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ABSTRACT
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate
environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still
metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to
maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases:
RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an
appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms
evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is
necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast
model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other
eukaryotes and mammalian systems, in particular stem cells.
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Introduction

Cells only divide under appropriate conditions. In unicellu-
lar organisms such as microbes, this is usually linked to the
availability of appropriate nutrients in the environment.
Outside of the laboratory, these are often limiting. As a
result, most microorganisms are present in a non-dividing
(hereafter referred to as “G0”) state in nature.1-3 Typical
examples of non-dividing microbial cells include “viable but
non-culturable” (VBNC) cells4-6 and endospores in bacteria,
as well as asexual and sexual spores in fungi. Multi-cellular
microbes can also induce large resting structures such as
sclerotia and cysts. In multi-cellular organisms possessing
different cell types and functions, coordination between cells
is important to ensure proper development and requires a
tight control on cell proliferation. In the human body, most
cells are not actively dividing but either terminally differen-
tiated, such as neurons, or quiescent, such as most stem cells
and memory lymphocytes.7-12 Reactivation of quiescent
stem cells is essential for tissue regeneration, for example
during wound healing.13-14

It is important to note that several types of non-dividing states
can exist (Fig 1A). Typically, ‘quiescence’ is defined by metabolic
activity and full ability to return to the cell cycle. On the other
hand, the absence of metabolic activity is a hallmark of ‘dormancy’,
for example in spores. The inability to revert to the cell cycle char-
acterizes post-mitotic cells, and when this inability is irreversibly
acquired over-time constitutes a key feature of cellular senescence.
For example, progressive loss of this reversibility hinders the
self-renewal capability of a stem cell niche, resulting in its
depletion.15-20 A consequence of this phenotypic definition is

that distinct types—and depths—of quiescence can exist. The
existence of different depths of cellular quiescence is illus-
trated for example in muscular stem cells for which cells can
enter a ‘poised’ state in response to certain environmental sig-
nals, in which they are more responsive to the signal trigger-
ing quiescence-exit. A proposed name for this intermediary
state has been ‘G-alert’ in stem cells21 and ‘G0(A)’ in T lym-
phocytes.22 This has lead to the proposal of a ‘quiescence
cycle’ alongside the cell cycle (Fig 1B).21,23 Other examples
include the morphological and phenotypic differences in fis-
sion yeast between early and late G0 cells,24,25 and the tran-
scriptome differences in human fibroblasts when G0 is
induced by different signals.26

Controversies

Many efforts in the field have sought a molecular basis
underlying quiescence—similarly to the molecular charac-
terization of stem cells and of what constitutes ‘stemness’
(the concomitant presence of ‘self-renewal’ and ‘differentia-
tion potential’).27,28 In part because of the different types of
quiescent cells, there are still important controversies sur-
rounding the definition of cellular quiescence. Some are
semantic, such as cancer dormancy—“dormancy” qualifies
the cancer and not necessarily the cancer cells underlying
the “dormant” phenotype, which are thought to be either
quiescent cells, and/or an immune balance between growth
of a micro-tumor and the immune system.29 Second, the
term “G0” has been used as a synonym of “non-dividing”
cells in general, as a synonym for “quiescence,” as well as
the notion that cells enter quiescence uniquely from G1.
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However, in certain conditions cells can enter quiescence
from distinct points of the cell cycle30-33 and doing so pref-
erentially in G1 may be a consequence of metabolic slow-
down rather than necessity.32 This has led to a controversy
over the term “G0” when understood as indicating an exit
only from G1.32,34 Third, the choice of the model system
and of the signal to induce quiescence has to be considered,
as different organisms show different responses to starva-
tion of different nutrients, such as nitrogen-starvation in
budding yeast haploids vs. diploids,35 and in fission
yeast.24,36 In particular, the use of stationary-phase cultures
does not necessarily accurately reflect quiescent cells, as
these cultures are heterogeneous and most cells not long-
lived.37 Last but not least, it has proven difficult to obtain
biomarkers specific for G0 cells.

