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A B S T R A C T   

The long-term storage of rice will inevitably be involved in the deterioration of edible quality, and aged rice 
poses a great threat to food safety and human health. The acid value can be employed as a sensitive index for the 
determination of rice quality and freshness. In this study, near-infrared spectra of three kinds of rice (Chinese 
Daohuaxiang, southern japonica rice, and late japonica rice) mixed with different proportions of aged rice were 
collected. The partial least squares regression (PLSR) model with different preprocessing was constructed to 
identify the aged rice adulteration. Meanwhile, a competitive adaptive reweighted sampling (CARS) algorithm 
was used to extract the optimization model of characteristic variables. The constructed CARS-PLSR model 
method could not only reduce greatly the number of characteristic variables required by the spectrum but also 
improve the identification accuracy of three kinds of aged-rice adulteration. As above, this study proposed a 
rapid, simple, and accurate detection method for aged-rice adulteration, providing new clues and alternatives for 
the quality control of commercial rice.   

1. Introduction 

The long-term storage of rice will inevitably be involved in the 
deterioration of edible quality, and aged rice poses a great threat to food 
safety and human health. The continuous decrease in the edible quality 
of aged rice, which cannot be accepted by consumers, eventually leads 
to the utilization of aged rice in the industry, resulting in huge economic 
losses (Saikrishna, Dutta, Subramanian, Moses, & Anandhar-
amakrishnan, 2018; Śliwińska-Bartel, Burns, & Elliott, 2021). The mix-
ing of fresh and aged rice in the market has attracted great attention. 
Several traders reprocess the low-price aged rice by adding pigments, 
paraffin, etc. to improve its appearance and sell it to the market for huge 
profits (Wang et al., 2022; Wu, Li, Bai, Yu, & Zhang, 2019). Although the 
system of food safety standards has been continuously improved, such 
incidents have not been well controlled. Meanwhile, the current rice- 
quality testing methods are dissatisfactory because of their cumber-
some and time-consuming properties (Jain, Mishra, Mishra, & Thakare, 

2020; Xu, Liu, & Zhang, 2021). Thus, a simple and flexible detection 
method must be developed to meet the requirement of the identification 
of rice adulteration. 

Changes in free fatty acid content always occur before physical 
changes during the process of rice aging (Tran et al., 2005). As a 
parameter affected by storage conditions, the acid value can be 
employed as a sensitive index for the determination of rice quality and 
freshness (Zhai et al., 2022). 

Near-infrared spectroscopy (NIRS) presents unique advantages, such 
as high efficiency, convenience, and environmental protection, and it 
has been widely used in the identification of adulteration and the origin 
of agricultural and food products (Zhou, Yu, Hu, & Li, 2020). NIRS has 
been used to predict the chemical composition of sausages, and the re-
sults showed that NIRS can be used to estimate accurately the fat content 
of traditional country-style sausages, moisture, and protein content 
(Eleni, Vasileios, & Paraskevi, 2021). The commonly used partial least 
squares regression (PLSR) model shows promise for data structure 
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simplification by combining modular form and epistemic methods 
(Huerta, Leiva, Liu, Rodríguez, & Villegas, 2019). Screening the repre-
sentative characteristic variables from the NIR spectra of the measured 
samples can effectively simplify the model and improve the trans-
ferability of the model (Ren, Ning, & Zhang, 2021; Su et al., 2021). 

Importantly, different preprocessing methods for spectral data are 
greatly involved in the accuracy of analytical results (Rady, Fischer, 
Reeves, Logan, & James Watson, 2019). Spectral preprocessing is the 
application of various mathematical means to data processing of spectra 
to eliminate other sources of spectral variation, such as the baseline drift 
during experiments, thus minimizing the effect of spectra and their 
variation on the accuracy of NIRS analysis models (Kademi, Ulusoy, & 
Hecer, 2019; Pasquini, 2018). In addition, by treating each wavelength 
variable in the spectral data as an individual, the feature variables with 
large absolute values of regression coefficients in the PLSR model can be 
selected by using competitive adaptive reweighted sampling (CARS) and 
extracted to optimize the model, reduce redundant wavelength vari-
ables, and improve the discriminative accuracy (Li, Huang, Song, Zhang, 
& Min, 2019). Standard normal variables (SNVs), which are corrected 
PLSR and cross-validation, were utilized to treat the collected spectral 
data (400–2500 nm) of 66 meat samples, and the results showed that 
NIRS was helpful in the successful prediction of the fat and protein 
contents of beef (Maduro Dias et al., 2021). 

