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Pathological changes in the ligamentum flavum (LF) can be defined as a process

of chronic progressive aberrations in the nature and structure of ligamentous tissues

characterized by increased thickness, reduced elasticity, local calcification, or aggravated

ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy

of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically

common entities. Though accumulated evidence has indicated both genetic and

environmental factors could contribute to the initiation and progression of HLF/OLF,

the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the

important epigenetic modifications, are short single-stranded RNA molecules that

regulate protein-coding gene expression at posttranscriptional level, which can disclose

the mechanism underlying diseases, identify valuable biomarkers, and explore potential

therapeutic targets. Considering that miRNAs play a central role in regulating gene

expression, we summarized current studies from the point of view of miRNA-related

molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of

miRNA expression profiles and identified a battery of upregulated and downregulated

miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing.

Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p,

miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis

differentiation of LF cells and related target genes or molecular signaling pathways. Finally,

we discussed the perspectives and challenges of miRNA-based molecular mechanism,

diagnostic biomarkers, and therapeutic targets of HLF/OLF.

Keywords: ossification of ligamentum flavum, hypertrophy of ligamentum flavum, microRNAs, pathogenesis,

diagnosis, therapy

INTRODUCTION

Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic
progressive aberrations in the nature and structure of ligamentous tissues, characterized by
increased thickness, reduced elasticity, local calcification, or aggravated ossification of LF
fibroblasts, which may cause spinal stenosis and severe myelopathy, radiculopathy, or both
(Yayama et al., 2007; Yabe et al., 2015; Sugimoto et al., 2018). Clinically, hypertrophy
of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are the main
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pathological categories, while calcification of ligamentum
flavum (CLF) is extremely rare (Giulioni et al., 2007).
Histopathologically, it has been proposed that HLF and OLF,
in its essence, are the process of fibrosis and endochondral
osteogenesis of ligamentum fibroblasts under numerous external
stimuli (Yayama et al., 2007; Sun et al., 2020). Extensive evidence
has shown that genetic background (Hou et al., 2014; Zhang C.
et al., 2017), mechanical stress (Hayashi et al., 2017; Shunzhi
et al., 2017), aging and gender (Safak et al., 2010; Moon et al.,
2015; Kim et al., 2018), endocrine and metabolic abnormalities
(Dario et al., 2015; Shemesh et al., 2018; Chaput et al., 2019),
local inflammation, and angiogenesis (Zhang K. et al., 2017;
Sun et al., 2018; Yang et al., 2018a; Jezek et al., 2020) are
potential predisposing factors in the development of HLF/OLF.
In addition, intrinsic alterations in multiple cellular activities,
growth factors, and molecular mediators have been implicated in
this intricate process (Chao et al., 2016; Qu et al., 2016a; Sidon
et al., 2019; Ye et al., 2019). However, the definitive pathogenesis
remains largely unclear.

During the last decade, epigenetic regulations have been
considered as a significant molecular mechanism that can
modulate genome activity and cause phenotype changes
without any alterations of the underlying genotype (Skinner
et al., 2010; Brookes and Shi, 2014), which can link genetic
and environmental risk factors for diseases, uncover gene–
environment interactions, discover valuable biomarkers, and
explore potential therapeutic targets (Ladd-Acosta and Fallin,
2016; Berdasco and Esteller, 2019; Cavalli and Heard, 2019).
MicroRNAs (miRNAs), the most widely investigated epigenetic
modifications, have been demonstrated to be involved in the
pathogenesis of ligamentum flavum tissue hypertrophy and
ossification. MiRNAs are evolutionarily conserved single-
stranded, non-coding RNA molecules comprising 19–25
nucleotides (Jung and Suh, 2014). To date, more than 2,000
functional miRNAs have been determined, and the expression
of about 60% of the human gene is regulated by these miRNAs
at the posttranscriptional level (Kloosterman and Plasterk,
2006; Silahtaroglu and Stenvang, 2010). Functionally, miRNAs
can constitute the RNA-induced silencing complex and inhibit
translation or induce degradation of mRNA through base-
pairing rules between the complementary sequences of miRNA
and its target mRNAs (Gulyaeva and Kushlinskiy, 2016). It
has been identified that dysregulated miRNA level is bound
up with numerous physiological and pathological processes,
including bone homeostasis (bone formation, resorption,
remodeling, etc.) (Pi et al., 2015). Afterward, substantial evidence
has revealed that miRNAs functioned in various bone and
cartilage-related diseases such as fracture (Waki et al., 2015),