Markers of cellular quiescence

The first proposed quiescence-specific marker was ‘statin’ in
quiescent fibroblasts (not to be confused with the statin class of
drugs: statin was later revealed to be lamin A),38-39 but was sub-
sequently found to not be completely specific.40 Nowadays, the
most commonly used marker in mammalian cells is pKi-67,
which can distinguish between quiescent and proliferating cells;
however, pKi-67 is still expressed at low levels in quiescence as
it acts in rRNA synthesis.41,42 Other proposed markers in mam-
malian cells include CDK inhibitors such as p27CDKN1B/Kip1,43-46

which led to a Venus-p27K construct discriminating G0 and
G1 cells,47 p21Cip1/Waf1/Sdi1,48 as well as the retinoblastoma (RB)
protein (p105, p107, p130) family of cell cycle inhibitors, which
regulate the E2F transcription factors,49-52 and the RB yeast
analog Whi5.53,54 Quiescent cells have often been defined nega-
tively i.e. what the cell does not do, such as absence of PCNA
(i.e., absence of S-phase), and Hoechst 33342CPyronin Y stain-
ing (DNACRNA content) based on low RNA expression in
G0.55 Transcriptomic studies in human fibroblasts,26 and in
fission yeast,56,57 have identified potential core ‘quiescent

program’ genes. This will help identifying better markers for
cellular quiescence.

Quiescence: Conserved or specialized?

Despite the importance of quiescence in all organisms, the
molecular mechanisms underlying transition between growth
and quiescence are not very well understood, nor are the
molecular mechanisms of quiescence maintenance over long
periods of time. An important question is whether molecular
mechanisms underlying cellular quiescence are conserved
across evolution. Because states of quiescence can be seen in
prokaryotes, unicellular eukaryotes and multicellular organ-
isms, it is likely that some aspects of quiescence are con-
served.36 However, it has been proposed that because cycling
cells, in any organism, use their energy predominantly to grow
and divide, the most likely conserved mechanisms in G0 would
be mechanisms of shutting-down growth and division, and that
apart from this common aspect, quiescent cells are driven to
specialization.58 Further study of quiescent cells in different
organisms will help us determine to what extent this may be
the case; furthermore, this dual aspect of conservation/speciali-
zation highlights the importance of in-depth study of several
model organisms.

Quiescence in pathological contexts

Quiescence is also important in pathological contexts, such as
cancer, degenerative diseases, and microbial infection. Two
hallmarks of cancer are the inability to sustain quiescence,
resulting in aberrant proliferation, and the inability to trigger
apoptosis to stop these cells. It is therefore especially important
to study this question not only from the viewpoint of uncon-
trolled growth and proliferation, but in the context of unwar-
ranted quiescence-exit.36,58,59 Most cancer-related deaths are
caused by secondary tumors after treatment of the primary can-
cer; one factor in cancer persistence and resurgence is thought

Figure 1. The many facets of cellular quiescence and non-dividing cells. (A) Non-dividing cells exit the cell cycle in response to specific environmental cues
to enter different types of G0 states. At one end of the spectrum, microbial spores are metabolically shut-down and dormant; at the other end, cells termi-
nally differentiate in specialized post-mitotic states (such as neurons and myocytes). There is a continuum in terms of reversibility to the cell cycle, meta-
bolic activity and differentiation/specialization. (B) The “quiescence cycle” model proposes a progressive entry into G0, and conversely that in response to
environmental signals (such as stem cell activation) G0 cells can enter a poised Galert state facilitating G0-exit.21–23
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to be the presence of quiescent cancer cells, which are less sen-
sitive to antitumor drugs.29,60 An improved understanding of
cellular quiescence would therefore permit better targeting of
G0 cancerous cells, and develop more specific drugs.61-64

