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The reduction in antimicrobial activity at high bacterial counts is a microbiological
phenomenon known as the inoculum effect (IE). In a previous in vitro study, a
significant IE was observed for polymyxin B (PMB) against a clinical isolate of
Acinetobacter baumannii, and well described by a new pharmacokinetic-
pharmacodynamic model. Few in vivo studies have investigated the impact of
inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm
the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over
time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous
administration (1, 15 and 40mg/kg) were studied in a neutropenic murine thigh infection
model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB
efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment
model including saturable absorption from the subcutaneous injection site and linear
elimination. The previous in vitro PD model was modified to adequately describe the
decrease of PMB efficacy with increased inoculum size in infected mice. The IE was
modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting
inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously
characterized in vitro an IE was confirmed in vivo.
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INTRODUCTION

Acinetobacter baumannii is an opportunistic Gram-negative pathogen responsible for severe clinical
infections encountered in intensive care units (ICUs) worldwide, such as acquired pneumonia and
bacteremia but also urinary tract infections, meningitis and infections of traumatic wounds (García-
Garmendia et al., 2001; Garnacho et al., 2003; Gil-Perotin et al., 2012; El-Saed et al., 2013; Garnacho-
Montero and Timsit, 2019). Carbapenems are used as the first-line treatments for A. baumannii
infections (Wong et al., 2017). However, due to the increase of A. baumannii strains resistant to
carbapenems, other antibiotics such as polymyxins [colistin (CST) and polymyxin B (PMB)] may be
used as last-line treatments (Wong et al., 2017; Garnacho-Montero and Timsit, 2019).

High bacterial counts may alter antibiotherapy success due to an inoculum effect (IE) (Chastre
and Fagon, 2002; Koenig and Truwit, 2006; Kalanuria et al., 2014), corresponding to a reduction of
the antibiotic activity as bacterial count increases (Harada et al., 2014; Lenhard and Bulman, 2019).
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This phenomenon has been described in vitro for ß-lactam
antibiotics used against ß-lactamases-producing bacteria such
as Escherichia coli and Klebsiella pneumoniae (Bedenić et al.,
2001; Harada et al., 2014; Smith and Kirby, 2018; Lenhard and
Bulman, 2019). It has also been reported in vitro with other
antibiotics and bacteria, including glycopeptides used against
Staphylococcus aureus (Rio-Marques et al., 2014),
fluoroquinolones against S. aureus and Pseudomonas
aeruginosa (Mizunaga et al., 2005), aminoglycosides against S.
aureus and E. coli (Li andMa, 1998) or PMB against P. aeruginosa
(Tam et al., 2005). We have recently documented for the first
time, an inoculum effect of A. baumannii on polymyxin B in vitro
using static time-kill experiments and PKPD modeling (Akrong
et al., 2021). The IE required a 17-fold increase of the PMB
concentration to reach 50% of maximal effect (EC50) as the initial
inoculum increased from 105 to 108 CFU/ml.

Yet the IE of A. baumannii on polymyxins in vivo remains to
be investigated. Indeed, Lin et al. observed a decrease in the
efficacy of nebulized colistin when the initial inoculum of A.
baumannii increased from 107 to 108 CFU/lung (Lin et al., 2018).
But IE was only investigated on rare occasions in vivo, with
antibiotics such as marbofloxacin (Ferran et al., 2009),
piperacillin-tazobatam (Harada et al., 2014), ertapenem
(Maglio et al., 2005), meropenem (Mizunaga et al., 2005) or
colistin (Fantin et al., 2019) against various Gram-negative
pathogens such as E. coli, K. pneumoniae or P. aeruginosa but
never against A. baumannii. In these in vivo studies, the impact of
inoculum size was evaluated based on bacterial counts at 24 or
48 h after the start of antibiotic therapy (Maglio et al., 2004;
Maglio et al., 2005; Ferran et al., 2009; Lee et al., 2013; Harada
et al., 2014), or on the survival of infected animals (Mizunaga
et al., 2005; Fantin et al., 2019). However, to our knowledge, no
PKPD modeling of the impact of inoculum size on antibiotic
activity has ever been performed in vivo.

