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Abstract

Background

A priority for health services is to reduce self-harm in young people. Predicting self-harm is

challenging due to their rarity and complexity, however this does not preclude the utility of

prediction models to improve decision-making regarding a service response in terms of

more detailed assessments and/or intervention. The aim of this study was to predict self-

harm within six-months after initial presentation.

Method

The study included 1962 young people (12–30 years) presenting to youth mental health ser-

vices in Australia. Six machine learning algorithms were trained and tested with ten repeats

of ten-fold cross-validation. The net benefit of these models were evaluated using decision

curve analysis.

Results

Out of 1962 young people, 320 (16%) engaged in self-harm in the six months after first

assessment and 1642 (84%) did not. The top 25% of young people as ranked by mean pre-

dicted probability accounted for 51.6% - 56.2% of all who engaged in self-harm. By the top

50%, this increased to 82.1%-84.4%. Models demonstrated fair overall prediction (AUR-

OCs; 0.744–0.755) and calibration which indicates that predicted probabilities were close to

the true probabilities (brier scores; 0.185–0.196). The net benefit of these models were posi-

tive and superior to the ‘treat everyone’ strategy. The strongest predictors were (in ranked

order); a history of self-harm, age, social and occupational functioning, sex, bipolar disorder,

psychosis-like experiences, treatment with antipsychotics, and a history of suicide ideation.

Conclusion

Prediction models for self-harm may have utility to identify a large sub population who would

benefit from further assessment and targeted (low intensity) interventions. Such models
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could enhance health service approaches to identify and reduce self-harm, a considerable

source of distress, morbidity, ongoing health care utilisation and mortality.

Introduction

The ability to predict future death by suicide is still not much better than chance [1–3]. Yet,

self-harm, which includes any intentional acts to self-injure irrespective of motivational intent

behind these actions (i.e. suicide attempts and non-suicidal self-injury) [4–6], are the source of

ongoing distress, morbidity and health care utilisation [7, 8]. Young people presenting to

health services represent a group particularly at risk given the early age of onset of self-harm

and their strong association with mental disorders [5, 9–11]. Consequently, a focus on predict-

ing those at greatest risk of self-harm (rather than simply death by suicide) is an important

goal for services.

Although factors such as suicidal thoughts, depression and alcohol misuse are consistently

associated with future self-harm [12, 13], there is still significant doubt about the actual clinical

utility of these factors for individual risk predictions [3, 14]. The problem extends to other bio-

logical [15] or clinical [16, 17] risk factors which have similarly weak predictive value. Self-

harm is likely to be driven by the complex interplay between a broad range of social, biological,

psychological, and contextual factors rather than any one or simple set of factors [18]. Further,

the influence these factors have on self-harm is probably dynamic over time. The use of mod-

ern data science methods may help us overcome some of these challenges by considering the

high-dimensional interactions between a large set of variables [19]. These methods attempt to

embrace the complexity of the problem, which may be better suited to yield findings that

reflect the real-world experiences of clinicians who are asked to solve these complex classifica-

tion problems every day. Such approaches have been used to predict suicide and self-harm in a

range of hospital or outpatient settings [20–24].

Inevitably, the low prevalence of self-harm in many of these populations means there are

major statistical limitations [25]. While, some have argued that this limits the clinical utility of

such models [26], others have suggested that positive predictive value (PPV) alone is not the

criterion for evaluating the utility of these models [27]. The intended use of a model is impor-

tant to evaluate its clinical utility on balance of its benefits and harms [28]. Specifically, is the

model being used to determine who should be admitted to hospital (i.e. a highly invasive and

costly intervention), or who should be recommended a more detailed assessment (i.e. a low

cost, non-invasive intervention). For this, decision curve analysis (a measure of net benefit)

can be used to evaluate prediction models in a way that takes into account the relative benefit

of an intervention for a true-positive case versus the cost of an intervention for a false-positive

case [29]. Rejecting these tools based on their low PPVs implicitly assumes a high decision

threshold, yet we know that in other areas of medicine, low thresholds for intervention are

common when there is a lower cost to intervention (e.g. the prescription of statins) [28, 30].

Consideration of the cost and benefits of intervention thresholds are required to advance the

development of useful clinical decision-making tools.