By contrast, considerable effort should be exerted to support the 
identification of rice adulteration with aged rice, ensuring food safety 
and human health. Herein, the acid value content of rice was presented 
as an index to determine the degree of rice aging. NIRS technology was 
utilized to collect the spectral data of aged-rice adulteration in three 
kinds of rice, including Chinese Daohuaxiang, southern japonica rice, 
and late japonica rice. The PLSR model combined with CARS algorithm 
was used in this study to simplify the model and improve the accuracy. 

2. Materials and methods 

2.1. Materials 

The rice samples used in this experiment, including 20 kg Chinese 
Daohuaxiang, southern japonica rice, and late japonica rice, were all 
fresh and provided by the National Grain Reserve (Wuxi, Jiangsu 
Province, China). The hulled and polished rice (4 kg) was used for aging 
at the temperature of 37 ℃ and humidity of 85 %. The fresh polished 
rice was stored at − 40 ℃ for the subsequent experiments. 

2.2. Rice aging 

The acid value of rice was determined accordingly (China National 
Standard, 2006; Aricetti & Tubino, 2012). The samples were processed 
by a rice milling machine to produce milled rice, and the milled rice was 
crushed by a pulverizer and passed through an 80-mesh sieve. A total of 
10 g rice flour was obtained from the sieve, placed in a 250 mL cone 
bottle with a plug grinding mouth, and accurately added with 50 mL 
absolute ethanol with a pipetting gun. After shaking for 10 min and 
allowing the mixture to stand for 1–2 min, 25.0 mL filtrate was trans-
ferred, and 50 mL distilled water was added. Phenolphthalein–ethanol 
was used as an indicator and titrated with 0.01 mol/L potassium hy-
droxide in 95 % ethanol standard titration solution. Finally, the acid 
value was calculated (1) and presented using the average of parallel 
experiments. 

Acid value (mg KOH/100gdry value)

= (V1 − V0) × C × 56.1 × (50/25) × [100/(100 − w) × m ] × 100 (1) 

In the formula: 
V1: Volume of potassium hydroxide–95 % ethanol solution consumed by 

titrating the sample (mL); 
V0: Volume of potassium hydroxide–95 % ethanol solution consumed for 

the titration blank (mL); 
C: Accurate concentration of potassium hydroxide–95 % ethanol solution 

(mol/L); 
50: Absolute ethanol for sample extraction (mL). 
100: Mass converted to 100 g (dry) sample (g). 
m: Mass of sample (g); 
w: Percentage of moisture sample, mass of moisture in every 100 g sample 

(g). 

2.3. Samples preparation 

The acid value of aged rice was measured every-seven days, and 
aging ended when the acid value reached 25 mg KOH/100 g dry value. 
The aged rice was mixed with the same type of fresh rice at several ratios 
(0 %, 5 %, 10 %, 15 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %, 
and 100 %). After crushing the mixed rice samples into powder, samples 
of rice flour with different adulterated ratios were obtained using an 80- 
mesh sieve. Twenty samples were set for each mixing ratio, and 260 test 
samples mixed with aged rice were prepared for each rice sample. One 
hundred and ninety-five samples were used for calibration set and 65 
samples were proposed as the prediction set (Firmani, De Luca, Bucci, 
Marini, & Biancolillo, 2019; Liu, Li, Peng, Ma, & Yan, 2021; Mishra & 
Nikzad-Langerodi, 2021). 