Therefore, our objectives were, first to evaluate whether the IE
that was observed in vitro with A. baumannii and PMB could be
detected in vivo. Second, if an in vivo IE was revealed, we aimed to
assess the capability of the PKPD model developed with in vitro
data (Akrong et al., 2021) to describe the newly produced in
vivo data.

MATERIALS AND METHODS

Chemicals and Bacterial Isolates
Polymyxin B sulfate (PMB) and cyclophosphamide monohydrate
obtained from Sigma-Aldrich (Merck KGaA, Saint-Quentin
Fallavier, France) were used to prepare solutions in sterile
conditions. During this study, all chemicals and reagents used
were analytical grade.

A clinical strain of A. baumannii (CS01), isolated from a
patient with a meningitis (Seville, Spain) before treatment with
CST, was used during this study (López-Rojas et al., 2013). Before
each experiment, the strain was cultured in 5 ml of cation
adjusted Muller-Hinton broth II (MHB) (Biomérieux, Marcy-
l’Etoile, France) and incubated overnight at 37 ± 2°C with
constant shaking (150–170 rpm). This overnight suspension

was diluted 1:50 in MHB and was incubated with constant
shaking at 35°C during 2 h until an OD600nm of 0.26 was
achieved (Ultrospec10, Biochrom Ltd., Cambridge,
United Kingdom), corresponding to a bacterial count of
108 CFU/ml in exponential growth phase. The bacterial
suspension was centrifuged (3,000 rpm, 6 min), broth was
removed and replaced by the same volume of sterile saline
solution. This suspension was then diluted to obtain inocula of
107 and 106 CFU/ml. Samples of the inoculation solutions were
serially diluted on saline, plated on Muller-Hinton agar plates
(Biomérieux, Marcy-l’Etoile, France) and incubated overnight
at 37°C.

Neutropenic Mouse Thigh Infection Model
Animal experiments were carried out according to the EC
Directive 2010/63/EU. They were approved by the local ethics
committee (COMETHEA) and registered by the French Ministry
of Higher Education and Research (approval numbers:
2019022216097190 and 2017072415099072). Five-week-old
male Swiss RjOrl mice (n = 296) weighing 34 ± 2 g (mean ±
standard deviation [SD]) were obtained from Janvier Labs (Saint-
Berthevin, France). All animals were acclimatized in ventilated
racks in a temperature-regulated environment with a 12 h light-
dark cycle, with free access to food and water for a minimum of
5 days before the beginning of the experiment. Neutropenia was
induced by intraperitoneal administrations of cyclophosphamide
at 150 and 100 mg/kg, 4 days and 1 day prior to experimental
infection, respectively (Landersdorfer et al., 2018). Thigh
infection was induced by intramuscular administration of
0.1 ml of a bacterial suspension of 106, 107 or 108 CFU/ml
(corresponding to 105, 106 and 107 CFU/thigh, respectively),
into one of the posterior thigh muscles. Thus, three groups of
mice were distinguished according to the inoculum injected (n =
76, 146 and 74 for 105, 106 and 107 CFU/thigh, respectively) Each
group was divided into two subgroups: treated (n = 48, 116 and 45
for 105, 106 and 107 CFU/thigh, respectively) and control mice (n
= 28, 30 and 29 for 105, 106 and 107 CFU/thigh, respectively).

Polymyxin B Treatment
Two hours after bacterial inoculation, mice received either a
single subcutaneous administration of PMB (1, 15 or 40 mg/kg
for mice infected with 106 and 107 CFU/thigh, and 15 or 40 mg/kg
for mice infected with 105 CFU/thigh), or a subcutaneous
administration of saline solution (control group).