In this study we utilise a large clinical cohort of young people presenting to for youth men-

tal health care to determine whether demographic and clinical characteristics at first assess-

ment could be used to predict self-harm within the next six months. The goal here is to apply

machine learning methods to evaluate the net benefit of these prediction models, and to iden-

tify factors that are consistently associated with self-harm in this clinical population. This
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study focuses specifically on clinical relevance and service allocation for those entering clinical

services so a shorter time frame was deemed to be a suitable follow-up period to maximise the

implications for immediate clinical decision-making, and the broader definition of self-harm

(i.e. suicide attempts and non-suicidal self-injury) was used to capture all harmful behaviours

that would initiate service response in terms of more detailed assessment and/or intervention.

Material and methods

The study was approved by the University of Sydney Human Research Ethics Committee

(2008/5453, 2012/1626) and participants gave written informed consent.

Participants

Participants are drawn from a cohort of 6743 individuals aged 12–30 who presented to the

Brain and Mind Centre’s youth mental health clinics in Sydney and recruited to a research reg-

ister between June 2008 and July 2018 [31]. These clinics include primary care services (i.e.

headspace [32, 33]) as well as more specialised mental health services. Young people may have

been self-referred, referred via a family member or friend, or the community (e.g. general

practitioner) [33]. All participants received clinician-based case management and psychologi-

cal, social, and/or medical interventions as part of standard care.

Eligibility criteria

As of December 2019, longitudinal data were available for N = 2901 participants. Of these

2901 participants, the inclusion criteria for potential participants to be included in this specific

study were: (i) aged 12 to 30 years at the time of initial visit; and (ii) a follow-up visit within six

months of initial visit. Application of these criteria reduced the sample to 1962 individuals.

Data collection

Data were extracted from clinical files, and code inputs according to proforma (i.e. standard-

ised form) [31, 34]. The proforma records information at predetermined time points. The first

available clinical assessment at the service is taken as the baseline time point for each partici-

pant and the date of this assessment is used to determine each of the follow up time points. If

there is no clinical information available for any time point (i.e. the participant did not attend

the service during that time) then that entry is left missing. All clinical notes from the preced-

ing time points, up to and including the current time point are used to inform and complete

the current pro forma entry.

The proforma was used to record specific illness course characteristics. More detailed

descriptions about the proforma, including the interrater reliability, are reported in the supple-

ment and cohort paper [31]. The measures used here include (see S1 Data); demographics,

social and occupational functioning (including, the Social and Occupational Functioning

Assessment Scale (SOFAS; [35]), and Not in Education, Employment or Training (NEET) as a

measure of participation and engagement with education or work), mental disorder diagnoses,

clinical stage, at-risk mental states, self-harm, suicidal thoughts and behaviours, physical health

comorbidities, personal mental illness history, and treatment utilisation.

The presence of suicidal ideation, suicide attempts, and non-suicidal self-injury is recorded.

A suicide attempt is recorded when a young person has undergone steps to take their own life.

If an individual harmed themselves via cutting, hitting themselves, burning themselves, or

scratching with the intention to self-harm only and not to take their life, then this is included

as non-suicidal self-injury and not a suicide attempt. If a suicide attempt occurs, it is also
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recorded whether the attempt resulted in hospitalisation or presentation to a hospital emer-

gency department. For the present study, the ‘suicide attempt’ and ‘non-suicidal self-injury’

variables were combined under the broad definition of self-harm and used as the primary out-

come measure. This is consistent with current conceptualisations of non-suicidal self-injury

and suicide attempts which recognise that the separation of non-suicidal self-injury and sui-

cide attempts on the basis of apparent motivations (i.e. suicide intent) may be unwarranted.

The dimensional nature of suicidal intent phenomena means that accurate characterisation of

these behaviours is challenging, and so national guidelines tend to broadly focus on self-harm

[36, 37]. For this reason, we use this broader definition of self-harm so that we capture harmful

behaviours that are likely to be the drivers of service response in terms of assessment and/or

intervention.

Statistical analysis

The assembled dataset consisted of 37 basic demographic and clinical variables to predict

whether or not the patient will report self-harm in any follow-up visit within six months of

baseline. Categorical predictor variables with a small number of observations were removed

[38]. Here, we set the threshold for variables with uncommon observations at 25. All variables

for all patients were complete except for “physical health problems–other” where any missing

observations (N = 107) were imputed as absent.