In the context of human pathogens, the formation of quies-
cent cells contributes to persistence of infection within the
body, such as for the bacterial pathogen Mycobacterium
tuberculosis3 and for fungal pathogens such as Cryptococcus
spp., which can survive in a latent state inside host macro-
phages,65,66 and Candida albicans.67 Furthermore, the persis-
tence of quiescent cells in the environment is a matter of human
health, illustrated by the fact that VBNC cells of pathogens such
as Vibrio vulfinicus maintain their infectious capability.3,68–70

Fission yeast is an ideal model for cellular quiescence

Several model organisms are commonly used for the study of
cellular quiescence; the most notable are the budding yeast
Saccharomyces cerevisiae,71,72 the fission yeast Schizosaccharomyces
pombe,36,73 in vitro mammalian cell culture,46,74 the wing cells of
Drosophilia melanogaster,75,76 and stem cells.9,77 In fission yeast,
quiescence is induced by nitrogen deprivation of a prototrophic
heterothallic strain. This results in 2 divisions without growth,
resulting in haploid cells with 1c DNA.24 An advantage in using
this particular model and signal is that G0-induction is synchrone-
ous,78 all cells retain full viability for extended periods of time,24

and G0-exit is synchroneous,56 more so than when quiescence is
brought about by glucose- or phosphate-starvation.36 This
improved homogeneity of G0 cells is a big advantage over station-
ary-phase cultures or in vitro cell cultures, which are a heteroge-
neous population consisting mostly of cells that are not long-
lived.23,37 Furthermore, this model is distinct to that of dormant
spores, as nitrogen-deprived fission yeast quiescent cells still
require a carbon source for viability.24 Genetic requirements com-
mon to several model systems are more likely to be conserved in
higher eukaryotes.36

Cellular quiescence is transcriptionally and metabolically
active

While the distinction between cellular quiescence and dor-
mancy is not always trivial to assay, these 2 states are conceptu-
ally different: the maintenance of metabolic and transcriptional
activity in quiescent cells implies the maintenance of an opera-
tional transcriptional machinery. In fission yeast, quiescent
cells have distinctive transcriptomic signatures.56,57 mRNA and
rRNA levels are greatly reduced (to »30% and »20% respec-
tively) yet display a high diversity of transcripts and of pro-
teins.57 Regulation of RNA pol I and RNA pol III is tightly
correlated with growth in all organisms79 and accordingly, we
have found that the binding of RNA polymerase I to rDNA is
decreased over time in G0, reaching 10% that of G0-entering
cells after 8 d ( D 1% of cycling cells in rich medium).80 Con-
versely, the proportion of H3K9-methylated silent rDNA
repeats is increased.80

Quiescent fission yeast cells display an extensive metabolo-
mic change,81,82 reflecting their shift in metabolism and special-
ization in recycling of nutrients. In this model, the maintenance
of quiescence requires glucose24 and accordingly, several of the

most abundant transcripts in G0 code for proteins involved in
glycolysis,56 reflecting increased oxidative metabolism.57 One
of the immediate changes caused by nitrogen-starvation is a
reduction in the free aminoacid pool.82 Autophagy is required
for quiescence maintenance for recycling of aminoacids83-87

and nucleotides via degradation of RNAs.88,89 Increased catabo-
lism is also reflected by the vast size increase of the vacuole in
quiescent cells,24 and many vacuolar genes are essential for qui-
escence establishment.73 Furthermore, new organelles are
formed in quiescent fission yeast and budding yeast cells, such
as actin bodies,90 proteasome storage granules91 rapidly re-
imported into the nucleus upon quiescence-exit,92 and a quies-
cent microtubule bundle.93,94

Another indication of the active state of quiescent S. pombe
cells is that they are still able to repair DNA damage.95,96