Polymyxin B Pharmacokinetics
The PK of PMB was determined in neutropenic mice infected
with the bacterial inoculum size of 106 CFU/thigh (n = 56). Mice
were anesthetized by isoflurane (AbbVie, Rungis, France)
inhalation (3%) for 5 min at each sampling time. Blood
samples were collected by intracardiac puncture into
heparinized tubes up to 24 h after PMB administration for a
total of 7 time points per dose level (n = 3 animals per time point).
Plasma was separated from the whole blood after centrifugation
at 4,000 rpm for 10 min at 4°C and divided into two samples. The
first sample was used to determine total PMB concentrations and
the second one (0.15 ml) was ultrafiltered (4000 rpm for 30 min at
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room temperature) using Centrifree® ultrafiltration devices from
Millipore (Merck KGaA) to determine unbound PMB
concentrations and consequently protein binding. The non-
specific binding of PMB to the membrane of the Centrifree®
ultrafiltration devices (Sader et al., 2012) was determined by
ultrafiltration of PMB solutions in phosphate buffer (pH7.2) at
concentrations ranging from 0.2 to 7.5 mg/L and was used to
correct ultrafiltrate concentrations. Plasma samples and
ultrafiltrates were stored at −20°C until further analysis. Total
and unbound PMB concentrations were determined by a liquid
chromatography tandem mass spectrometry (LS-MS/MS)
method (Supplemental Material).

Polymyxin B Pharmacodynamics
Mice (n = 240) were sacrificed at 6 different time points: just prior to
the start of the therapy (0 h) and at 2, 4, 6, 8 and 24 h after PMB
administration. A total of 3-6mice were sacrificed at each time point.
Thigh muscles were collected and homogenized with 1ml of sterile
saline solution using potters Elvehjem-type tissue grinders (Thermo
Fischer Scientific, Illkirch-Graffenstaden, France). Homogenates
were serially diluted in saline, plated on Muller-Hinton agar
plates and incubated overnight at 37°C. Bacterial colonies were
counted and expressed as log10 numbers of CFU/thigh. The
lower limit of quantification (LOQ) was set to 800 CFU/ml
corresponding to 2.9 log10 CFU/thigh.

Pharmacokinetic-PharmacodynamicModel
A PKPD model was developed in two steps to quantify the
exposure-effect relationship of PMB in infected mice. First,
time courses of total and unbound PMB concentrations were
modeled and then, PK parameters were fixed during development
of the PD part of the PKPD model.

Different structural models including one, two or three
compartments, linear, nonlinear (Michaelis-Menten) or
parallel linear/nonlinear elimination were evaluated to describe
PK data. Models with linear and nonlinear absorption were also
tested. Additive, proportional and exponential residual error
models were explored.

The structural model for the bacterial population included one
compartment representing drug-susceptible growing bacteria. A
logistic function was used to model the self-limiting growth
observed in vivo:

dB
dt

� knet × (1 − B
Bmax

) × B (1)

Where, B (CFU/thigh) is the drug-susceptible bacterial
population, knet (h−1) is the apparent (net) growth rate
constant and Bmax (CFU/thigh) the maximum bacterial count
reached in the tissue. The residual error was additive on a log10
scale for bacterial counts (log10 CFU/thigh).

Predicted unbound plasma concentrations were linked to the
bacterial sub-model using a mathematical function to
characterize PMB antimicrobial effect (kPMB) such as:

dB
dt

� knet × (1 − B
Bmax

) × B − kPMB × B (2)

Where multiple functions (linear, power, basic Emax or a
sigmoidal Emax function) for kPMB were tested.

Empirical mathematical functions (i.e. linear, exponential and
power) describing the relationship between kPMB and inoculum
size were tested as a way to include the impact of inoculum size on
PMB bactericidal activity.”

Model selection was based on objective function value (OFV)
and goodness of fit (GOF) plots. When two models were nested, a
decrease in OFV of at least 3.84 (chi square 1df p = 0.05) was
needed to select the most complex model. Visual predictive
checks (VPCs) based on 1,000 simulations were drawn after
stratification on the PMB dose and the starting inoculum to
evaluate the predictive performance of the model and were taken
into account for model selection. Data below the LOQ were taken
into account during parameter estimation by applying Beal’s M3
method (Beal, 2001). Parameter estimation was performed using
NONMEM software (ICON, Dublin, Ireland) version 7.4.2 using
the LAPLACIAN algorithm. Uncertainty around population
parameters was estimated using the sampling importance
resampling (SIR) technique (Dosne et al., 2016).

Sensitivity Analysis
To evaluate the impact of outliers on parameter estimates and
model-based inferences, a sensitivity analysis was performed.
Briefly, model estimation was performed with the complete
dataset and with a reduced dataset excluding outliers.
Parameter estimates were compared and simulations of
expected bacterial counts for all tested experimental conditions
(i.e. all inocula and dosing regimens) were performed with the
two parameter estimate sets.

