. The classification models built upon biochemical signature-based discrimination method of the COVID- 
19 condition from the patient saliva ensured high accuracy, specificity, and sensitivity. The trained support 
vector machine (SVM) classifier achieved a prediction accuracy of 95% and F1-score of 94.73%, and 95.28% for 
healthy and COVID-19 infected patients respectively. The current approach not only differentiate SARS-CoV-2 
infection with healthy controls but also predicted a distinct fingerprint for different stages of patient recovery. 
Employing portable hand-held Raman spectrophotometer as the instrument and saliva as the sample of choice 
will guarantee a rapid and non-invasive diagnostic strategy to warrant or assure patient comfort and large-scale 
population screening for SARS-CoV-2 infection and monitoring the recovery process.   
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1. Introduction 

Viruses are profuse biological entities capable of infecting every form 
of life. Coronaviruses (CoVs) frequently cause respiratory illness in 
humans. Middle East respiratory syndrome coronavirus (MERS-CoV) 
and severe acute respiratory syndrome coronavirus (SARS-CoV) are two 
extremely transmissible and pathogenic viruses that infected humans at 
the outset of the 21st century. The global outbreak of the 2019 novel 
coronavirus (2019-nCoV), triggered by SARS-CoV-2 brings about the 
announcement of a pandemic by the World Health Organization (WHO). 
Till now, SARS-CoV-2 has infected more than 266 million people and has 
claimed over 5.26 million lives around the globe. SARS-CoV-2 has a 
single-stranded positive-sense RNA genome and further crowned with a 
protein-spiked envelope. The structural proteins encompass spike sur-
face glycoprotein (S), matrix protein (M), a small envelope protein (E), 
and nucleocapsid protein (N). Spike protein of SARS-CoV recognizes 
host angiotensin-converting enzyme 2(ACE2) for the cell entry and 
subsequent replication [1,2]. SARS-CoV-2 principally deploys through 
the respiratory tract secretions, droplets, and by direct contact. Reverse 
transcription-polymerase chain reaction (RT-PCR) and reverse- 
transcription loop-mediated isothermal amplification (RT-LAMP) are 
the gold standard nucleic acid-based diagnostic tests for COVID-19. 
These tests are associated with the occurrence of false-negative and 
positive results, longer analytical protocol, requirement of specialized 
laboratories and expensive reagents. Genetic diversity caused by rapid 
mutations in the loci recognized by DNA primers may potentially hinder 
sensitivity and selectivity of nucleic acid-based COVID-19 diagnosis [3]. 
Moreover, the U.S. Food and Drug Administration (FDA) have alerted 
that the mutant strains may severely compromise the reliability of 
nucleic acid-based molecular diagnosis [4]. Rapid antigen and antibody 
based serological tests are invasive which consists of lateral flow-based 
hand-held disposable strips and high throughput enzyme-linked 
immunosorbent assay but the sensitivity and reliability are far behind 
the nucleic acid-based diagnostics [5]. 

Currently employed COVID-19 diagnosis uses nasopharyngeal swabs 
wherein the sample collection procedure is invasive, risky, cause 
discomfort to the patients and occasionally induces coughing and 
bleeding. Since the spread of the virus occurs through respiratory 
droplets and aerosols, saliva was suggested as a substitute for naso-
pharyngeal swabs. Saliva can be collected without any invasive pro-
cedures and with proper guidelines, patients can collect saliva 
themselves to minimize the risk of virus transmission to healthcare 
personnel. Saliva displayed a high concordance rate with nasopharyn-
geal specimens in the detection of viruses, including coronaviruses. The 
salivary SARS-CoV-2 load will reach a peak during the first week from 
symptom onset and could be detected as long as 20 days, suggesting its 
use for monitoring viral clearance [6]. Moreover, the presence of SARS- 
CoV-specific secretory IgA and IgG responses was reported in saliva [7]. 
SARS-CoV-2 diagnosis using saliva samples could especially help coun-
tries with a high population density to conduct mass population 
screening and effectively mitigate COVID-19 spread. 

Raman spectroscopy is a useful tool for scrutinizing the molecular- 
level changes in the biological specimen by making use of the inelasti-
cally scattered light for the recognition of vibrational states of the bio-
molecules. In order to amplify the inherently weak Raman scattering, 
surface-enhanced Raman scattering (SERS) has emerged, which en-
hances signal intensity of molecular vibration up to a magnitude of 
108–1014 folds with the aid of metallic nanoparticles [8]. On the grounds 
of facile synthesis, tunable size and high-localized surface plasmon 
resonance, gold nanoparticles (AuNPs) are largely employed as SERS 
substrates. Several attempts were made using the SERS platform for the 
rapid identification of pathogens including different forms of viruses. 
The virus envelope is made up of a unique set of proteins and lipids and 
hence can generate distinct Raman fingerprints. Recently, many SERS- 
based platforms were investigated for SARS-CoV-2 detection with high 
sensitivity but most of the approaches were accompanied with the 

drawback of complexity in the design of probes, lengthy processes and 
the requirement of invasive sample collection procedures [9–11]. 
Raman spectral data abstracted from the label-free analysis of bio-
molecules can be decoded, segregated, and effectively managed with the 
aid of Machine Learning (ML) and Deep Learning (DL) algorithms. 
Computer-aided chemometric approach for the design of classification 
and prediction models with the biological data of spectroscopic studies 
have previously been established for a range of applications like disease 
diagnosis and prognosis, proteomics, genomics, metabolomics and 
evaluation of therapy [12]. 