2.4. NIRS data acquisition 

All spectra were collected at room temperature (25 ± 2 ◦C) using a 
multiplex spectrometer (FX2000, Ideaoptics, Shanghai, China). The NIR 
diffuse reflectance technology was selected to test the samples. Morpho 
software was used to collect the sample spectral data. The acquisition 
parameters were as follows: spectral resolution of 8 nm, spectral scan-
ning wavelength in the range of 900–1700 nm, average spectral scan-
ning times of 32, and integration time of 20 ms. The rice samples were 
added into the cuvette, and each rice sample was scanned thrice from 
three different angles (0◦, 120◦, and 240◦). Then, the average value of 
the three measurements was used as the input data of the model to 
improve the accuracy of the spectral data. Fig. S1 shows the schematic of 
the NIRS data-collecting systems for rice samples with a self-made op-
tical cuvette. 

2.5. Data preprocessing 

When using the model to analyze the predicted samples, the same 
data preprocessing method in the model correction stage must be 
selected. Combined with the indicators used, five preprocessing 
methods, including min–max normalization (MMN), multiple scattering 
correction (MSC), smoothing (Five points), SNV, first derivative, and 
second derivative, were selected to preprocess the collected spectra 
separately or superimposed. In order to avoid the increase of noise after 
derivative processing, data is smoothed (Five points) before the treat-
ment of first and second derivatives. Matlab program (R2021a) was used 
to analyze the collected NIR spectra data set of three kinds of rice with 
different ratios of aged rice. 

2.6. CARS for key variable selection 

To improve the accuracy of the model, by taking each wavelength 
variable in the NIRS as an independent individual, we used CARS to 
select the characteristic variables with large absolute values of the 
regression coefficient in the PLS model. CARS method is a feature var-
iable selection method combining Monte Carlo sampling and PLS model 
regression coefficient. In the CARS algorithm, the points with higher 
absolute value weight of regression coefficient in the PLS model are 
retained as a new subset through adaptive weighted sampling each time, 
and the points with lower weight are removed. Then, the PLS model is 
established based on the new subset. After multiple calculations, the 
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wavelength in the subset with the minimum root mean square error of 
cross-validation (RMSECV) of PLS model interactive verification is 
selected as the characteristic wavelength (Zheng et al., 2012). 

2.7. PLSR model establishment 

As a commonly used quantitative analysis method, PLSR realizes 
regression modeling and data structure simplification by combining 
model-based and epistemic methods, which is an organic combination of 
principal component analysis and multivariate linear analysis. It uses 
the property matrix Y and spectral matrix X to find a linear regression 
model in the new space projection, to find the multi-dimensional vector 
in the X matrix that can explain the Y matrix accurately, and obtain the 
basic relationship of the above two matrix data. PLSR can address the 
multicollinearity of variables in chemometrics and is applicable to the 
problem that the number of variables is greater than the sample size (the 
property matrix Y is the mixing proportion). 

2.8. Model evaluation index 

The correlation coefficient for cross-validation (R2c), root mean -
standard error of the calibration set (RMSEC), the correlation coefficient 
for prediction (R2p), and root mean square error for prediction set 
(RMSEP) were used to evaluate the model. R2c and R2p represented the 
correlation between the predicted and real values. RMSEC was used to 
evaluate the accuracy of the prediction results of the calibrated set 
samples. RMSEP was used to measure the accuracy of the prediction 
results of the prediction set samples (Khan & Byun, 2020). 

3. Results and discussion 

3.1. Acid value 

Fig. 1 shows the changes in the acid value of three kinds of rice under 
aging conditions. The slow change in acid value in the early stage of 
aging might be involved in the fat oxidation, which was observed in the 
induction period, and the increase rate was significantly accelerated in 
the stage of rapid oxidation and the increased speed is faster under the 
hydrolysis. During the whole aging process, the acid value increased, 
and at the 13th week of aging, the acid value of all three kinds of rice 
exceeded the target value (25 mg KOH/100 g dry value). The aged rice 
was prepared and used for subsequent experiments. 