RESULTS

Polymyxin B Pharmacokinetics Study
A saturable non-specific binding (NSB) of PMB to the
ultrafiltration membrane, translating to a non-linear decrease
of PMB NSB when PMB concentration increased, was observed
(Supplementary Figure S1) and could be described by the
following equation:

NSB � 0.47 − 0.16 × ln(UF) (3)
Where NSB corresponds to the non-specific binding (%) and UF
to PMB concentrations in ultrafiltrates (mg/L). Equation 3 was
used to correct ultrafiltrates concentrations, as follows:

Unbound concentrations � UF
1 − NSB

(4)

Total and unbound PMB plasma concentrations versus time
profiles in thigh-infected mice are shown on Supplementary
Figure S2. Unbound concentrations in mice receiving a
subcutaneous dose of 1 mg/kg were all below LOQ (unbound
LOQ = 0.62 mg/L after correction by the non-specific binding).
The plasma peak was smoother and delayed as the dose increased,
with a time to peak (Tmax) of 0.5 h for a dose of 1 mg/kg and 2 h
for a dose of 40 mg/kg. Total PMB peak concentration (Cmax) did
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not change proportionally with dose, but increased only 15-fold
(from 0.92 ± 0.14 (mean ± SD) to 13.75 ± 0.81 mg/L) when the
dose increased from 1 to 40 mg/kg, attesting for some degree of
PK non-linearity across this range of PMB subcutaneous doses.

Total and unbound plasma PMB concentrations versus time
were best fitted by a two-compartment model with saturable
absorption from the injection site, and linear elimination
(Figure 1). Parameter estimates with their corresponding
uncertainties are summarized in Table 1. PMB plasma
protein binding was concentration independent within the
observed range of total concentrations (0.20–14.56 mg/L)
and the unbound fraction, estimated to be 17% (Table 1),
was used for unbound concentrations fitting. GOF plots
(Supplementary Figure S3) and VPCs (Figure 2)
demonstrate that the selected model adequately predicted
the mean tendency and dispersion of the total plasma data
across the investigated dose range. For unbound
concentrations, the model slightly overestimates and

underestimates peak concentrations after the 15 and
40 mg/kg doses respectively (Supplementary Figure S3).

Polymyxin B Pharmacodynamic Study
All untreated infected animals in the control group survived after
24 h. The time courses of bacterial loads after a single dose of
PMB at 15 and 40 mg/kg are shown in Figure 3 for the three
inocula. At the start of PMB treatment (2 h post-infection),
bacterial counts were equal to 5.8 ± 0.4, 7.1 ± 0.5 and 8.0 ±
0.5 log10 CFU/thigh in mice infected with 1.5 × 105, 1.4 × 106 and
1.3 × 107 CFU/thigh inoculum, respectively. For the 105 CFU/
thigh inoculum, bacterial counts in the untreated control group
increased for the first 6 h for all animals but two patterns are seen
at 8 and 24 h post-infection. For half of the studied mice bacteria
reached a plateau at 8 h (8.2 ± 0.6 log10 CFU/thigh). For the other
half, unexpectedly low bacterial counts were observed (8 h:
4.2 ± 0.9 log10 CFU/thigh and 24 h: 3.6 ± 0.7 log10 CFU/thigh).
At higher inocula, bacterial counts in the untreated control group

FIGURE 1 | Schematic representation of the final pharmacokinetic-pharmacodynamic model characterizing the inoculum effect of A. baumannii on PMB
bactericidal activity (kPMB). SC, subcutaneous; knet, apparent growth rate constant of bacteria; kslope, kill rate constant due to PMB; kslope,med, kill rate constant for a
theoretical starting inoculum of 6 log10 CFU/thigh; kinoc, constant describing the inoculum effect on kslope; Cu, unbound PMB concentration; γ, power parameter for PMB
effect.

TABLE 1 | Parameter estimates and relative standard errors for the final PK model.