We followed the analysis approach described in previously published work [39]. Briefly,

models were trained and tested with ten repeats of ten-fold cross-validation. At each fold of

the cross-validation, the training set was balanced with three approaches. Firstly, the number

of patients in the minority class (cases of self-harm) was doubled using SMOTE [40] to syn-

thetically generate cases. Secondly, borderline samples identified as ‘Tomek links’, which are

pairs of similar samples from different classes [41], were removed. Finally, we randomly

under-sampled the majority class to balance with the minority class. The test set remained

unaltered to assess the models’ performance on the real-world distribution of self-harm.

Following the “No Free Lunch” theorem [42], a number of algorithms were implemented

to build predictive models. These algorithms were chosen based on a number of reasons: their

popularity in the literature [43], ability to perform both predictive modelling and variable

selection [44], has been utilised in other work on self-harm and suicidality [24, 45], can handle

both continuous and categorical variables, and some of the chosen algorithms can model non-

linear relationships between predictor variables. The algorithms were (i) Area Under the

Curve Random Forests (AUCRF) [46]; (ii) Boruta [47]; (iii) Lasso regression [48]; (iv) Elastic-

net regression [49]; and (v) Bayesian Additive Regression Trees (BART) [50] and (vi) Logistic

regression. These algorithms, aside from logistic regression, are described in more detail in

[39].

The variable selection approach differed for each algorithm. For AUCRF, selected variables

are those in the Random Forest model with the highest AUROC. For Boruta, the selected vari-

ables must have significantly better importance scores than their permutated form. For LASSO

and Elastic-net, the variable must have a non-zero coefficient. For BART, the variable’s inclu-

sion proportion must be greater than a local threshold calculated from the permutation null

distribution. For logistic regression, variables were deemed to be selected if the p-value for the

variable’s coefficient is�0.05.

Model performance

A range of metrics was used to assess different aspects of model performance: AUROC, the

Area under the Precision-Recall Curve (AUPRC) [51], Brier scores [52], sensitivity, specificity,
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positive predictive value (PPV), negative predictive value (NPV) and net benefit. An AUROC

closer to 1 represents a perfect model whereas an AUROC closer to 0.5 represents a weak

model. The AUPRC is a measure for imbalanced outcome variables that evaluates between the

predicted and true positives [51]. Brier score is a proper scoring function which captures the

mean squared error between probabilistic predictions and true outcomes. As such, Brier scores

range from 0 to 1 with scores closer to 0 indicating more correct and calibrated predictions.

Sensitivity, specificity, PPV and NPV measurements were obtained by dichotomising probabi-

listic predictions with a cut-off at 0.5. Decision curve analysis [29] uses the net benefit metric

as a means to assess the costs and benefits of treatment compared different treatment strate-

gies. The net benefit is calculated using a model’s sensitivity and specificity across different

probability thresholds and the outcome’s prevalence in the population. In decision curve anal-

ysis, the model with the highest utility is the optimal strategy [53].

Analyses were performed using R [54] version 3.6.2 using packages randomForest [55],

Boruta [47], AUCRF [46], bartMachine [56], glmnet [57], caret [58], cluster [59], dplyr [60],

ggplot2 [61] and rmda [62].

Results

A total of 1962 young people were eligible for these analyses with a mean age of 18.36 years

(SD = 39.7) and 60% were female. Out of 1962 young people, 320 (16%) engaged in self-harm

in the six months after first assessment and 1642 (84%) did not. Of those who did not engage

in self-harm, 274 (17%) had suicidal thoughts in the six months after the first assessment. The

baseline characteristics of these young people are described in Table 1.

Model performance

All six algorithms produced predictive models with similar performance across all metrics in

the test datasets (Table 2). One-hundred models were produced for each algorithm (600 in

total) and on average, Boruta random forest models had the highest AUPRC (Mean: 0.346, SD:

0.056), PPV (Mean: 0.321, SD: 0.035) and specificity (Mean: 0.722, SD: 0.037), and also the

lowest Brier scores (Mean: 0.185, SD: 0.014). Lasso regression models had the highest mean

NPV (Mean: 0.934, SD: 0.018) and sensitivity (Mean: 0.752, SD: 0.078), and BART had the

highest mean AUROC (Mean: 0.755, SD: 0.039).