Abbreviations: LF, ligamentum flavum; HLF, hypertrophy of ligamentum flavum;

OLF, ossification of ligamentum flavum; TSS, thoracic spinal stenosis; LSS, lumbar

spinal stenosis; DM, diabetes mellitus; LDH, lumbar disc herniation; DEMs,

differentially expressed miRNAs; OPLL, ossification of posterior longitudinal

ligament; MeSH, Medical Subject Heading; PRISMA, the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses; ceRNA, competing endogenous

RNA; NAMPT, nicotinamide phosphoribosyl transferase; SATB2, special AT-rich

sequence-binding protein 2; TIMP, tissue inhibitors of matrix metalloproteinase;

CHC, chronic hepatitis C.

osteoporosis (Gu et al., 2019), osteoarthritis (Coutinho de
et al., 2019), intervertebral disc degeneration (Ji et al., 2018),
ossification of posterior longitudinal ligament, (Xu et al., 2019)
and osteosarcoma (Andersen et al., 2018), which provided
a new direction for researchers to investigate pathogenesis,
detect diagnostic biomarkers, and invent treatment modalities
(Makeyev and Maniatis, 2008).

Currently, emerging efforts have been concentrated on
exploring the critical role of miRNAs on the intrinsic mechanism
of HLF and OLF, and preliminary results revealed that miRNAs
might link genetic and environmental factors with an altered
risk of OLF/HLF by targeting specific genes or influencing
transcription factors and related molecular signaling. Based
on current evidence, a hypothetical map was depicted to
briefly elaborate the potential interrelation among epigenetic
regulations, genetic background, and environmental factors, and
the biological importance of miRNAs in the pathomechanism
of OLF/HLF (Figure 1). Besides involvement of mechanistic
studies, miRNAs also possess potential applications as diagnostic
biomarkers because specific miRNAs seem to have a disturbed
expression in several cells and body compartments in patients
with bone-related disorders (Bottani et al., 2020). Furthermore,
miRNAs have a distinct advantage as novel therapeutic targets
with the possibility of avoiding undesirable side effects, which
may provide a novel sight into tailored therapies for HLF/OLF
(Gao et al., 2020).

In terms of the key role of miRNAs in gene expression
regulation, it is worthwhile to explore indepthly the underlying
functions of miRNA and its feasible regulating networks in
occurrence and development of HLF and OLF. Therefore, this
study aimed to provide a comprehensive overview of current
publications concerning the expression profiling and functional
characterization of miRNAs associated with ligamentum flavum
hypertrophy and ossification, and highlight those significant
dysreguled miRNAs and their target genes/related signaling
pathways in pathological processes of LF cells, and emphatically
discuss perspectives and challenges of miRNAs as potential
biomarkers or novel therapeutic targets for HLF/OLF in
further researches.

EXPRESSION PROFILING OF MICRORNAS
IN OSSIFICATION OF LIGAMENTUM
FLAVUM

Han et al. (2018) investigated the miRNA expression profiles in
OLF samples compared with non-OLF samples through miRNA
sequencing and identified 28 altered miRNAs (fold change >2,
p < 0.05). Furthermore, five upregulated miRNAs (miR-181a-
5p, miR-181a-3p, miR-707-5p, miR-181b-5p, and miR-146a-
5p) and five downregulated miRNAs (miR-889-3p, miR-32-5p,
miR-379-5p, miR-381-3p, and miR-19b-3p) were confirmed by
qRT-PCR. Subsequently, miR-19b-3p, the significantly expressed
miRNA, was markedly decreased in OLF cells and in human
mesenchymal stem cells (hMSCs) under osteogenic induction,
and overexpressed miR-19b-3p could inhibit the levels of
the osteogenic differentiation-related genes (RUNX2, COL1a1,
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FIGURE 1 | A hypothetical map illustrating that the interactions among epigenetic modifications, [especially microRNAs (miRNAs)], genetics, and environmental

factors in the pathogenesis of ossification of ligamentum flavum (OLF) and hypertrophy of ligamentum flavum (HLF).

and ALP), which indicated that miR-19b-3p was involved
in the development of OLF. Additionally, a miRNA-19b-
3p-based miRNA–circRNA–lncRNA–mRNA network (lncRNA
ENST00000608133 and ENST00000599584, miR-19b-3p, and
circRNA circ_0050139) was preliminarily established in the
process of ossification for the first time, which provided an insight
into the interplay of miRNAs and other noncoding RNAs in
osteogenic differentiation of LF cells.