Importantly, transcription itself is a source of damage.97 Tran-
scription of genes exposes single-stranded DNA, which is more
prone to several types of damage including cytidine deamina-
tion.98 Quiescent cells also retain the ability to repair double-
strand DNA breaks and do so preferentially by non-homolo-
gous end-joining.95 However, certain DNA lesions may persist
in G0 as an increase of DNA repair is seen in several types of
G0-exiting cells, such as haematopoietic stem cells99 and fission
yeast cells (where repair is detected as Rad52 foci).80,100 In wild
type, the proportion of Rad52 foci forming during the first S-
phase when cells are exiting quiescence and during the follow-
ing S-phases are similar, indicating that the level of unrepaired
lesions after 48 hours of quiescence and between 2 replications
are similar. The number of Rad52 foci dramatically increases in
several DNA repair mutants, indicating that spontaneous DNA
lesions are efficiently repaired during quiescence.96

Several large-scale screens have been conducted in fission
yeast to identify genes important for maintaining viability dur-
ing cellular quiescence.73,86 Essentiality in dividing cells does
not correlate with essentiality in quiescence, and it has been
estimated that »25% of essential genes are necessary for both
(‘super-housekeeping’ genes).73 An especially interesting set of
genes identified is involved in transcription, such as specific
alleles of the RNA pol II C-terminal domain phosphatase Fcp1
and of the common RNA pol I/III subunit AC40,73 and the
Kr€uppel-like family transcription factor Klf1.25

As the characterization of the transcriptome in early G0 cells
has allowed identification of several genes essential for quies-
cence,56 an important future work would be to characterize the
transcriptome and proteome after longer times spent in quies-
cence, as these might help identify factors involved for long-
term maintenance rather than early adaptations to the meta-
bolic stress caused by quiescence induction.

Epigenetic mechanisms of quiescence maintenance?

We propose that epigenetic mechanisms are key to maintaining
cellular quiescence. Cells in the cell cycle or in quiescence pos-
sess the same genotype, yet exhibit distinct phenotypes. It is
therefore possible to envision cellular quiescence as a kind of
cellular differentation.58 Accordingly, early cloning experi-
ments were greatly enhanced by the induction of fibroblasts
into quiescence in advance of nuclear transplantation, leading
to the realization of its role as a state of major epigenetic
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reprogramming.101-103 Accordingly, evidence for essential epi-
genetic processes in quiescent cells is increasing.

RNA interference controls RNA polymerases

In S. pombe, the key proteins Dicer, Argonaute and RNA-
dependent RNA polymerase (respectively Dcr1, Ago1 and
Rdp1) are involved in co-transcriptional silencing of pericen-
tromeric repeat transcripts, processing these transcripts into
small interfering RNAs (siRNAs) and recruiting the silencing
CLRC/Rik1 complex, harboring the H3K9 methyltransferase
Clr4SUV39H1. This results in the formation of H3K9me hetero-
chromatin.104-105 Pericentromeric heterochromatin allows
proper chromosome segregation in mitosis,104,106 in meiosis107

and in G0-entry mitoses.80 More recently, RNAi has been pro-
posed to also act in post-transcriptional silencing (PTGS) path-
ways in fission yeast,108 and in control of stress-related genes.109

Transcriptional silencing is a result of the inhibition of RNA
polymerase II. In fission yeast heterochromatin, H3K9 is meth-
ylated, and binds HP1-like proteins (Swi6 and Chp2). In turn,
Swi6HP1 recruits the SHREC complex, containing histone
deacetylases,110,111 resulting in hypoacetylation of H3 and H4
tails, limiting RNA pol II recruitment. In S-phase, Swi6HP1 is
displaced by H3S10 phosphorylation by Aurora kinase,112 alle-
viating this silencing; this results in transient transcription of
peri-centromeric repeats that will trigger RNAi and heterochro-
matin formation on both daughter strands. The activity of
DNA polymerases and RNA polymerase II on the same tem-
plate during S-phase requires both processes to be tightly co-
regulated. Therefore, we hypothesized that RNAi may act more
directly on polymerases, and discovered that RNAi releases
RNA pol II from pericentromeric heterochromatin,113 as well
as at several highly-transcribed euchromatic loci, tDNAs, and
rDNA.114 This sheds new light on why certain specific RNA
pol II mutants lose silencing in S. pombe, such as rpb2-m203
(N44Y)115 and rpb7-G150D.116