The mean predicted probabilities for each patient, averaged across the ten repeats of cross-

validation, skewed towards zero for the majority for patients who did engage in self-harm and,

for those who did, it skewed towards one (Fig 1A). The tails of these distributions suggest that

there are still a number of patients whom the models incorrectly classified. The top 25% of

patients as ranked by this mean predicted probability accounted for 51.6% - 56.2% of all

patients who exhibited self-harm. By the top 50% of ranked patients, this increased to 82.1% -

84.4%. The variance in predicted probabilities for each person across different algorithms and

repeats of cross-validation can inform on the uncertainty of the model predictions (Fig 1B).

The decision curve was produced also using the mean predicted probabilities and con-

trasted against strategies to ‘treat everyone’ and ‘treat no one’ (Fig 2). All six models were supe-

rior to the ‘treat everyone’ strategy and the net benefit of these models were positive for

thresholds between 0.09 and 0.26. The curves for all six algorithms remain very close with

BART being the marginally superior model.

Key predictors

Variable importance for predicting self-harm are presented in Figs 2 and 3 of the online sup-

plement. There were 7 predictors that were selected in at least 80% of the models (480/600). In
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Table 1. Baseline demographic and clinical characteristics of variables used for prediction.

Overall No Yes P-value

n 1962 1642 320

Sex = Male (%) 778 (39.7) 702 (42.8) 76 (23.8) <0.001

Age (mean (SD)) 18.36 (3.57) 18.52 (3.64) 17.52 (3.11) <0.001

History of self-harm = Yes (%) 883 (45.0) 616 (37.5) 267 (83.4) <0.001

History of suicide ideation = Yes (%) 953 (48.6) 731 (44.5) 222 (69.4) <0.001

SOFAS (mean (SD)) 62.43 (9.02) 62.75 (9.06) 60.76 (8.62) <0.001

NEET = Yes (%) 307 (15.6) 264 (16.1) 43 (13.4) 0.269

Clinical stage (%) <0.001

Stage 1a 604 (30.8) 541 (32.9) 63 (19.7)

Stage 1b 1207 (61.5) 973 (59.3) 234 (73.1)

Stage 2 and above 151 (7.7) 128 (7.8) 23 (7.2)

Depression (%) <0.001

No 598 (30.5) 538 (32.8) 60 (18.8)

Full-threshold 633 (32.3) 494 (30.1) 139 (43.4)

Sub-threshold 731 (37.3) 610 (37.1) 121 (37.8)

Anxiety (%) 0.149

No 587 (29.9) 483 (29.4) 104 (32.5)

Full-threshold 624 (31.8) 515 (31.4) 109 (34.1)

Sub-threshold 751 (38.3) 644 (39.2) 107 (33.4)

Bipolar disorder (%) 0.957

No 1780 (90.7) 1490 (90.7) 290 (90.6)

Full-threshold 71 (3.6) 60 (3.7) 11 (3.4)

Sub-threshold 111 (5.7) 92 (5.6) 19 (5.9)

Psychosis (%) 0.204

No 1862 (94.9) 1553 (94.6) 309 (96.6)

Full-threshold 44 (2.2) 41 (2.5) 3 (0.9)

Sub-threshold 56 (2.9) 48 (2.9) 8 (2.5)