3.2. Spectral data analysis 

Spectra data of three kinds of rice with different aged rice ratios were 
collected. As shown in Fig. 1, several absorption peaks were observed in 
the range of 900–1700 nm in the NIR spectra. The positions of absorp-
tion peaks were the same with several deviations, but the intensities 
were different. Such a result was observed because in the aging process, 
rice lipids were oxidized and hydrolyzed in the storage process. Oils 
were hydrolyzed by lipase to produce glycerol and fatty acids, increasing 
the content of free fatty acids (Ferreira, de Oliveira, Basso, Mendes, & 
Hirata, 2019). The organic contents of C–H, O–H, N–H, S–H, and 
other hydrogen-containing groups were different, resulting in various 
absorption peaks (Liu, Sun, Tan, & Liu, 2020). In summary, the spectral 
similarity of the three types of rice samples with different ratios of aged 
rice was high, and distinguishing them directly through spectral data 
analysis was difficult. Chemometric models were used to conduct in- 
depth data mining and analysis of the NIR spectral data of three rice 
adulteration samples with different ratios of aged rice. 

Fig. 1. Variation trend of acid values of three rice varieties(a). NIR spectra of (b) Chinese Daohuaxiang, (c) southern japonica rice, and (d) late japonica rice with 
different ratios of aged rice. 
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3.3. Rice adulteration identification based on the PLSR model 

The collected NIR spectra of the three kinds of rice adulteration 
samples were divided into training and prediction sets, and the PLSR 
model was constructed by using the NIR spectra of the training set. 
Fig. 2, S2, and S3 showed the distribution of the predicted residual sum 
of squares (PRESS) in the PLSR model under different preprocessing of 
the training sets with different proportions of Chinese Daohuaxiang, 
southern japonica rice, and late japonica rice. With the increase in the 
number of factors, PRESS decreased continuously. When PRESS reached 
the minimum value, and the number of factors continuously increased, 
the value of the PRESS became stable, indicating that the factor number 
at the minimum PRESS was optimal (Sarkodie & Strezov, 2018). In the 
process of establishing the PLSR model, the number of factors selected 
by the model presented a great influence on the accuracy of the model. 
The fewer the number of factors, the lesser the influence of the model, 
which may lead to the decrease of the model accuracy. The higher the 

number of factors, the more comprehensive the point calculated by the 
model and the closer to the real situation. However, an extremely large 
number of factors may not only increase the computational complexity 
of the model but also increase the variables with low or no correlation, 
leading to the overfitting of the analysis results (Yan et al., 2019). 

The results of the PLSR classification model were established by 
determining the optimal number of factors under different preprocess-
ing methods for Chinese Daohuaxiang, southern japonica rice, and late 
japonica rice (Table 1). The prediction results of the PLSR model using 
the first- and second-order derivative smoothing were slightly poorer 
than those of the original spectrum. The reason may the increased noise 
and reduced accuracy of the model due to derivative conversion. These 
preprocessing steps were not considered for the subsequent spectral 
optimization. The prediction results of the PLSR model established by 
normalization method, MSC, SNV, and smoothing method were better 
than those of the PLSR model established by the original spectrum. In 
the rice adulteration analysis of Chinese Daohuaxiang, the model 

Fig. 2. Changes in the PRESS value of the PLSR model under different pre-treatments of Chinese Daohuaxiang: (a) MMN, (b) MSC, (c) SNV, (d) smoothing, (e) first 
derivative, (f) second derivative, and (g) raw data (RAW). 

Table 1 
Classification results of the PLSR model under different preprocessing of Chinese Daohuaxiang (CDHX), southern japonica rice (SJR), and late japonica rice (LJR).  