Finding an important role for RNAi at tDNAs and rDNA
loci was one of the reasons that prompted us to investigate the
response of RNAi mutants in quiescence. Indeed, we found
that RNAi mutants have G0-entry defects and lose viability
during quiescence maintenance. We found that RNAi releases
RNA pol I from rDNA specifically in G0 (Fig 2ABC), and that
the G0 defects of RNAi deletion mutants are suppressed by
reducing RNA pol I binding (such as in a specific TBP mutant,
tbp1-D156Y) or by destabilizing RNA pol I by deleting its non-
essential subunit A1280 (Fig 2D). Interestingly, mutants in
equivalent subunits in RNA pol I (A12) and in RNA pol II
(Rpb9 C TFIIS) specifically suppress, respectively, RNAi quies-
cence defects and RNAi silencing defects.80,117 This strong par-
allel buttresses the proposition that RNAi proteins are indeed
closely associated to RNA polymerase holocomplexes. Further-
more, the parallel role of A12 and TFIIS in polymerase back-
tracking118 may indicate that in the absence of Dicer, this activ-
ity becomes detrimental. Pausing of RNA pol II during tran-
scription termination results in polymerase back-tracking, and
the 30 end of the RNA is targeted by the RNA exosome.119

Absence of TFIIS reduces the level of read-through, suggesting
that TFIIS and the RNA exosome compete for the RNA 30
end119 and that in the absence of Dicer, the activity of the RNA

exosome becomes essential. The fact that, in the case of RNA
pol I, polymerase accumulation in Dicer mutants is not only
seen at the 30ETS region, but over the whole locus (rDNA pro-
moter, 50ETS and multiple sites in 18S, 5.8S and 28S),80 sug-
gests that Dicer may play a role during elongation in G0 rather
than only during termination.

One difference is that Dicer’s requirement in RNA pol II
release from rDNA is independent of its catalytic activity and
of Argonaute,114 while all RNAi proteins are required for RNA
pol I release in G0, including Dicer’s catalytic activity.80

Whether this reflects a difference in different RNA polymerase
compositions or cell cycle stage would be an interesting aspect
to investigate. Presumably, Dicer acts on a RNA template; and
the genetic requirement for catalytic activity and RNAi proteins
in this novel mechanism also points to specific small RNAs
(sRNAs) being involved. However, we have not found Dicer-
dependent novel sRNAs in G0.80 What is the molecular target
of Dicer in G0 cells? One possibility is that the rRNA itself is
targeted by Dicer, potentially in a torpedo-like mechanism as
used by the RNAse III Rnt1.120 In Candida albicans, the Dicer
ortholog (although closer to the RNT1 family121) cleaves the
28S rRNA at the 30ETS and the 30 tail of U4 snRNA,122 but we
did not detect signatures of this activity in our S. pombe sRNA-
seq80 (and unpublished observations). Another possibility is
that Dicer may act indirectly on the rRNA, potentially through
single-cleavage of a specific non-coding RNA (ncRNA) in G0,
in a manner reminiscent of pRNA-mediated123 and long
ncRNA-mediated124,125 rDNA silencing in mammals. Interest-
ingly, the few genomic loci that are upregulated in Dicer
mutants in G0 include several long ncRNAs of unknown func-
tion (unpublished observations); testing whether any of these
ncRNAs plays any function in rDNA silencing is an important
next step. Finally, similarly to its function controlling RNA pol
I and RNA pol II, we hypothesize that RNAi may release RNA
pol III through its C11 subunit at specific genomic loci.