Psychosis-like experiences = Yes (%) 356 (18.1) 282 (17.2) 74 (23.1) 0.014

Mania-like experiences = Yes (%) 298 (15.2) 240 (14.6) 58 (18.1) 0.13

Circadian disturbance = Yes (%) 294 (15.0) 244 (14.9) 50 (15.6) 0.791

History of hospitalisation = Yes (%) 346 (17.6) 265 (16.1) 81 (25.3) <0.001

Any childhood disorders = No (%) 1691 (86.2) 1404 (85.5) 287 (89.7) 0.058

Childhood autism spectrum = Yes (%) 56 (2.9) 52 (3.2) 4 (1.2) 0.089

Childhood ADHD = Yes (%) 104 (5.3) 94 (5.7) 10 (3.1) 0.078

Childhood generalised anxiety = Yes (%) 41 (2.1) 32 (1.9) 9 (2.8) 0.439

Childhood depression = Yes (%) 30 (1.5) 24 (1.5) 6 (1.9) 0.762

Family history—bipolar = Yes (%) 154 (7.8) 135 (8.2) 19 (5.9) 0.202

Family history—psychosis = Yes (%) 82 (4.2) 69 (4.2) 13 (4.1) 1

Family history—suicide = Yes (%) 35 (1.8) 28 (1.7) 7 (2.2) 0.715

Family history—depression = Yes (%) 653 (33.3) 542 (33.0) 111 (34.7) 0.604

Family history—anxiety = Yes (%) 302 (15.4) 248 (15.1) 54 (16.9) 0.472

Family history—alcohol = Yes (%) 171 (8.7) 134 (8.2) 37 (11.6) 0.062

Family history—substance misuse = Yes (%) 140 (7.1) 118 (7.2) 22 (6.9) 0.937

Any physical health problems = No (%) 1598 (81.4) 1332 (81.1) 266 (83.1) 0.444

Endocrine problem = Yes (%) 64 (3.3) 50 (3.0) 14 (4.4) 0.292

Metabolic problem = Yes (%) 35 (1.8) 31 (1.9) 4 (1.2) 0.577

Neurological problem = Yes (%) 55 (2.8) 49 (3.0) 6 (1.9) 0.36

(Continued)
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rank order, these predictors are: (1) a history of self-harm; (2) age; (3) SOFAS score; (4) sex;

(5) bipolar disorder; (6) psychosis-like experiences; (7) treatment with antipsychotics.

Discussion

A major priority for mental health services is to prevent self-harm, which is a considerable

source of distress, morbidity, ongoing health care utilisation and mortality, particularly in

youth. This study evaluates the potential utility of machine learning as a tool that can improve

clinical decision-making. First, in a cohort of young people presenting to youth mental health

services, the machine learning models here demonstrated fair overall prediction (AUROCs

between 0.744 and 0.755) and were well calibrated which indicates that predicted probabilities

were close to the true probabilities (brier scores between 0.185 and 0.196). Second, the decision

curve analysis indicates that there was a net benefit of these models over a ‘treat everybody’

approach, suggesting the potential to allocate targeted assessments and interventions in addi-

tion to those broad health service strategies. Finally, we identified seven basic factors that were

among the strongest predictors and demonstrate the relative importance of these characteris-

tics to identify those who may be at risk for self-harm in young people with emerging mental

disorders.

Most prediction studies for self-harm have focussed on adults presenting to hospital or

emergency departments, other high-risk populations, or focussed exclusively on suicide

attempts. The application of this approach to a younger cohort with greater clinical

Table 1. (Continued)

Overall No Yes P-value

Physical health problems—Other = Yes (%) 257 (13.1) 222 (13.5) 35 (10.9) 0.245

Treatment antidepressants = Yes (%) 737 (37.6) 606 (36.9) 131 (40.9) 0.194

Treatment antipsychotics = Yes (%) 239 (12.2) 195 (11.9) 44 (13.8) 0.398

Treatment mood stabilisers = Yes (%) 124 (6.3) 102 (6.2) 22 (6.9) 0.749

Treatment stimulants = Yes (%) 166 (8.5) 152 (9.3) 14 (4.4) 0.006

Treatment psychological therapy = Yes (%) 1101 (56.1) 927 (56.5) 174 (54.4) 0.532

Note. Columns present overall statistics and then statistics split by whether or not patients exhibited self-harm within 6 months of presentation (No vs Yes). P-value is

reported for univariate comparisons between downstream self-harm. For categorical variables, the Chi-square test is performed and for continuous variables, the t-test is

performed. Bolded text indicates best significant results at P<0.001.

https://doi.org/10.1371/journal.pone.0243467.t001

Table 2. Machine learning model performance.