Preprocessing methods Rice types Optimal factor number Training set Prediction set    

R2c RMSEC R2p RMSEP 

RAW CDHX 11  0.996987  0.025159  0.618506  0.252805 
SJR 15  0.997089  0.024732  0.597654  0.256009 
LJR 15  0.997632  0.022322  0.597209  0.263094 

MMN CDHX 10  0.998258  0.01916  0.626319  0.251943 
SJR 11  0.997058  0.024862  0.595638  0.255856 
LJR 13  0.997641  0.018521  0.618621  0.256704 

MSC CDHX 7  0.998014  0.020452  0.617383  0.25247 
SJR 7  0.996271  0.0282  0.580267  0.258538 
LJR 10  0.997114  0.024628  0.619879  0.255979 

SNV CDHX 7  0.998018  0.020431  0.619904  0.25276 
SJR 15  0.998438  0.018148  0.603548  0.254585 
LJR 10  0.996863  0.025666  0.622471  0.25276 

Smoothing CDHX 7  0.996242  0.028072  0.627392  0.250512 
SJR 13  0.996567  0.02684  0.597479  0.257261 
LJR 12  0.996833  0.025789  0.605525  0.260937 

First derivative CDHX 10  0.996989  0.02515  0.606555  0.256777 
SJR 10  0.994789  0.032997  0.585074  0.257232 
LJR 16  0.996451  0.027286  0.578202  0.26591 

Second derivative CDHX 16  0.998857  0.015529  0.58213  0.25814 
SJR 14  0.995548  0.030526  0.588297  0.258525 
LJR 15  0.997242  0.024078  0.559978  0.27119  
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accuracy obtained by smoothing treatment was the highest, with R2p 
and RMSEP reaching 0.6263 and 0.251943, respectively. In the rice 
adulteration DA of southern japonica rice, the model accuracy obtained 
by SNV preprocessing was the highest, with R2p and RMSEP of 0.6035 
and 0.254585, respectively. Similarly, in the analysis of late japonica 
rice, the model accuracy obtained by SNV preprocessing was the high-
est, with R2p and RMSEP amounting to 0.6225 and 0.25276, respec-
tively. However, on the whole, the R2p of rice adulteration analysis of 
three kinds of rice under different preprocessing was still dissatisfactory. 
Thus, the discriminant model must be optimized further and the 

characteristic variables in NIRS be extracted to improve the accuracy of 
the model. 

3.4. CARS-PLSR model 

CARS algorithm was used to simplify the model to eliminate 
redundant variables in NIRS and improve the stability and accuracy of 
the PLSR model. Fig. 3a showed the process of CARS optimization of 
characteristic variables under the normalization preprocessing of Chi-
nese Daohuaxiang. With the increase in sample collection times, the 

Fig. 3. Changes in the number of selected variables (a); changes in RMSECV (b); regression coefficients of each variable during the calculations of CARS algorithm 
(c); and distribution of selected characteristic variables by CARS (d). 

Table 2 
Feature variables of Chinese Daohuaxiang, southern japonica rice, and late japonica rice spectrum extracted by CARS algorithm under different preprocessing.  

Preprocessing methods Operation times Variables number  

Chinese Daohuaxiang Southern japonica rice Late japonica rice Chinese Daohuaxiang Southern japonica rice Late japonica rice 

RAW 27 27 25 20 20 24 
MMN 25 32 23 24 12 29 
MSC 27 31 25 20 13 24 
SNV 28 28 25 18 18 24 
Smoothing 28 27 30 18 20 14  
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number of redundant variables in the NIRS of samples decreased 
continuously, the regression coefficient path changed continuously, and 
the RMSECV decreased continuously and reached the minimum. When 
the sampling operation time was 25, the RMSECV reached the mini-
mum, increased rapidly, and then became stable (Fig. 3b). Thus, the 
redundant variables in the spectrum were effectively removed, and the 
number of characteristic variables in the spectrum decreased from the 
initial number of 256 to 24. 

Similarly, the feature extraction of spectral data under different 
preprocessing of three types of rice samples was carried out using the 
CARS algorithm (Table 2). The CARS-PLSR model was constructed 
through optimization of the original model by extracting the charac-
teristic variables, and the optimal factor number of the CARS-PLSR 
model was determined by PRESS. Under the optimal factor number, 
the results of the PLSR model were determined (Tables 3, S1, and S2). In 
addition, the MMN-CARS-PLSR model showed a higher accuracy than 
the other models in the adulteration DA of Chinese Daohuaxiang, with 
the R2p of 0.998 and RMSEP of 0.020557. The SNV-CARS-PLSR model 
presented a higher accuracy than the other models in the adulteration 
analysis of southern japonica rice, with the R2p of 0.994 and RMSEP of 
0.036187. The SNV-CARS-PLSR model also presented a higher accuracy 
for late japonica rice, with the R2p of 0.996 and RMSEP of 0.031132. 