Afterward, Kong et al. (2019) used the public datasets to
further identify 81 differentially expressed miRNAs (DEMs)
between four TOLF samples and four normal controls and
screened crucial miRNAs in the pathogenesis of OLF based
on the miRNA–mRNA and lncRNA–miRNA–mRNA competing
endogenous RNA (ceRNA) regulatory networks. On one
hand, the miRNA–mRNA network analysis demonstrated
that downregulated miR-379-5p in OLF was significantly

connected with increased proinflammatory marker GNG4, while
upregulated miR-210-3p, miR-196a-5p, and miR-181b-5p were
significantly associated with decreased target IL10, SOCS3,
and ADCY5, respectively, all of which are anti-inflammatory
markers. On the other hand, the ceRNA network analysis
identified that miR-329-3p and miR-222-5p regulated the
osteogenic differentiation of LF cells by targeting COL13A1
and COL2A1, respectively. In addition, miR-299-3p, which was
competitively combined with RHPN1-AS1, targeted WNT7B
and modulated the Wnt signaling pathway during ossification.
Similarly, in the study by Yayama et al. (Yayama et al., 2018),
three DEMs met the given criteria (p < 0.05 and log2 ratio >1)
among 12 downregulated miRNAs, namely, miR-137, miR-382-
5p, and miR-487b-3p. Furthermore, miR-487b-3p was predicted
to play a vital role in the activation of Wnt signaling during the
LF ossification process.
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Wu et al. (Wu et al., 2020) further conducted a comprehensive
bioinformatic analysis on three datasets (GSE106253,
GSE106256, and GSE106255) deposited by Hong et al. to
distinguish DEMs associated with TOLF. Fifteen upregulated
miRNAs and 14 downregulated miRNAs were determined to be
significantly differentially expressed in OLF tissues compared
with normal controls. COL6A1 from the 17 OLF-related genes
(NPPS, COL11A2, BMP2, BMP4, BMP9, TGF-b1, etc.) was the
overlapping gene in the constructed lncRNA- and circRNA-
related ceRNA network, which might influence the development
of OLF.

EXPRESSION PROFILING OF MICRORNAS
IN HYPERTROPHY OF LIGAMENTUM
FLAVUM

Microarray-based profiling of miRNAs in HLF was first
performed by Xu and colleagues, and 538 miRNAs were
screened preliminarily by microRNA array (Xu Y. Q. et al.,
2016). Furthermore, 18 DEMs (15 upregulated and three
downregulated) were identified in the hypertrophied LF
compared with the normal control LF. When miRNAs with
a mean fold change more than 2 or <0.5 and a P < 0.01
were selected for further analysis, miR-202-3p (2.6-fold, P =

0.3), miR-486 (3.8-fold, P = 0.06), and miR-221 (0.2-fold, P
= 0.008) were determined to be significantly dysregulated. For
further verification, researchers detected the level of these three
candidate miRNAs in a larger samples involving 38 patients and
22 controls by qRT-PCR. Eventually, the expression of miR-221
was significantly lower in patients with LSS compared with the
controls, which was consistent with those in the training set.

Based on transcriptome sequencing, deregulated miRNAs
profiling in HLF patients was conducted by Mori et al. in which
they utilized the Agilent microarray and identified 10 DEMs in
hypertrophied LF tissues (n = 10) vs. normal tissues (n = 10)
(Mori et al., 2017). In this expression signature, nine miRNAs
(miR-1228-3p, miR-1237, miR-30c-2-3p, miR-423-5p, miR-4306,
miR-483-5p, miR-514b-5p, miR-516b-5p, and miR-765) were
downregulated, and only one (miR-497-5p) was upregulated in
the hypertrophied ligaments. In addition, data analysis found
that the levels of miR-29c-3p, miR-595, miR-663b, miR-1290,
and miR-223-3p were significantly related to donor age, while
miR-423-5p, miR-4306, miR-516b-5p, and miR-497-5p were
associated with the ratio of LF/spinal canal area based onMRI T2
measurements. Further pathway analysis revealed that Wnt/β-
catenin signaling, aryl hydrocarbon receptor signaling, and
insulin receptor signaling were highly implicated in the fibrosis
and hypertrophy of LF cells predicted by miRNA signature.