Metric AUCRF Bart Boruta Elastic-net LASSO Logit

AUROC 0.749 (0.037) 0.755 (0.039) 0.749 (0.035) 0.749 (0.04) 0.749 (0.04) 0.744 (0.041)

AUPRC 0.342 (0.058) 0.329 (0.055) 0.346 (0.056) 0.32 (0.051) 0.32 (0.051) 0.316 (0.052)

Brier Score 0.19 (0.025) 0.188 (0.016) 0.185 (0.014) 0.193 (0.014) 0.193 (0.015) 0.196 (0.016)

Sensitivity 0.684 (0.083) 0.733 (0.076) 0.67 (0.079) 0.735 (0.071) 0.752 (0.078) 0.7 (0.083)

Specificity 0.715 (0.041) 0.695 (0.041) 0.722 (0.037) 0.686 (0.043) 0.678 (0.043) 0.704 (0.037)

PPV 0.321 (0.032) 0.321 (0.033) 0.321 (0.035) 0.315 (0.03) 0.314 (0.03) 0.316 (0.034)

NPV 0.921 (0.018) 0.931 (0.018) 0.919 (0.018) 0.93 (0.017) 0.934 (0.018) 0.924 (0.02)

Note. The means and standard deviations of model performance on test sets across the ten repeats of 10-fold cross-validation. AUROC = Area under the receiver-

operator curve, AUPRC = Area under the precision-recall curve. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were

calculated using a probability threshold of 0.5. Bolded text indicates best performing model for each metric.

https://doi.org/10.1371/journal.pone.0243467.t002
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Fig 1. Predicted probabilities of self-harm across the six machine learning algorithms. Panel A presents the distribution of mean predicted probabilities. The mean

predicted probabilities for each patient are averaged across ten repeats of 10-fold cross-validation. Panel B presents the uncertainty in predicted probabilities for a

selection of patients. Boxplots show the predicted probabilities across the five algorithms and repeated cross-validation. The predictions for person ID 70 would suggest

that the person is highly unlikely to engage in self-harm, in contrast to person ID 2726. In some instances, such as person ID 7577, models could not distinguish whether

a person would or would not engage in self-harm as the predicted probabilities are close to 0.5. There are instances where the models will conflict in their predictions (e.g.

person ID 1927).

https://doi.org/10.1371/journal.pone.0243467.g001

Fig 2. Decision curve analysis of machine learning models predicting self-harm. Net curves are plotted across a range of probability thresholds for self-harm. The

grey line plots the assumption that all people will engage in self-harm (i.e. ‘treat everybody’), whereas the black line assumes that no one will engage in self-harm (i.e.

‘treat no one’). The six coloured lines plot the net benefit of using machine learning models to identify who will engage in self-harm.

https://doi.org/10.1371/journal.pone.0243467.g002
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heterogeneity and who may not have a prior history of self-harm or serious mental disorders is

novel. Developing such prediction models for different populations and settings is critical

given the complexity of self-harm [3]. We report classification performance metrics that are

comparable to many previous prediction models [20–24], and comparable or better than most

clinical instruments used in high-risk populations [63]. This level of performance was achieved

using only basic demographic and clinical factors, common to many intake assessments and

not as rich as more comprehensive digital assessments now available [64]. The clinical context

is an important consideration given that these young people are typically early in the course of

illness or never sought help before [65], and almost one in five (17%) cases were new onset

self-harm.

Clinicians are asked to make decisions every day about who requires further assessment

and what type of treatment is most likely to be appropriate and effective for an individual. The

lack of useful markers of illness means that these decisions are generally based on broad clini-

cal guidelines, risk assessment tools and clinical intuition, each of which have major limita-

tions. Most international guidelines recommend a needs-based assessment in high-risk

settings [37], yet carrying out such assessments can be time and resource intensive, lead to the

use of informal triage rules [66, 67], or rely on unvalidated locally-developed proformas [67].

Furthermore, there are major limitations to relying on clinical judgements for a range of out-

comes, including future self-harm [68, 69]. Together, this reiterates the challenges health ser-

vices and clinicians face when trying to prevent self-harm. There is a need for innovative

health service approaches that can improve the consistency, effectiveness and safety of clinical

decision-making [70].

The decision curve analysis can be used to stimulate discussion within services about the

cost-benefits of different interventions across a range of risk thresholds. For thresholds

between 0.09 and 0.26 all models presented here have a net benefit that is higher than a ‘treat

everyone’ approach. So, at low thresholds such models may have utility for allocating low

intensity interventions in a way that optimises the cost-benefits. In practice, everyone present-

ing for youth mental health care could receive a needs-based digital assessment that includes

the assessment of suicidal thoughts and self-harm (‘treat everyone’ approach) [64, 71]. This

health service strategy reflects international guidelines and approaches to reduce risk (e.g. zero

suicide) [70, 72, 73]. For those above a low threshold (~0.20), a further assessment and low

intensity interventions could be recommended [74, 75]. This next level of assessment or inter-

vention may be viewed as inappropriate or unfeasible to be provided to everyone but recom-

mending it to a large subpopulation is acceptable to prevent one case of self-harm (Fig 3).