The purpose of the current investigation was to explore the feasibility 
of employing SERS as a diagnostic modality for the label-free discrimi-
nation of SARS-CoV-2 infection from saliva samples. Portable hand-held 
Raman spectrophotometer has been utilized to secure the Raman fin-
gerprints from the saliva samples where colloidal AuNPs was mixed with 
saliva in order to evaluate the enhanced Raman peaks. The classification 
models built-up by machine learning and deep learning algorithms 
based on salivary SERS spectra that will ensure high accuracy, speci-
ficity, and sensitivity to the approach. Considering the significant 
damage created by several waves of COVID viral transmission and the 
prediction for future outbreaks, an alternative strategy for diagnosis in a 
non-invasive manner with high accuracy is demanded to ensure mass 
population screening to effectually tame the next wave. Here, we aim to 
develop a portable, fast, and highly sensitive technique for the identi-
fication of COVID-19 infection by label-free surface enhanced Raman 
spectral analysis and principal component analysis (PCA) for the iden-
tification of unique bio-molecular Raman fingerprints of COVID-19 
infection in the body fluids like saliva and classify the healthy and 
COVID-19 infected samples using trained support vector machine (SVM) 
classifier. Hence, we believe that our current approach (Scheme 1) will 
certainly be translated to the bedside application after a large cohort 
study in a time-bound manner. 

2. Experimental Methods 

Synthesis and characterization of gold nanoparticles. Gold nano-
particles (AuNPs) were synthesized by the citrate reduction method as 
described previously [13]. All glassware were cleaned with aqua regia, 
then rinsed and steeped in Milli-Q water before use. Briefly, MilliQ water 
(50 mL) was heated until boiling to which 50 μL gold chloride (0.25 M) 
was added. After 10 min of boiling, 125 μL of trisodium citrate solution 
(0.1 M) was added which resulted in a color change from purple to red in 
5 min. The solution was allowed to cool for about 90 min with constant 
stirring. The as-prepared nanoparticles were concentrated by centrifu-
gation for 45 min at 4000 rpm for SERS analysis. Later the size, shape, 
and monodispersity of the prepared AuNPs were confirmed by 
ultraviolet-visible (UV–Vis) spectroscopy, dynamic light scattering 
(DLS), and high-resolution transmission electron microscopy (HR-TEM). 

Optimization of SERS studies. SERS experiments were performed 
with the aid of a handheld Raman spectroscope (Metrohm, USA) with a 
laser beam of 785 nm at 6 mW power directed to the sample through 
collection optics termed universal attachment (6.07506.010) with a 
numerical aperture (NA = 0.50 mm working distance and 0.2–2.5 mm 
spot size). Position 2 in the universal attachment was used for the study 
which is approximately 3 mm from the end of the attachment. The 
spectral resolution was 8–10 cm− 1 (FWHM) with beam divergence 2◦. 
The detection technique was Orbital Raster Scan (ORS) to average over 
the sample. The laser class was 3B according to EN 60825–1. Different 
parameters like laser power, number of spectra required, accumulation 
time, sample positioning, sample volume required, and sample to AuNPs 
ratio were optimized with multiple experiments. The spectral data were 
analyzed using Miracal software. Briefly, before each analysis, the in-
strument was calibrated using the reference Raman reporter MBA (4- 
Mercapto benzoic acid, 100 μM) and the intensity values were noted 
down. Spectra were acquired in the region between 400 and 2300 cm− 1. 
While mentioning about the problems associated with the 
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instrumentation and sample handling, impurities and inhibitors within 
saliva may be problematic to get expected results. Further we observed 
that high content of localized mucus particles can produce misleading 
Raman spectra and hence these suspended particles need to be carefully 
avoided before mixing with AuNPs and subsequent Raman studies. 
Moreover, presence of high lux flashlights or high exposure to sunlight 
during the SERS spectral acquisition was found to be problematic with 
the generation of un warrant Raman peaks. Hence the sample acquisi-
tion procedure needs to be performed in a less-light / dark room for an 
interference-free Raman spectrum. 