FUNCTIONAL CHARACTERIZATION OF
SPECIFIC MICRORNAS IN OSSIFICATION
OF LIGAMENTUM FLAVUM

MiR-132-3p
Qu et al. (2016b) demonstrated that the level of miR-132-
3p was decreased in OLF samples compared with healthy

controls. Osteogenic differentiation was significantly suppressed
by overexpression of miR-132-3p, while transfection of inhibitors
of miR-132-3p significantly promoted osteogenic activity of LF
cells. FOXO1, GDF5, SOX6, three osteogenesis-related genes,
were identified as the direct targets of miR-132-3p. Upregulated
miR-132-3p induced the reduced expression of FOXO1, GDF5,
and SOX6, but the downregulation of miR-132-3p generated
opposite effects. Meanwhile, the level of these three genes was
increased under osteogenic induction, and their downregulation
restrained the osteogenic differentiation of LF cells. These
evidence collectively suggested that miR-132-3p could mediate
the ossification process of the ligamentum flavum by targeting
FOXO1, GDF5, and SOX6, thus miR-132-3p could possibly be
considered as available therapeutic targets for OLF. Admittedly,
the miR-212/132 family belongs to highly conserved noncoding
RNAs in vertebrates (Bicker et al., 2014). Consistently, an
integrated study also identified miR-132-3p as one of the top
10 downregulated miRNAs in OPLL samples compared with
those in the controls (Xu C. et al., 2016). In addition, previous
studies suggested that miR-132-3p could inhibit osteoblast
differentiation under simulated microgravity environment and
in type 2 diabetes mellitus-induced osteoporosis (Hu et al.,
2015; Gong et al., 2016). Recently, miR-132-3p was found to
be influenced by lncRNA APTR and LncRNA TUG1 in the
regulation of osteosarcoma, a tumor that has an osteogenic
capability (Li G. et al., 2018; Guan et al., 2019). These findings will
provide new references into improving the regulationmechanism
of miR-132-3p in OLF.

MiR-199b-5p
Qu et al. (2017) further observed that miR-199b-5p was
another dramatically downregulated miRNA during OLF, and
upregulated miR-199b-5p could hold back the ossification
process. Moreover, JAG1 was identified as a direct target of miR-
199b-5p through dual-luciferase reporter assays. Meanwhile,
JAG1 is a crucial Notch ligand and functions in the Notch
signaling pathway. Furthermore, miR-199b-5p could inhibit
the expression level of JAG1 and Notch, whereas JAG1
knockdown blocked the inhibitory effect of miR-199b- 5p.
These results concluded that miR-199b-5p exerted an inhibitory
effect on osteogenic differentiation of ligamentum fibroblasts by
potentially targeting JAG1 and via the Notch signaling pathway.
Concordantly, miR-199b-5p has been also recognized as one
of obviously downregulated miRNAs in OPLL tissues, and was
predicted to regulate JAG1 (Xu C. et al., 2016). Contrarily,
another study found that the reduced expression of miR-199b-5p
was examined in the osteogenic differentiation of bone marrow
stromal cells (BMSCs) via suppression of the GSK-3β/β-catenin
signaling pathway (Zhao et al., 2016). It was speculated that miR-
199b-5p might perform a bidirectional regulatory function on
osteogenic differentiation of various cell types.