These additional resources may be even more cost effective when considering that those iden-

tified at risk for self-harm tend to also be at risk for a range of negative mental health outcomes

[7, 76].

A better understanding of key model predictors may be helpful to inform clinical decision

making for reducing self-harm [37]. While, caution should be taken when interpreting variable

rankings [77], many of the variables were highly intuitive and clinically informative. Consis-

tent with previous findings, a history of self-harm predicted future self-harm in youth, even

when considered among a range of other clinical factors [3, 14]. Interestingly though, social

and occupational functioning was the third highest predictor, ranked higher than all other

clinical factors (e.g diagnoses, previous hospitalisation). Maladaptive social and occupational

factors have been associated with self-harm in youth and tends to include; adverse or absent

social relationships [78], and poor educational or employment participation [34]. This work

suggests that poor social and occupational functioning may be a critical target for intervention

to reduce self-harm for some.
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The association between self-harm and mental or substance use disorders has been widely

reported in youth [5, 79, 80]. Mental disorder diagnoses were selected in our models to predict

future self-harm, however the frequency of which these variables were selected was less than

expected relative to other variables in our study. Bipolar disorder and psychosis-like experi-

ences were among the strongest predictors, yet while depression was less important, they were

still selected in over 70% of models.

Limitations and future directions

These findings should be considered in the context of some limitations. First, the sample size

used here is relatively small and there was a major class imbalance for the main outcome. Sec-

ond, we only considered a limited set of categorical variables. There are a range of additional

social and contextual factors not considered here which may have influenced the results.

Third, we only use baseline variables to predict future self-harm, however these models could

benefit from time varying predictions [81]. Though, the use of baseline variables only does

serve to replicate real-world clinical decision making after an initial presentation to a service.

We used a limited set of machine learning algorithms that provided the opportunity for vari-

able selection. Future studies should consider the utility of these models compared to clinician

ratings, or a combination of these to make more informed decisions.

Females made up nearly three quarters of those who exhibited self-harm. Evidence suggests

that low-to-moderate self-harm (e.g. superficial cutting etc.) tend to be more common among

females, while males tend to engage in methods of self-harm that are more severe and likely to

result in suicide (e.g., hanging, firearms) [82]. In light of this, the self-harm identified by this

study are most likely low-to-moderate in severity. A more comprehensive understanding of

self-harm methods is a matter for future studies.

The costs and benefits implicitly modelled in this work assume these are uniform for the

entire population. While this may be true, a more detailed evaluation of costs and benefits for

subgroups within this population may be required to accurately model these to inform deci-

sion making. Similarly, further research may also benefit from predicting these outcomes

among subpopulations within the service whereby self-harm are particularly common (i.e.

borderline or complex cases) [83]. These results may provide the opportunity for increase

Fig 3. Hypothetical graph that weighs up the net benefit of different interventions in youth mental health

settings. This hypothetical graph weighs up the costs of intervention (i.e. individual and clinician burden) against the

number of people we are willing to treat in order to prevent future self-harm. As the costs of intervention increase,

naturally the acceptable number of false positives reduce because intervention is likely to result in greater costs than

benefits (resulting in a negative net benefit). However, when the costs of intervention are low, a higher number of false

positives are acceptable to successfully prevent one case of self-harm (resulting in positive net benefit).

https://doi.org/10.1371/journal.pone.0243467.g003
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personalisation of interventions, improvements in prediction performance and greater cost-

benefit ratios.

Conclusion

The present work supports the view that data driven, and machine learning methods have the

potential to advance clinical decision making for self-harm [30]. This study demonstrates the

potential clinical utility of prediction models to identify a large sub population who may bene-

fit from targeted (low intensity) interventions in addition to the broad health service preven-

tion strategies. Enhancing how health services identify and respond to self-harm is a critical

priority, not simply because of the risk they confer for future suicide, but due to the significant

distress, morbidity and ongoing health care utilisation associated with self-harm.
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