Sample collection. The study was approved and conducted following 
the directives of the ethical committee institutional review board at the 
Government Medical College, Thiruvananthapuram, Kerala, India 
(Human Ethics Committee approval no: HEC No.05/19/2020/MCT). 
For initial studies and optimization, bovine serum albumin (BSA) was 
used for spiking with health saliva samples. Later, S1 spike protein of 
SARS-CoV-2 (Sino Biological, Inc., Cat no: 40591-V08H), SARS-CoV 
(Sino Biological, Inc., Cat No: 40150-V08B1), and MERS-CoV (Sino 
Biological, Inc., Cat no: 40069-V08B1) was employed. For the studies 
with COVID patients, saliva samples from clinically confirmed COVID- 
19 patients were obtained after getting informed consent. The saliva 
samples were collected after 3 rounds of mouthwash by the drooling 
method in a sterile 50 mL centrifuge tube and stored at 4 ◦C till use. A 
saliva drop (10 μL) was mixed with AuNPs (40 μL) deposited on a glass 
slide covered with commercially available aluminum foil and subjected 
to Raman spectral acquisition. Information related to the sample size, 
number of subjects used, number of spectra taken from each subject, 
total number of spectra used for the studies, variance ratio of the prin-
cipal components, spectral range (cm− 1) used and facts related to the 
training and testing data set employed for different studies using viral 
proteins and saliva samples are illustrated in S1-S7 (Supporting 
information). 

Initial pre-processing of data. The raw spectral data were pre- 
processed by Miracal software before the statistical analysis in order 
to remove the interference noises, cosmic rays, and oversaturated 
spectra. The background was removed by the 4th degree polynomial 
function and smoothening of the SERS spectra was done by the Savitzky- 

Golay smoothing which in turn was normalized in the region of 
400–2300 cm− 1. The mean spectrum of each group of the pre-processed 
data was then determined using the Origin Pro 8.0 software. The com-
parison between the spectra of the control saliva and the treated group 
was made through the subtraction of different mean spectra and the 
shifts of the different peaks in the subtracted spectra were assigned to 
the molecular structures and biochemical components based on the 
literature reports. 

Baseline correction of data. It was observed that the spectral data 
received after the initial pre-processing step contains the baseline drift 
and in order to correct the baseline drift of the spectral data, a novel 
algorithm named asymmetrically reweighted penalized least squares 
smoothing (ARPLS) [14] was used. The above algorithm uses lambda as 
its input parameter for the smoothness of the spectral data. The greater 
the value of lambda the smoother the output spectra. By the repeated 
experiments we have found that the lambda value at 106 provides the 
smoother baseline corrected spectral curve with lowest root mean 
square error (RMSE) value. Thus, for all our experiments we have used 
the lambda value of 10 [6]. 

Prominent feature selection and machine learning algorithm. The 
handheld Raman spectrometer provides 1650 data points in the range of 
400–2300 cm− 1. We have taken data points in the range of 500 to 2150 
cm− 1 as inputs for our machine-learning framework (feature selection 
and classification). The baseline-corrected data was taken as input into 
the kernel principal component analysis (kernel PCA) [15] algorithm for 
dimensionality reduction and prominent feature selection where Radial 
basis function (Rbf) is used as the kernel. The extracted features by 
kernel PCA were used to train the support vector machine (SVM) clas-
sifier. Details of the classifier training and testing are mentioned below. 

Classification of samples. The complete process of classifying the 
Raman spectral data into healthy and COVID-19 infected categories 
consists of three major steps: (i) feature extraction using kernel PCA (ii) 
training of SVM classifier, and (iii) testing of the trained SVM classifier. 
To extract the features from the baseline corrected Raman spectral data, 
kernel PCA was used on the whole dataset. Following the feature 
extraction-using kernel PCA on the whole dataset, the dataset was 
randomly divided into training data and testing data in the ratio of 

Scheme 1. Schematic representation for workflow employed for the proposed strategy aiming COVID-19 diagnostics using SERS and AI with saliva as the sample 
of choice. 
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75:25. To design the classifier we have used the libSVM library [15]. The 
SVM classifier was trained using 75% of the data. After completion of the 
training, the trained SVM classifier was tested on the remaining 25% of 
the data. In the case of the SVM classifier, the degrees of freedom are in 
fact the number of training samples in the dataset. Each training sample 
can become a support vector and thus can contribute to the separating 
plane in case of binary SVM classifier and separating hyperplane in case 
of the multi-class SVM classifier. One can use the degree of freedom of 
the model to predict overfitting. When we have more parameters (de-
gree of freedom) than observations, there is a risk of overfitting the 
training dataset. This is intuitive, as parameters in the model than the 
observations may configure the model to predict the training data 
correctly and exactly, which usually indicates overfitting. The accuracy 
of the trained SVM classifier with respect to each of our dataset is re-
ported in the respective sub-sections of the manuscript. 