MiR-615-3p
A study by Yin et al. (2017) showed that miR-615-3p was
downregulated during the osteogenic differentiation of LF cells.
Then, gain- and loss-function experiments demonstrated that
miR-615-3p negatively regulated the ossification process with
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a lighter Alizarin Red staining and a decreased expression of
ALP, RUNX2, Ostx, OCN, and OPN. Subsequently, FOXO1
and GDF5 were identified as direct target of miR-615-3p by
luciferase activity assay and bioinformatic analysis, and miR-615-
3p could inhibit the expression of FOXO1 and GDF5. On the
side, knockdown of either FOXO1 or GDF5 could inhibit the
osteogenic differentiation. In conclusion, miR-615-3p negatively
modulated the development of ligamentum flavum ossifications
through posttranscriptionally targeting GDF5 and FOXO1. It
could be recommended as a potential target for human OLF
therapy. Moreover, this is the first report to confirm miR-615-
3p as a negative regulator in the osteogenic differentiation of
various human cell lineages including BMSCs, osteoblasts, and
ligamentum fibroblasts, indicating that miR-615-3p might be one
of the important human osteogenesis-related miRNAs.

MiR-490-3p
Yang et al. (2018b) first investigated the function of miR-490-
3p in TOLF. MiR-490-3p presented downregulated expression
during OLF process, and its overexpression further depressed
osteogenic differentiation of ligament fibroblasts. In addition, the
fact that miR-490-3p directly targeted FOXO1 was supported by
dual-luciferase assays, and miR-490-3p negatively regulated the
level of FOXO1. Furthermore, FOXO1 knockdown attenuated
the inhibitory effect of miR-490-3p. ChIP assays demonstrated
that the interaction of FOXO1 and RUNX2 was inhibited by
miR-490-3p. Taken together, upregulated miR-490-3p could be
suppressed in osteogenic differentiation of LF cells by potentially
targeting FOXO1, indicating that restoring miR-490-3p and
restraining FOXO1 might be a potential therapeutic strategy for
TOLF. A previous study on miRNA–mRNA suggested that the
expression of miR-490-3p was downregulated in OPLL cells, but
its exact mechanism was not elucidated (Xu C. et al., 2016).
Importantly, this study took the lead to validate the functional
role of miR-490-3p in the progression of OLF, which provided
important insights into other skeletal diseases.

MiR-182
Zhang et al. (2018) found that miR-182 was downregulated
in OLF tissue compared with non-OLF tissues. Nicotinamide
phosphoribosyl transferase (NAMPT) was progressively elevated
during osteogenic differentiation of bone marrow-derived
mesenchymal stem cells, which might be considered as the
osteogenesis marker. Besides, miR-182 overexpression inhibited
the expression level of NAMPT, RUNX2, OCN, and OPN in OLF
cells. Meanwhile, knockdown of NAMPT and the use of NAMPT
inhibitor could downregulate the expression of RUNX2, OCN,
and OPN, whereas upregulation of NAMPT led to the opposite
effect. Dual-luciferase reporter assays predicted that NAMPT
was the direct target of miR-182. Further experiments showed
that upregulated miR-182 inhibited the effects of NAMPT
overexpression on promoting the mRNA and protein level of
RUNX2, OCN, and OPN. Overall, these data demonstrated that
miR-182 suppressed OLF by targeting NAMPT. Analogously,
Kim et al. revealed that miR-182 could inhibit the proliferation
and differentiation of osteoblasts by suppressing FoxO1 (Kim
et al., 2012). Moreover, Wang reported that lncRNA POIR and

miR-182 formed a competing endogenous RNA (ceRNA) and
promoted osteogenic differentiation of periodontal mesenchymal
stem cells in periodontitis patients through suppressing FoxO1
(Wang et al., 2016). Furthermore, Kazuki et al. found the
regulatory mechanism of the miR-182–PKR–IFN-β axis during
osteoclastogenesis process both in in vitro and in vivo systems,
which provided the translational implications of miR-182 as
therapeutic target to prevent bone loss (Inoue et al., 2018).

MiR-29a-5p
Feng et al. (2020) interpreted the function and mechanism
of miR-29a-5p and special AT-rich sequence-binding protein
2 (SATB2) in the development of TOLF. In the first place,
downregulated miR-29a-5p and upregulated SATB2 were
significantly observed in TOLF tissues. Concordantly, miR-
29a-5p expression was also decreased during osteogenic
differentiation of LF cells, and a prominent reduction in the
expression level of key osteogenesis markers was identified with
the overexpression of miR-29a-5p. On the contrary, this process
was enhanced when miR-29a-5p was inhibited. Furthermore,
the phenomenon that miR-29a-5p directly targeted SATB2 and
suppressed its expression was validated. Knockdown of SATB2
distinctly impeded the effects of miR-29a-5p on inhibiting
osteogenesis, and this also contributed to SIRT1 downregulation
and Smad3 acetylation. To sum up, these findings indicated that
miR-29a-5p could effectively inhibit thoracic LF cell osteogenesis
differentiation via targeting SATB2 and through influencing
SIRT1/Smad3 deacetylation pathway. Coincidently, miR-29a-5p
has been shown to be downregulated in the development of
OPLL, which implied that miR-29a-5p might be critical in the
pathogenesis of heterotopic ossifying diseases (Xu C. et al., 2016).