Histone marks in cellular quiescence

Dicer mutants cause over-activation of the CLRC/Rik1 silencing
complex at the rDNA resulting in unchecked accumulation of
H3K9 methylation (Fig 2C).80 H3K9me causes cell death, as
H3K9me mutants rescue RNAi mutants specifically in G0. In
fact, our suppressor screen of G0 viability loss of dcr1D uncov-
ered a large number of mutants involved in heterochromatin for-
mation, and may potentially be used to uncover novel silencing
factors. In addition to CLRC/Rik1 complex mutants (rik1-
V449G, rik1-K812�, rik1-A875P, rik1-T942K, clr4-R126�, clr4-
C317F, clr4-Y451�, raf2-G37V), we obtained Swi6HP1 mutants
(swi6-T278K, swi6-W293�).80 In S. pombe, the CLRC/Rik1 com-
plex associates with DNA polymerase e (Cdc20) through its rep-
lication targeting subunit Raf2, and several cdc20 mutants lose
silencing126,127; further, we uncovered a novel cdc20–1 mutant
required for Dicer mutant cells to enter G0 (unpublished obser-
vation). Proper regulation of H3K9me in G0 is important: wild-
type cells show a physiologic increase of H3K9me at the rDNA
to adjust the active/silent rDNA repeat ratio. Complete loss of
H3K9me results in a mild defect in quiescence maintenance
(although much milder than defects resulting from H3K9me
over-accumulation).80
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Several other histone marks are thought to play an impor-
tant role in quiescence maintenance, belonging to several clas-
ses: (i) marks to silence proliferation-genes, such as lack of
histone H3 and H4 acetylation; (ii) bivalent marks at ‘poised’
genes, presumably for efficient G0-exit given the appropriate
signal. Silencing marks cover a large part of the genome, and
are thought to be an important factor in chromatin compac-
tion, a hallmark of G0 cells in most organisms.24,128,129 In bud-
ding yeast, condensin,129 the H1-like Hho1 protein and H4K16
deacetylation130-133 are thought to participate in this process;
several quiescence-specific transcription factors (Xbp1 and
Stb3) have been shown to recruit the class I histone deacetylase
(HDAC) Rpd3 to half of gene promoters,134,135 and to
rDNA.136 However, Schizosaccharomyces spp. do not have
Rpd3 orthologs but only the Clr6 and Hos2 lineages of class I
HDACs,137 and their genomes do not encode H1 orthologs.

The contribution of condensin to G0 chromatin compaction
has not yet been investigated in S. pombe. Quiescent naive T
cells also display chromatin compaction by condensin.138

Another mark of interest is H4K20 methylation, which is found
at facultative heterochromatin in quiescent muscle stem
cells,139 in primary fibroblasts,140 in serum-deprived NIH 3T3
cells,125 and accumulates in quiescent brine shrimp encysted
embryos.141 H4K20 methylation is present in S. pombe, associ-
ates with histone turn-over rate at certain genes142 and DNA
repair via Crb253BP1 recruitment,143,144 but has not yet been
investigated in cellular quiescence. In S. pombe, it has been pro-
posed that H3K9 methylation contributes to general silencing
in G0.145 The second class of marks believed to be pivotal for
cellular quiescence is thought to signal a ‘bivalent’ state. Indeed
quiescent ES cells display bivalent marks (H3K4 methylation
and H3K27 methylation) at the promoters of many genes