3. Results and Discussion 

3.1. Optimization of SERS Fingerprinting Using AuNPs 

SERS substrates are the key players behind the generation of hotspots 
to amplify the inherently weak Raman signals of analytes or the reporter 
molecules. AuNPs are the most exploited SERS substrates to amplify the 

Raman signatures of the biomolecules that would otherwise stay un-
traceable due to their lower Raman cross-sections. Spherical AuNPs 
within the size range of 40–45 nm are reported to be excellent for label- 
free Raman fingerprinting of biological analytes [16]. AuNPs were 
prepared, characterized (Fig. S1 a-c) and utilized as a SERS substrate for 
tracing biomolecular changes in the Raman signature. For evaluating the 
Raman enhancement effect, 4-mercaptobenzoic acid (MBA) was used as 
a reference standard and the instrumental parameters were optimized. 
The signature SERS peaks of MBA for a range of concentrations were 
recorded to reveal the concentration dependent intensity variations of 
the analyte molecule (Fig. 1a, S2a). The peak at 1084 cm− 1 corresponds 
to v8a (a1) aromatic ring vibration having the C–S stretching mode and 
the one at 1586 cm− 1 indicates v12 (a1) aromatic ring breathing mode 
of the MBA molecule [17]. With the portable handheld Raman spec-
troscope of a 785 nm laser and a power of 6 mW, an integration time of 
10s and 3 accumulations with appropriate focal length yielded optimal 
intensity with well-resolved Raman peaks of MBA molecules. The high 
signal enhancement of AuNPs enabled future exploration in a SERS 
platform. The appreciable spectral reproducibility could be due to the 
optimum size, surface charge, and stable nature of AuNPs. We have 
recently illustrated that the size, shape, and surface charge of AuNPs are 
key parameters regulating their interaction with the biological system to 
influence the capacity to be used for SERS studies [18]. 

Fig. 1. [a] Waterfall SERS spectrum of MBA with different concentrations a) 0.97, b) 1.9, c) 3.9, d) 7.8, e) 15.6, f) 31.2, g) 62.5, h) 125, i) 250, j) 500 and k) 1000 μM, 
the insert figure shows the structure of MBA. [b] Stacked SERS spectrum of direct saliva, saliva supernatant, and saliva pellet for the process of optimization of sample 
of choice. Raman spectra of [c] saliva taken from different subjects and [d] spiked with model protein BSA (1 μg/mL). [e] PCA and [f] SVM analysis. 
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3.2. SERS Spectral Evaluation of Saliva Samples 

Saliva samples were collected voluntarily by the healthy subjects 
using the drooling method. Each sample was separated into [1] saliva as 
such (direct saliva), [2] pellet (obtained after centrifugation of the 
sample at 3000 rpm for 5 min), and [3] supernatant (obtained from the 
previous step of centrifugation). The samples were subjected to Raman 
spectral analysis with the pre-optimized instrument settings and 
experimental conditions. Well-resolved Raman spectra were obtained 
from all the three types of samples of each subject (Fig. 1b). Although 
minor subject-to-subject variations were visible, the presented spectra 
were mainly dominated by the peaks attributed to C–N stretching and 
CH3 vibration in protein backbone (1156 and 1303 cm− 1), cholesterol 
and ester at 425 cm− 1, glycogen at 490 cm− 1, and by the signal at 678, 
729, 826 and 1373 cm− 1 assigned to the phosphate backbone and 
nitrogenous bases from stretching of nucleic acids. Further, the peak at 
2126 cm− 1 represents the C–N– thiocyanate peak which is a significant 
fingerprint from the saliva [8,19,20] (Table S1). Notable biochemical 
Raman bands in the SERS spectra can tentatively be assigned to the 
various components in the saliva. Since we could not figure out any 
major variation between the three samples of each subject, the spectra 
were subjected to chemometric analysis using PCA. There was no sig-
nificant difference in the Raman spectral pattern between saliva as such, 
pellet or supernatant of every subject (Fig. S2b, c). These observations 
prompted us to use saliva as such, without any sample processing pro-
cedures for all the subsequent studies. Our observation is in concordant 
with multiple recently published articles supporting saliva as an alter-
native sample for SERS analysis [21]. 

3.3. Spiking Studies with Saliva 

The current way of employing SERS for abstracting molecular fin-
gerprints from saliva is advantageous because of the non-invasive nature 
of sample collection protocol and rapid testing procedure. We next 
performed spiking studies on saliva by choosing a model protein bovine 
serum albumin (BSA) with clinically relevant concentration. It was 
observed that even with a lower concentration (1 μg/mL), separation 
was distinct between spiked and non-spiked saliva of all the subjects 
under investigation (Fig. 1c, d; S3a-c and Table S2). Further, the opti-
mization was extended with a sample size of 15 subjects wherein, a 
visually distinguishable pattern difference was observed. Two compo-
nents with variance score of kernel PCA and LDA (Fig. 1e, S3d) were able 
to extract the prominent features from the 14 subjects and a binary SVM 
classifier was trained on the features extracted from kernel PCA. Eval-
uated on the test samples, the trained SVM classifier achieved a F1-score 
of 95.72% and 97.43% for non-spiked saliva and spiked saliva classes, 
respectively (Fig. 1f). Also, tested on the training samples, the trained 
SVM classifier attained a F1-score of 100% for both non-spiked and 
spiked saliva classes. Low F1-score on the test samples and high F1-score 
on the training samples might be due to over-fitting of the classifier on 
the dataset. Therefore, to refute the over-fitting related confusion we 
also tested the performance of the classifier using the 5-fold cross- 
validation scheme. On 140 samples of non-spiked and spiked saliva 
classes, following the 5-fold cross-validation testing scheme the binary 
SVM classifier attained a mean F1-score of 92.85% and 100% for non- 
spiked and spiked saliva classes respectively. The confusion matrix of 
cross validation (Fig. S3e) reports that in the 5-fold experiment the bi-
nary SVM classifier correctly classified all the samples from the spiked 
saliva. However, out of 70 samples from the non-spiked saliva class, the 
classified misclassified five samples as spiked saliva class. The training 
and testing data details are given in S1. 