FUNCTIONAL CHARACTERIZATION OF
SPECIFIC MICRORNAS IN HYPERTROPHY
OF LIGAMENTUM FLAVUM

MiR-155
Chen et al. (2014) found that the expression of miR-155 was
significantly elevated in hypertrophic LF tissues from LSS groups
than in control groups. Moreover, miR-155 level was positively
correlated with LF thickness and the level of type I and type
III collagen. To test the effects of miR-155 in the regulation
of types I and III collagen expression in LF, infection of miR-
155 mimic lentivirus contributed to the increased expression of
collagen I and collagen III in LF cells, whereas miR-155 sponge
lentivirus produced the opposite effect, which implied that miR-
155 was a fibrosis-associated miRNA and might play a crucial
part in the onset and progression of LF hypertrophy. Emerging
evidence has demonstrated that miR-155 functioned in the
pathogenesis of various fibrotic diseases (Jiang et al., 2010; Artlett
et al., 2017). Additionally, the development of LF hypertrophy
was proven to be accompanied by substantial macrophage
infiltration (Saito et al., 2017). Interestingly, miR-155 has been
recognizable as an important element of the primarymacrophage
response to inflammatory mediators, which suggested that miR-
155 might be involved in immunomodulatory effects during LF
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hypertrophy (Wang et al., 2011). Furthermore, miR-155 has been
verified as a direct target for the TGF-β/Smad pathway, while
many studies have shown that TGF-β was implicated in the
hypertrophic process of LF, and these findingsmight demonstrate
a potential association among miR-155, TGF-β pathway, and LF
hypertrophy (Kong et al., 2008; Löhr et al., 2011).

MiR-221
As mentioned above, (Xu Y. Q. et al., 2016) performed
comprehensive miRNA microarray and identified miR-221 as
one of the significantly downregulated miRNAs in degenerative

LF tissues. Functionally, overexpression of miR-221 suppressed
expression of collagens I and III in LF cells compared with
untreated cells. Bioinformatics target prediction revealed that
tissue inhibitors of matrix metalloproteinase (TIMP)-2 acted as
a putative target of miR-221. Consistently, luciferase reporter
assays also demonstrated that miR-221 directly targeted TIMP-
2 and reduced the protein expression of TIMP-2 in LF cells. To
sum up, downregulated miR-221 might promote LF hypertrophy
through inducing collagens I and III expression via targeting
TIMP-2. A growing body of evidence showed that miR-221 was
one of fibrosis-associated miRNAs and played important parts in
the occurrence and development of fibrotic diseases, such as liver
fibrosis (Tsay et al., 2019), cardiac fibrosis (Zhou et al., 2020), and
renal fibrosis (Morinaga et al., 2016). Therefore, future researches
are expected to conduct a further exploration of miR-221 as the
potential therapeutic target for HLF.

MiR-21
Sun et al. (2017) conducted a scientific research to detect
upregulated miR-21 in hypertrophic LF tissues compared
with normal tissues through RT-PCR analysis. Besides, the
dysregulation of miR-21 established positive relations with
the LF thickness and fibrosis scores, which meant that the
expression level of miR-21 elevated continually along with
progressive fibrosis and accumulating thickness. Meanwhile,
miR-21 overexpression promoted the levels of collagen I and III
in LF cells, thus considering that deregulated miR-21 played a
role in the fibrosis of LF. Previous findings (Nakamura et al.,
2015; Sun et al., 2018) have shown that IL-6 was significantly
increased and could increase collagen expression in LF tissues.
Furthermore, Sun and his partners investigated and found that
the mRNA and protein expression of IL-6 was upregulated by
miR-21 mimic in LF hypertrophy. Taken together, miR-21 was
determined as a fibrosis-associated miRNA, which could induce
inflammation by activating IL-6 expression in LF tissue, resulting
in LF fibrosis and hypertrophy. Like miR-221, accumulated
studies have considered microRNA-21 as a central regulator
of fibrotic diseases (e.g., hepatic fibrosis, skin fibrosis, and
cardiac fibrosis) via various targets or molecular mechanism (e.g.,
inflammation, immunoreaction, and autophagy) (Yan et al., 2020;
Sun et al., 2021; Xue et al., 2021). Thus, miR-21 as a potential
diagnostic or therapeutic target for fibrosis diseases should be
highlighted in future.