Figure 2. Model for the novel essential role for Dicer in RNA polymerase I release in G0. (A) In wild-type cycling cells, RNA pol I transcribes the rDNA
repeats. (B) Wild-type G0 cells lower the recruitment of RNA pol I to rDNA, in part via phosphorylation of the Rrn3 initiation factor, shifting the ratio of
active vs. silent rDNA repeats. Dicer contributes to RNA pol I release, although it is still unknown whether this occurs directly at the level of rRNA or via
RNA pol I itself. (C) Dicer mutants in G0 are defective in RNA pol I release, resulting in accumulation of stalled RNA pol I, DNA damage, and the recruit-
ment of the silencing CLRC/Rik1 complex at the repeat, causing a hyper-silencing of rDNA repeats via H3K9 methylation. (D) The Dicer defect is suppressed
by mutants in the H3K9 methylation pathway (class 2: such as dcr1Dclr4D), by reducing RNA pol I transcription initiation (class 3: such as dcr1Dtbp1-
D156Y), or by destabilizing RNA pol I itself (class 4: such as dcr1Drpa12D).80 (Note: class 1 suppressors are not represented, and concern chromosomal seg-
regation during G0-entry).
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important for lineage differentiation.146,147 S. cerevisiae quies-
cent cells retain high levels of active marks such as H3K4me3,
H3K36me3 and H3K79me3,148 and H3K36 methylation by
ASH1/Trithorax is important for quiescence and self-renewal
of haematopoietic stem cells.18 The contribution of these his-
tone marks to quiescence maintenance has not yet been investi-
gated in fission yeast.

An important question is whether specific novel histone
marks are present during cellular quiescence. To our knowl-
edge, this has not yet been investigated; while mass-spectrome-
try of histone post-translational modifications have allowed the
identification of many novel marks of unknown function,149-153

including in primarily non-dividing tissues such as the mouse
brain,154 such studies are usually conducted, in yeast, on grow-
ing cells.150,155,156 An alternative, complementary approach
would be to generate a library of histone mutants157,158 to assay
the effect of each aminoacid on viability specifically during cel-
lular quiescence. Toward this goal, we have designed a system
for mutating H3 in S. pombe,80 more physiological than previ-
ous systems159 and therefore amenable to G0 study as well as
making partial loss-of-function mutants. This approach has the
potential to uncover novel histone marks of biological interest.

Conclusion

The importance of quiescence makes it likely not only that
many molecular mechanisms will be discovered for its estab-
lishment and regulation, but also that many of these basic
mechanisms may be evolutionarily conserved.36 Importantly,
the essentiality of genes is usually determined using laboratory
growth conditions, yet in nature, the prevalence of non-divid-
ing states stresses the importance to identify genes essential
specifically in quiescence (and genes essential for both growth
and quiescence, often termed “super-housekeeping” genes73).
Because of the reversible nature of quiescence and because it
can be considered a kind of cellular differentiation, we think
that epigenetic mechanisms may be key factors controlling
maintenance of quiescence and rewiring its transcriptional pro-
gram. Preliminary data suggests that indeed, other key chroma-
tin genes are specifically essential in G0 in addition to key
RNAi proteins80 (and unpublished observations). In fact, it is
important to test familiar mechanisms in quiescence as it
appears—as is the case with RNAi—that quiescence can
uncover novel mechanisms and functions that are important or
essential. This also applies for numerous genes that are appar-
ently devoid of function. Indeed mutants affected in growth are
not necessarily affected in quiescence and vice versa.73,86

Because of its advantages in studying cellular quiescence as well
as in studying epigenetic pathways, we think that the fission
yeast S. pombe is poised to continue to be a model system of
choice. Accordingly, a lot of resources for fission yeast G0 have
been developed recently, such as the G0 transcriptome56,57 pro-
teome,57 metabolome.81 Gene replacement in yeast also allows
the use of molecular tools such as G0 over-expressing pro-
moters,80,160 and G0-shutoff systems.

Advances in fundamental research in cellular quiescence will
have consequences in several fields relevant to human health,
such as stem cell biology and cancer biology. For example, a
strategy that has been successful in developing novel anti-

cancer drugs is to identify negative epistatis (synthetic lethality)
networks.161-163 Large-scale negative epistasis screens can be
conducted on yeast before being tested on human cells, allow-
ing more interactions to be tested164; importantly, there is good
conservation of negative epistatic interactions. Using this type
of approach to screen for synthetic lethality specific to quies-
cence would therefore be a promising approach to target quies-
cent cancer cells, an essential step toward effective treatment
and avoiding relapse. We conclude that the investigation of cel-
lular quiescence therefore opens not only a deeper understand-
ing of fundamental biology, but also new avenues in medicine.
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