Most of the biomolecules have characteristic Raman fingerprints. 
Since our approach could segregate the addition of a biomolecule like 
BSA in a lower concentration from complex bio fluid like saliva, we 
believe that any significant change in the saliva upon infection with the 
microbial species like bacteria or virus could also be differentiated 

effectively. The spiking study was extended with viral spike proteins. 
Coronavirus spike proteins from SARS-CoV-2, SARS-CoV, and MERS- 
CoV were employed, that represents the ACE-receptor binding domain 
leading to the viral infection and further replication. The Raman spectral 
pattern displayed a difference between the viral sub types and hence 
classified as three separate clusters up on PCA, LDA and SVM analysis 
(Fig. 2a, S3f, g). We observed that two components of kernel PCA were 
able to capture the differences in the Raman spectral data of SARS-CoV- 
2, SARS-CoV-1, and MERS-CoV spike proteins. Further, for the classifi-
cation between these three spike proteins, a three class SVM classifier 
was trained using the features extracted by the kernel PCA for Raman 
spectral data. Evaluated on the test samples, the trained SVM classifier 
attained an F1-score of 100%, 100%, and 100% for SARS-COV-2, SARS- 
CoV, and MERS-CoV proteins, respectively (Fig. 2b). Also, evaluated on 
the training samples, the traine multi-class SVM also achieved an F1- 
score of 100% for each of the three protein classes. Apart from the 
train-test testing protocol, we also analyzed the performance of the 3- 
class SVM classifier using 5-fold cross-validation testing protocol. On 
the three-class protein dataset, following the 5-fold cross-validation 
scheme, the multi-class SVM classifier attained an F1-score of 100% 
for each of the three classes. The classification result of the classifier in 
terms of confusion matrix (Fig. S3h) shows that the classifier correctly 
classified all the samples from the three-class protein dataset. The 
training and testing data details are given in S2. Raman signatures at 
540, 713, 760, 1002, and 1365 cm− 1 indicate different assignments 
corresponding to amino acids cysteine, methionine, tryptophan, 
phenylalanine (Table S3). Variations were observed in the spectral 
pattern between the three viral proteins. Good classification and pre-
dictions made with the SVM classifier illustrated the capability of the 
current strategy to identify and differentiate viral infections by making 
use of unique Raman fingerprints. Recently, we have explored SERS 
modality to assess intermolecular interactions between suitably config-
ured Tröger’s base (TBs) and SARS-CoV-2spike proteins and ACE2 
wherein the geometry of TBs was found to match the binding domain of 
SARS-CoV-2 and ACE2 [22]. 

To test whether our model could identify the presence of viral load 
roughly corresponding to 1-100 μg (10 [9]–1011 virions) in a clinically 
relevant concentration [23], a concentration-dependent study was done 
with saliva spiked with the S1 spike protein unit of SARS-CoV-2 
(Fig. S4a, b). Our studies confirmed that even at a lower concentration 
(1 μg/mL) separation is possible. This observation clearly indicates the 
capacity of this framework to detect SARS-CoV-2 infection from the 
saliva even at an early stage of disease transmission [24]. As a next step, 
the study was per-formed with six healthy subjects spiked with SARS- 
CoV-2 (Fig. S4c, d).The spectral mapping and kernel PCA revealed 
that some extracted feature points of non-spiked protein were over-
lapped with the extracted feature points for spiked saliva. This may be 
due to heterogeneity of the saliva samples of the subjects considered for 
this study. Later, SVM classifier was trained using the 2 component 
feature extracted by kernel PCA. Evaluated on the test samples, the 
trained binary SVM classifier achieved an F1-score of 88.36% and 
83.80% for saliva and spiked saliva classes, respectively (Fig. 2c, d). 
Besides, evaluated on the training samples, the trained classifier attained 
an F1-score of 89.23% and 100% for the saliva and spiked saliva classes, 
respectively. Also, on this dataset, the 5-fold cross-validation experi-
ment achieved a mean F1-score of 93.33% and 100% for the saliva and 
spiked saliva classes, respectively. The confusion matrix result of the 5- 
fold cross-validation experiment (Fig. S4e) displays that the binary SVM 
classifier correctly classified all samples from the spiked saliva class. 
However, the classifier misclassified six samples from the saliva class 
into spiked saliva class. To further validate the findings, the same study 
was extended with a cohort size of 12 healthy subjects. Evaluated on the 
higher test and train samples in the dataset, the binary SVM classifier 
attained an F1-score of 100% for both saliva and spiked saliva classes 
(Fig. 2e, f). Besides, on this dataset, the 5-fold cross-validation experi-
ment also attained an F1-score of 100% for both saliva and spiked saliva 
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class. The classification result of the 5-fold cross-validation experiment 
in terms of confusion matrix (Fig. S4f) clearly illustrates that the binary 
SVM classifier correctly classified all samples from the saliva and spiked 
saliva classes. The training and testing data details are given in S3 and 
S4. 