Parameter Unit Estimate (%RSE)

Maximum absorption rate mg/h/kg 14.7 (10.3)
Amount in the subcutaneous compartment that produces 50% of the maximum absorption rate mg/kg 2.24 (41.4)
Clearance L/h/kg 0.437 (3.9)
Distribution volume of the central compartment L/kg 0.740 (16.7)
Distribution volume of the peripheral compartment L/kg 0.743 (16.4)
Intercompartmental clearance L/h/kg 0.315 (27.3)
Fraction unbound - 0.166 (9.3)
Proportional residual error for total concentrations % 24 (11.4)
Additive residual error for total concentrations mg/L 0.0115 (40.6)
Proportional residual error for unbound concentrations % 35 (14.7)
Additive residual error for unbound concentrations mg/L 0.0457 (36.8)

RSE, Relative Standard Error
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increased until a plateau was reached 8 h (8.3 ± 0.3
log10 CFU/thigh) and 4 h (8.9 ± 0.1 log10 CFU/thigh) after
infection with the 106 and 107 CFU/thigh inoculum,

respectively. When infected mice were treated with PMB at
1 mg/kg, no differences in bacterial counts with the control
group were observed (data not shown). For the 105 CFU/thigh

FIGURE 2 | VPCs of the final PK model for total (red) and unbound (blue) PMB plasma concentrations, stratified by dose. Circles represent observed data, solid
lines represent the median of the simulations and the colored-shaded areas depict the 80% prediction intervals for 1,000 simulated profiles. Dashed lines correspond to
the limits of quantification (0.1 mg/L and 0.62 mg/L for total (red) and unbound (blue) concentrations, respectively). Note the different axis scales.

FIGURE 3 | VPCs of the final PKPDmodel for bacterial counts, stratified by dose of PMB and starting inoculum. Circles represent experimental data, solid lines the
median of simulated data and, colored areas depict the 80% prediction intervals for 1,000 simulated profiles. Dashed lines correspond to the limit of quantification (2.9
log10 CFU/thigh).
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inocula high bacterial load reductions of 2.6 ± 1.2 log10 CFU/
thigh were observed 24 h after administration of 15 mg/kg PMB
while a moderate efficacy of PMB was observed at 15 mg/kg for
the two highest inocula (Figure 3). In contrast high reductions of
2.5 ± 2.3, 3.5 ± 0.9 and 2.1 ± 1.4 log10 CFU/thigh were observed
24 h after administration of 40 mg/kg PMB for 105, 106 and
107 CFU/thigh inocula respectively.

Polymyxin B PK-PD Study
The time course of bacterial counts was adequately described by
the model depicted on Figure 1. Parameter estimates with their
corresponding uncertainties are summarized in Table 2. VPCs of
the final model are shown on Figure 3 and GOF plots on
Supplementary Figure S4. PMB bactericidal effect (kPMB) was
best described by a power function:

kPMB � kslope × Cγ
u (5)

Where kslope corresponds to the kill rate constant due to PMB (L/
mg.h), Cu the unbound PMB concentration (mg/L) and γ , the
power parameter for PMB effect.

The inoculum effect was incorporated in the model as a
decrease of kslope with increasing theoretical starting inoculum
using a linear function:

kslope � kslope,med + kinoc × (starting inoculum − 6) (6)
Where kslope,med is the kill rate constant for a theoretical starting
inoculum of 6 log10 CFU/thigh corresponding to the median of
the starting inoculum tested in the present study (5, 6 or 7
log10 CFU/thigh) and kinoc is the constant describing the
inoculum effect on kslope.

A decrease of kslope from 1.19 to 0.81 L/mg.h (−32%) was
predicted for a starting inoculum increasing from 5 to 7
log10 CFU/thigh respectively. kPMB at various PMB
concentrations was derived from Equation 5, using for each
starting inoculum the corresponding kslope value, and converted

into initial killing half-lives (IK-HL) (Table 3), as previously
performed with the in vitro model (Akrong et al., 2021).

Sensitivity Analysis
The data-points identified as outliers were samples with less than
105 CFU/thigh from the control group infected with inoculum
105 CFU/thigh at times 8 and 24 h. With the sensitivity analysis
results, it was observed that these outliers were not influential
regarding parameter estimates and simulations under the final
model. Detailed results can be found in supplemental material
(Supplementary Table S1 and Supplementary Figure S5).