FUTURE PERSPECTIVE OF MICRORNAS
IN HYPERTROPHY OF LIGAMENTUM
FLAVUM AND OSSIFICATION OF
LIGAMENTUM FLAVUM

MicroRNA-Based Molecular Mechanisms
Currently, the constant advancement of various high-throughput
sequencing techniques will be particularly conducive to scientific
researches for new molecular mechanisms of HLF/OLF (Guo
et al., 2020) (Figure 2). ncRNAs include miRNA, lncRNAs, and
circRNAs (Lekka and Hall, 2018). In most cases, miRNAs can
interact with circRNAs or lncRNAs to regulate their functions.
In turn, lncRNAs and circRNAs can act as a sponge to draw
miRNAs, alleviating the inhibitory effect of miRNAs on their
target genes, which is called the competitive endogenous RNA
(ceRNA) mechanism (Yuan et al., 2021). The intricate regulatory
networks and the widespread crosstalks among non-coding
RNAs provide us with another direction to understand indepthly
the molecular mechanism of HLF/OLF. Similarly, the lncRNA
SNHG1/microRNA-320b/IFNGR1 network, lncRNA XIST/miR-
17-5P/AHNAK/BMP2 signaling, and lncRNA MALAT1/miR-
1/Connexin 43 network have been identified and validated in the
development of OPLL (Liao et al., 2019; Yuan et al., 2019; Wang
et al., 2020). However, sporadic sequencing and bioinformatics
studies only focused on the individual ncRNA or predicted
the ceRNA networks in the progression of HLF/OLF without
further validation (Han et al., 2018; Kong et al., 2019; Wu
et al., 2020). Besides ncRNAs, DNA methylation and histone
modification are another two most widely studied forms of
epigenetic regulations (Brookes and Shi, 2014; Berdasco and
Esteller, 2019). miRNAs cannot only act as epigenetic modulators
by targeting responsible epigenetic-associated enzymes, but
the transcriptional regulation of miRNAs is also mediated by
these epigenetic machinery, such as DNA methylation and
histone modification (Gelato et al., 2016; Huang et al., 2019;
Yao et al., 2019). Thus, the reciprocity interaction between
miRNAs and other epigenetic regulatory forms can constitute
the miRNA-epigenetic feedback loop (Figure 3), which has
emerged as a novel mechanism of regulating multiple cellular
processes, including osteogenesis differentiation (Li L. et al.,
2018; Chen et al., 2019; Liu N. et al., 2020). Importantly, a
previous study demonstrated that histone H3 modifications
(e.g., H3K4me3, H3K9ac, and H3K18ac) might strongly link
to the development of OLF (Hou et al., 2014). Therefore,
exploring the link between miRNAs and histone modifications
may improve our understanding of HLF/OLF pathogenesis.
On the other hand, DNA methylation of miRNAs has been
proven to hold particular regulation function in osteogenic
differentiation (Allas et al., 2019; Yu et al., 2020). For example,
Li et al. found that hypermethylation of miR-149 influenced
the osteogenic differentiation of MSCs through SDF-1/CXCR4
signaling (Li et al., 2019). Interestingly, Fan et al. (Fan et al.,
2020) performed a genome-wide DNA methylation analysis to
establish an altered DNA methylation profiling in TOLF. Six
differentially expressed methylated genes (HOXA10, SLC7A11,
HOXA11AS, HOTAIR, TNIK, and IFITM1) were first identified,
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FIGURE 2 | High-throughput biotechnological analysis workflow.

and further studies will explore the roles of these genes or
interaction with miRNAs in the initiation and progression of
TOLF (Fan et al., 2020). Additionally, possible new epigenetic
mechanisms need to be explored, as well as the role of other
classes of noncoding RNAs. Taken together, epigenetics, as an
important bridge linking genetic and environmental factors,
will be the focused area of in-depth research on the molecular
mechanisms of HLF/OLF.