Unlike the other SARS virus diseases, the viral load of SARS-CoV-2 is 
highest during the first week after symptom onset and could be detected 
in the saliva as long as 20 days after the onset of symptoms. We next 
tested whether our approach could segregate the three corona virus 
spike proteins (SARS-CoV-2, SARS-CoV, and MERS-CoV) from the 
healthy saliva (Fig. S5a). We have extracted the prominent features from 
the Raman spectral data of saliva, and 3 different viral proteins using 
kernel PCA which proves that the plots have different characteristics. To 
classify the given samples in the above-mentioned 4-classes, an SVM 

classifier was trained using 2 components of extracted features from the 
kernel PCA. Evaluated on the test samples from the dataset, the trained 
SVM classifier achieved an F1-score of 79.51%, 100%, 85.71%, and 
100% for saliva, MERS-CoV, SARS-CoV, and SARS-CoV-2 class, respec-
tively (Fig. S5b, c). Later, studies were performed on nine healthy 
samples spiked with all three viral proteins. Although, the kernel PCA 
separates the most of the samples of four categories but in case of MERS- 
CoV and SARS-CoV spiked samples there is some overlap with the saliva 
samples which can be attributed to the less pronounced signature 
spectral features between these classes. Like-wise, the trained SVM 
classifier achieved F-score of 87.79% for saliva, 100% for SARS-CoV-2, 
75.4% for SARS-CoV, and 85.71% for MERS-CoV (Fig. 3 a-c). Also, 
evaluated on the training samples, the classifier attained an F1-score of 
97.10%, 98.14%, 100%, and 100% for saliva, saliva + MERS-CoV, saliva 

Fig. 2. [a] Staked Raman spectra and the corresponding [b] SVM analysis of three different Coronavirus spike proteins. [c] PCA and [d] SVM analysis of six subjects 
upon spiking of S1 protein of SARS-CoV-2. [e] PCA and [F] SVM analysis of twelve sub-jects upon spiking of S1 protein of SARS-CoV-2. 
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+ SARS-CoV1, and saliva + SARS-CoV2 class, respectively. Besides, the 
5-fold cross-validation experiment using the 4-class SVM classifier on 
the dataset attained an 94.44%, 78.04%, 55.57%, and 86.20% for saliva, 
saliva + MERS-CoV, saliva + SARS-CoV1, and saliva + SARS-CoV2 class, 
respectively. The confusion matrix results of the experiment (Fig. S5d) 
shows that the classifier correctly classified 85 samples from the saliva 
class, 64 samples from the saliva + MERS-CoV class, 50 samples from the 
saliva + SARS-CoV1 class, and all the 90 samples from the saliva +
SARS-CoV2 class. Since the spectral acquisition and statistical analyses 
are based on the fingerprint changes in the saliva sample, the model 
studies can diagnose, distinguish and predict any viral infection. How-
ever, this claim can be proved only after studies on clinical saliva sam-
ples positive for the three viral infections. The training and testing data 
details are given in S5. 

3.4. Studies with the Saliva Samples of COVID-19 Patients 

The significant discrimination generated from the AI based algo-
rithm of saliva and saliva-spiked corona virus spike proteins encourage 
us to extend the investigation on clinically confirmed for SARS-CoV-2 
patient samples. Out of the 18 individuals selected for the study, nine 
were COVID positive with varying degrees of viral load. The samples 
were given pseudo-codes; the experiment and the data processing were 
performed as blind sample analysis to avoid any bias during the pro-
cedure. There was a marked variation in the spectral pattern of positive 
patients upon comparison with the healthy subjects (Fig. 4 a-d). The 
Raman peaks at 450, 1002, 1224, 1453, 1586, and 2126 cm− 1 displayed 
variation between the samples. The principal characteristic peaks of 
thiocyanate stretching are around 450 and 2126 cm− 1. The presence of 
thiocyanate (SCN− ) is prevalent in minimal level in body secretions like 
saliva, serum, and urine and considered as a biomarker for evaluating 
human health. Smoking habit is an additional source of thiocyanate 

accumulation. [25] The Raman band at 2126 cm− 1 from the C–N 
stretch of thiocyanate has been found higher in oral cancer subjects. The 
protective effects of thiocyanate against microbial peroxidases have 
already been studied [26,27]. In COVID positive samples, the peaks 
corresponding to thiocyanates i.e. 450 and 2126 cm− 1 were increased 
when compared to the healthy counterparts. Additionally, C–N 
stretching and CH3 vibrations in protein backbone, C–H stretching of 
glycoproteins, mostly generated from mucins, at 1453 cm− 1 were found 
to increase (Table S4).The mucins may be increased in COVID-19 sam-
ples attributing to the immune activation induced by the virus [28]. 
Training and testing data details are given in S6. We approached to 
signal the SAR-Cov-2 spike protein spike in saliva samples to generate a 
proof-of-concept model for discriminating saliva and spiked saliva for 
the patient sample analysis even though the model and real samples 
showed no overlap with the Raman peaks. 