DISCUSSION

These new study results can be compared with those previously
obtained in relatively similar conditions, at least from PK
standpoint (Landersdorfer et al., 2018). In both studies PMB
was administered subcutaneously to neutropenic mice infected
with K. pneumoniae (Landersdorfer et al., 2018) or A. baumannii,
leading to saturable absorption rate. However although
Landersdorfer et al. used a model with parallel linear and
saturable absorption, an Emax model was sufficient to provide
satisfactory fit of our data. Noticeably, while this nonlinear
absorption was important to consider for PK and then PKPD
modeling of these animal data, it would not be relevant in clinical
practice since PMB is administered intravenously and not
subcutaneously. Another difference was observed between
these two studies in terms of elimination. We observed linear
elimination characterized by a clearance value, whereas
Landersdorfer et al. described their data, with again a model
including parallel linear and saturable pathways. Doses ranging
were comparable between these two studies (from 2 to 32 mg/kg
for Landersdorfer et al. and from 1 to 40 mg/kg for us), and peak
concentrations observed in Landersdorfer et al study at the
highest dose, were close to 20 mg/L and therefore only slightly
higher than in our study (15 mg/L).

Plasma protein binding results also demonstrate some
discrepancies between the two studies. Although both studies
showed extensive binding, close to 80 and 90%, our estimated
unbound fraction (0.17 on average) was twice the previously
reported value at 0.086 (Landersdorfer et al., 2018). This
discrepancy may be explained by differences in methodology.
We used ultra-filtration after correction for non-specific
adsorption on membranes to determine unbound fraction
individually in infected mice, whereas the previous study used

TABLE 2 | Parameter estimates and relative standard errors (RSE) for the final PMB PKPD model.

Parameter Unit Estimate (%RSE)

knet: Apparent growth rate constant h−1 0.594 (16.6)
Bmax: Maximum bacterial count reached in the tissue Log10 CFU/thigh 8.00 (2.0)
kslope,med: Kill rate constant due to PMB for a theoretical median starting inoculum of 6.5 log10 CFU/thigh L/mg.h 1.00 (12.1)
γ: Power parameter for PMB effect - 0.162 (20.1)
kinoc: Constant describing the inoculum effect on kslope,med - −0.194 (22.3)
σ: Additive residual error on the log10 scale for total bacterial count Log10 CFU/thigh 1.63 (9.4)

TABLE 3 | Model derived initial killing half-lives (min) at various unbound PMB
concentrations and starting inocula.

PMB concentration (mg/L)

Inoculum (CFU/thigh) 0.5 1 2 3 4

105 39 35 31 29 28
106 47 42 37 35 33
107 58 52 46 43 41
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ultracentrifugation and pooled plasma sampled drawn from
infected mice and spiked with PMB. The latter methodology
may seem more suitable for the determination of protein binding
of drugs, such as PMB, that exhibit significant nonspecific
binding to laboratory material including ultrafiltration
membranes (Cheah et al., 2015). Although, ultrafiltration has
also been used to determine unbound concentrations of
daptomycin, another antibiotic known to adhere to
ultrafiltration membranes, after evaluation of non-specific
binding by regression methods (Kim et al., 2008; Grégoire
et al., 2019). This two-fold difference in unbound fractions
should complicate PKPD modeling comparisons between these
two studies, but not the IE investigated during this new study.

PKPD results of this new study could not be compared with
Landersdorfer et al., not only because the bacterial species were
different, but also because we have performed repeated
measurements of bacterial counts over time, to describe a
bacterial count versus time profile, which constitutes a major
originality of our study. We have first compared the bacterial
count versus time profiles at various initial inocula, with those
predicted by combining our PK model in mice previously
discussed, with the PD model that we previously developed to
characterize the IE in vitro (Akrong et al., 2021). Such promising
simulations can be found in publications that apply modelling to

in vitro time-kill and/or hollow-fiber data (Yadav et al., 2015; Ly
et al., 2016; Mohamed et al., 2016; Kristoffersson et al., 2019).
However in vivo data are missing to evaluate the predictive ability
of those simulations. In the present study, in vivo data show
(Figure 4) that initial CFU decay with time is less rapid than
predicted by the in vitro PD model, but more importantly the
rapid regrowth observed in vitro was no more apparent in vivo.
These in vitro—in vivo discrepancies invite caution when making
recommendations based on predictions of models based solely on
in vitro data. The reasons for these discrepancies should be
further investigated and the importance of performing in vivo
experiments is reinforced. These differences in model are
schematically represented on Supplementary Figure S6.