In comparison with previous studies, the CARS-PLSR model in this 
research presented a comparable classification accuracy with potential 
applications (Kamruzzaman, Kalita, Ahmed, ElMasry, & Makino, 2022). 
The PLS-DA approach provided satisfactory results in the discrimination 
of adulterated rice samples with a total classification rate of 82.4 % (Le 
Nguyen Doan, Nguyen, Marini, & Biancolillo, 2021). The optimum PLSR 
model based on the NIRS data shows promise in determining rice 
adulteration (Lapcharoensuk et al., 2019). In addition, the utilization of 
calibration transfer on the spectral data for the PLSR model provides a 
strategy for the achievement of a stable model with a satisfied standard 
deviation of RMSEP, allowing the prediction of Thai jasmine rice adul-
teration without the information on blended rice (Wongsaipun, The-
anjumpol, & Kittiwachana, 2021). Moreover, when combined with 
CARS to achieve a reduced set of variables, the presented PLS model is a 
feasible approach for the identification of notoginseng powder adul-
teration (Chen, Tan, Lin, & Li, 2019). 

The results showed that the discriminant accuracy of the established 
model for extracting characteristic wavelength variables was signifi-
cantly improved by CARS. Especially, the analysis based on the SNV- 
PLSR-CARS model indicated excellent application potential for the 
evaluation of aged-rice adulteration. This finding was consistent with 
the report indicating that CARS algorithm is used to screen feature 
variables to improve the accuracy of models (Matuszyk et al., 2020; Pei 
& Huang, 2016; Song, Du, Li, Tang, & Huang, 2020). In comparison with 
other algorithms, the application of the CARS-PLS model for the deter-
mination of chlorpyrifos residue in rice has achieved optimum results 
(Jiang, Mehedi Hassan, Jiao, Li, & Chen, 2021). It was also reported that 
the CARS model combined with SVM and SPA presented the highest 
prediction precisions when used for the analysis of spectrum data 
(Ahmad et al., 2021; Su, Bakalis, & Sun, 2019). As above, CARS algo-
rithm was achieved to extract the optimization model of characteristic 

variables effectively and reduce redundant wavelength variables for the 
improvement of prediction accuracy. 

4. Conclusion 

To ensure food safety, the aged-rice adulteration analysis of three 
kinds of rice was performed by NIRS combined with the PLSR model. 
The results showed that the PLSR model established by the normaliza-
tion method, MSC, SNC, and smoothing preprocessing presented better 
prediction accuracy than the PLSR model established by the original 
spectrum. However, the accuracy remained dissatisfactory. To eliminate 
the redundant spectral variables and improve the stability and accuracy 
of the analysis model, we employed the CARS algorithm to simplify the 
model. The MMN-CARS-PLSR model showed a higher accuracy in the 
aged-rice adulteration analysis of Chinese Daohuaxiang than the other 
models, with R2p of more than 0.99 and RMSEP of 0.020557. Compared 
with the other models, the SNV-CARS-PLSR model presented a higher 
accuracy in the purity analysis of southern japonica rice, whereas it 
showed a higher accuracy in aged-rice adulteration analysis of late 
japonica, with R2p of 0.9955 and RMSEP of 0.031132. In conclusion, the 
constructed CARS-PLSR model not only greatly reduced the number of 
characteristic variables required by the spectrum but also improved the 
identification accuracy of aged-rice adulteration for Chinese Daohuax-
iang, southern japonica rice, and late japonica rice. The proposed simple 
and accurate detection method provides a new alternative for the quality 
control of commercial rice. 
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