The feature extracted by using the Kernel PCA method deciphered a 
good separation of SARS-CoV-2 infected samples with the negative 
controls (Fig. 4 e). Further, a binary SVM classifier was trained using 2 
components of extracted kernel PCA features and the trained SVM 
classifier achieved an F1-score of 94.73% and 95.28% for healthy and 
COVID19 infected patients, respectively (Fig. 4f). Also, evaluated on the 
training samples, the trained binary classified attained an F1-score of 
100% each for the healthy and COVID19 infected patients. A 100% F1- 
score on the training samples of the healthy and COVID19 infected pa-
tients might be due to over-fitting. Therefore, we also evaluated the 
performance of the SVM classifier using the 5-fold cross-validation 
testing protocol. Tested using a 5-fold cross-validation scheme the 
trained binary SVM classifier attained a mean F1-score of 98.89% and 
100% for the healthy and COVID19 infected patient. Also, the confusion 
matrix result of the experiment (Fig. S5e) illustrates that the trained 
classifier correctly classified all the samples from the COVID-19 infected 
patient. However, the classifier wrongly classified one sample from the 

Fig. 3. Studies with three corona viral proteins spiked with saliva. [a] Stacked Raman spectra, [b] Kernel PCA and [c] Confusion matrix of 4-class SVM classifier.  
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healthy class into the COVID-19 infected class. Studies on SARS-CoV-2 
illustrated the abundance of aromatic amino acids on the spike pro-
teins are responsible for the interaction and subsequent internalization 
with ACE2. The difference in the Raman spectra could be due to the 
pathological features of the virus infection including the presence of 
circulating DNA, virus particles, shredded proteins, immune cells, and 
glycoproteins. Also, the presence of antibodies that are generated to 
counter the infection can modify the composition of saliva. The immune 
response will change the redox homeostasis and subsequently induce 
damage to the lipids on the plasma membrane. SARS-CoV-2 infection in 
the mouth could cause changes in saliva production or quality, 
contributing to symptoms of taste loss [29,30]. All the above-mentioned 
factors either alone or together may contribute to the altered salivary 
Raman spectral distribution pattern. The current investigation empha-
sizes on the feasibility of employing SERS as a straight forward, fast, 
non-invasive tool for the label-free discrimination of SARS-CoV-2 
infection from saliva samples by employing colloidal AuNPs as SERS 
substrate. The specific Raman fingerprints of the biomolecules from the 
salivary SERS spectra, mainly viral proteins and nucleic acids are re-
flected which are subjected to classification models built-up by machine 
learning algorithms. Therefore, we could obtain a stand-alone classifi-
cation from the Raman spectra of healthy vs COVID infected subjects 

which will ensure high accuracy, specificity, and sensitivity to the 
approach. 

3.5. Studies with the Saliva Samples of COVID-19 Recovered Subjects 

The clinical pathophysiology of SARS-CoV-2 infection encompasses 
asymptomatic infection, mild to severe fever, myalgias, fatigue and viral 
pneumonia. Many of these symptoms are persisting even after the pa-
tient has recovered from the infection [31]. Hence, follow-up studies to 
monitor the health status of people recovered from COVID-19 infection 
warrant at most urgency. Due to the advantages of our proposed system 
in terms of non-invasive sample collection procedure, and rapid 
disbursement of the results, we decided to check the label-free Raman 
fingerprints of a few saliva samples of COVID-19 recovered subjects. 
Raman spectra were acquired from the saliva samples after one month of 
their clinically recorded date of recovery from SARS-CoV-2 infection. 
Well resolved Raman spectra were subjected to PCA upon comparison 
with that of the healthy controls. The separation of both the groups as 
distinctly arranged clusters underlined the fact that bio-molecular 
changes in the saliva have not attained a healthy composition soon 
after recovery from the infection. However, the spectral patterns of the 
recovered subjects are more aligned towards healthy controls when 

Fig. 4. Studies with the saliva samples of COVID patients. Raman spectra of nine [a] COVID-positive, [b] COVID-negative subjects, [c] representative stacked mean 
spectra and the [d] difference spectra between COVID-positive and healthy subjects. [e] PCA plot and [f] SVM analysis of the study. 