An innovative aspect of this study was the refinement of a
PKPD model, based on the model developed after in vitro TK
experiments conducted with A. baumannii and PMB (Akrong
et al., 2021). The comparison between PD parameter values
obtained after in vitro and in vivo data fitting indicated that
the apparent growth rate constant was lower in vivo (0.594 h−1)
(Table 2) than in vitro (1.62 h−1) (Akrong et al., 2021), as
previously shown for E. coli (0.76 versus 1.30 h−1) (de Araujo
et al., 2011). The different growth behavior between in vitro and
in vivo has been associated in literature to the different
environmental conditions, with higher volumes and nutritional

FIGURE 4 |Bacterial counts (CFU/thigh) versus time profiles at various initial inocula predicted by combining the PMBmice PKmodel, with the PDmodel previously
developed to characterize the inoculum effect in vitro (Akrong et al., 2021). Solid circles represent experimental data and solid lines represent model predictions.
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factors more abundantly available in vitro than in vivo leading to a
medium favorable to bacterial growth (Gloede et al., 2010;
Mouton, 2018). As an illustration, the bactericidal effect of
PMB characterized by the typical killing rates (kPMB),
described by a power function in vivo and by a sigmoid Emax
model in vitro, were respectively equal to 1.25 h−1 and 6.55 h−1 for
initial inocula of 106 CFU/thigh and 106 CFU/ml and PMB
concentration of 4 mg/L, that corresponds almost to the
unbound peak concentration of PMB after a dose of 40 mg/kg.
Similarly, a two times smaller maximum killing effect was
previously observed for piperacillin against E. coli in a murine
thigh infection model as compared to in vitro (de Araujo et al.,
2011).

In both in vitro and in vivo PKPD models, a decrease in PMB
killing effect was related to the baseline inoculum and was
modeled either as a decrease of the in vivo PMB killing rate
constant (kslope) or as an increase of the in vitro half-maximal
effective concentration of PMB (EC50), making PMB IE difficult
to compare between in vitro and in vivo. In vivo IK-HL were
derived from Equation 5 for each starting inoculum and various
PMB concentrations to better illustrate the consequences of IE on
PMB activity (Table 3). In the present study, the modelling
suggests that the in vivo IE is moderate and not concentration
dependent with a mean IK-HL 48% higher at 107 CFU/thigh
compared with 105 CFU/thigh inoculum (48 vs. 32.4 min). In
contrast, our in vitro model suggested that the IE was PMB-
concentration dependent and attenuated at high PMB
concentrations (Akrong et al., 2021). As an example, at a PMB
concentration equal to 4 mg/L, in vitro IK-HL increased by 60%
(from 5 to 8 min) when the starting inoculum increased from 105

to 107 CFU/ml, whereas it increased by 140% (from 10 to 24 min)
for a PMB concentration 16 times lower (0.25 mg/L).

The clinical relevance of in vitro IE has been questioned in
previous studies (Maglio et al., 2004; Maglio et al., 2005;
Fantin et al., 2019). Indeed, in the case of cefepime (Maglio
et al., 2004) and ertapenem (Maglio et al., 2005) in vitro
elevations of E. coliMICs were seen with an initial inoculum at
107 CFU/ml compared to 105 CFU/ml, while no IE was
observed in vivo (neutropenic mouse thigh infection
model). On the other hand, Fantin et al. observed an in
vivo IE in mice infected with E. coli and treated by colistin
(Fantin et al., 2019).

In conclusion, a PKPD model has been successfully developed
to characterize the in vivo IE of A. baumannii on PMB, which
confirms the IE observed in vitro. The PKPD model previously
developed from in vitro TKC data was modified to take into

account the intrinsic differences between in vitro and in vivo
experimental infection models. The comparison between in vitro
and in vivo PKPD parameters was not straightforward, especially
due to the absence of in vivo regrowth. Yet although less
pronounced than in vitro, the initial inoculum size of A.
baumannii had a real impact on in vivo PMB activity.
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