V. Karunakaran et al.                                                                                                                                                                                                                          



Journal of Photochemistry & Photobiology, B: Biology 234 (2022) 112545

9

compared with that of positive control spectra. The follow-up investi-
gation was made after two months of recovery. PCA illustrated that one 
subject aligned within the negative control cluster and another one is 
within the margin of negative control samples, while the other two 
subjects are clustered outside the negative control samples. The inclu-
sion of two subjects with the healthy controls possibly indicated the 
normalcy attained in the biochemical composition of saliva over a 
period of time. The saliva samples of the same subjects were studied 
after 6 months of recovery wherein the recovered subjects and healthy 
controls aligned as a single cluster (Fig. 5a-c, S6, S7). Later, spectral 
analysis was performed with the saliva of another set of subjects after 15 

days of recovery (Fig. S8a). The finding that both the classes were 
aligned as separate clusters confirmed the fact that the salivary 
composition of patients will be normalized only after a period of time. 
Additionally, it is interesting to notice that the thiocyanate peak at 450 
and 2126 cm− 1is getting decreased for all the cases except one sample. 
The role of thiocyanate in viral infections must be further assessed with 
large number of samples to validate its potential as a valid biomarker for 
differentiating healthy and infected individuals. The representative 
stacked mean spectra and difference spectra between COVID-positive, 
COVID-recovered and healthy subjects are depicted in Fig. 5d and e. 
SVM classifier achieved a prediction accuracy of 95.38% and f1-score of 

Fig. 5. Raman spectral analysis of COVID-recovered subjects (4 numbers) after [a] one month, [b] two months and [c] six months of recovery. [d] Representative 
stacked mean spectra and the [e] difference spectra between COVID-positive, COVID-recovered and healthy subjects. [f] PCA plot and [g] SVM analysis of the study. 

V. Karunakaran et al.                                                                                                                                                                                                                          



Journal of Photochemistry & Photobiology, B: Biology 234 (2022) 112545

10

94% for healthy subjects, f1-score of 98% for COVID-19 infected pa-
tients and f1-score of 94% for COVID-19 recovered patients (Fig. 5f, g). 
However, evaluated on the training samples of the dataset, the trained 
multi-class SVM classifier attained an F1-score of 98.66%, 100%, and 
100% for the healthy, infected, and recovered samples from the patients. 
Also, the SVM classified trained using the 5-fold cross-validation scheme 
on the dataset attained a mean F1-score of 90%, 96.67%, and 100% for 
the healthy, infected, and recovered samples in the dataset. The classi-
fication result of the experiment in terms of confusion matrix (Fig. S8b) 
displays that the trained multi-class SVM classifier correctly classified all 
the samples from the recovered class. However, out of 100 samples from 
the healthy class the classifier correctly classified 90 samples. Also, the 
classifier correctly classified 87 samples out of 90 from the infecte class 
in the dataset. Training and testing data details are given in S7. 

The characteristics of the subjects employed in this investigation in 
terms of sex, age, COVID infection status, and other important charac-
teristics are illustrated in Tables S5-S7. The antibody response to SARS- 
CoV-2 infection has been broadly examined in the blood samples of 
COVID-19 recovered patients. Recently, the anti-SARS-CoV-2 antibody 
response over 115 days in the serum and saliva of COVID-19 recovered 
patients was investigated which revealed that saliva retains a good 
percentage of antibodies and hence can be used for monitoring the im-
mune response to SARS-CoV-2 infection. Notably, along with a variety of 
factors, the presence of anti-SARS-CoV-2 anti-bodies could also be 
responsible for the discrimination of recovered patients from healthy 
controls [32,33]. Recently, a Raman-based classification model using 
saliva samples was able to discriminate COVID-19 patients with accu-
racy, precision, sensitivity and specificity [34]. Having admitted the fact 
of the very small sample size, the findings of this investigation are 
crucial in the backdrop of the constant reminders by the WHO for the 
need for follow-ups in the health status of recovered subjects. If our 
approximations hold true, patients need to take care of health with 
regular check-ups up to a stage where their salivary Raman spectral 
patterns return to a normal signature. Since sample collection and 
subsequent experimental procedures are simple to follow, a large cohort 
study on COVID19 recovered subjects is our immediate plan of action. 

4. Conclusion 

Clinical diagnostics for SARS-CoV-2 infection was accomplished 
using salivary label-free SERS fingerprinting with a hand-held Raman 
spectrometer and aided with artificial intelligence. The proof-of-concept 
was systematically optimized and initially demonstrated with spiking 
studies on receptor binding domain in viral proteins. Raman spectral 
data was further decoded, segregated, and effectively managed with the 
aid of machine learning algorithms. Later, salivary Raman fingerprint 
analysis on COVID-positive samples produced separation with high ac-
curacy, specificity, and sensitivity form negative saliva. The current 
strategy also illustrated a database for different stages of patient re-
covery with varying Raman signatures. The higher prediction accuracy 
obtained could be due to the small sample size employed. Owing to the 
severe spreading nature of the diseases through the respiratory droplets 
and saliva, we were forced to limit the sample size. Moreover, the degree 
of infection and associated complexities were severe for the COVID- 
positive subjects and hence the viral load might also be very high. The 
accuracy rate may decrease if the sample size is significantly increased 
or include infected patients without symptoms and associated health 
problems. The currently employed methodology with a rapid and highly 
sensitive and non-invasive diagnostic procedure can assure patient 
comfort. Moreover, this technically proved methodology can be 
extended for large scale population screening forSARS-CoV-2 infection 
and surveillance study of COVID recovery process. 
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