MiRNA-Based Diagnostic Biomarkers
Generally, being integrated into microparticles (exosomes,
microvesicles, and apoptotic bodies), or combined with
specific proteins and lipoproteins make miRNAs highly stable
and detectable in biological fluids (i.e., blood, serum, and
plasma) (Hackl et al., 2016; Bottani et al., 2020). Furthermore,
ample studies illustrated that a certain miRNA expression
possessed tissue and pathology specificity in different kinds
of diseases (Bartel, 2004). So far, circulating miRNAs have
also been explored and identified as potential biomarkers for
early non-invasive detection of several insidious congenital
musculoskeletal disorders or age-associated bone diseases,

such as lumbar degenerative disc disease (miR-155-5p) (Divi
et al., 2020), OPLL (miR-10a, miR-210, and miR-563) (Xu
et al., 2019), postmenopausal osteoporosis (miR-194-5p) (Ding
et al., 2017), ankylosing spondylitis (miR-125a-5p, miR-151a-
3p, miR-150-5p, and miR-451a) (Perez-Sanchez et al., 2018),
adolescent idiopathic scoliosis (miR-122a-5p, miR-27a-5p,
miR-223-5p, and miR-1306-3p) (García-Giménez et al., 2018),
and osteoarthritis (miR-140-3p, miR-33b-3p, and miR-671-3p)
(Ntoumou et al., 2017). Of course, numerous variables (e.g.,
sample types, manipulation, and detection techniques) in
the pre-analytical, analytical, and post-analytical processes
can inevitably affect miRNA quantification and validation.
It is of great importance to formulate and follow detailed
and standardized guidelines for extensive screenings and
accurate identification of markedly differentially expressed
miRNAs that are not related to other pathologies (Bottani
et al., 2020). However, there are no preliminary studies on
detecting and selecting circulating miRNAs as potential
biomarkers for predisposition, diagnosis, or prognosis
of hypertrophy and ossification of ligamentum flavum.
Considering the insidious onset and progressive course of
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FIGURE 3 | Schematic diagram of the miRNA-epigenetic feedback loop and the competitive endogenous RNA (ceRNA) mechanism.

TABLE 1 | Expression profiles of the miRNA in hypertrophy and ossification of ligamentum flavum.

References Country Technique Samples DEM

Case group Control group Upregulated Downregulated

Han et al. (2018) China MicroRNA sequencing 4 OLF tissues 4 NLF tissues 12 miRNAs 16 miRNAs

Kong et al. (2019) China High throughput sequencing 4 OLF tissues 4 NLF tissues 25 miRNAs 56 miRNAs

Yayama et al. (2018) Japan MicroRNA sequencing 4 LF tissues of OPLL 4 LF tissues of CSM NA 12 miRNAs

Wu et al. (2020) China MicroRNA sequencing 4 OLF tissues 4 NLF tissues 15 miRNAs 14 miRNAs

Xu Y. Q. et al. (2016) China MiRNA microarray 10 HLF tissues 10 LF tissues of LDH 15 miRNAs 3 miRNAs

Mori et al. (2017) Japan Agilent microarray 10 HLF tissues 10 LF tissues of LDH 1 miRNAs 9 miRNAs

HLF/OLF, it will provide a research direction to investigate
a single miRNA or a panel of miRNAs for evaluating
the occurrence, recurrence, or progression of HLF/OLF in
the future.

MiRNA-Based Therapeutic Targets
To date, there is no particularly effective conservative treatment
delaying or reversing the progression of HLF/OLF but surgical
decompression. However, procedural risks and postoperative
complications are very prominent (Hou et al., 2018; Liu Y.

et al., 2020). MiRNAs are endogenous and multifunctional
small molecules with numerous regulatory functions in
various biological processes, and miRNA-based treatment
methods present great potential for multiple diseases, such
as cancer, infectious diseases, and autoimmune diseases.
For example, the inhibition of specific miRNAs by modified
oligonucleotide analogs may become a kind of promising therapy
for HLF/OLF. Miravirsen, an anti-miR-122 oligonucleotide,
has reached phase II clinical trials for chronic hepatitis C
(CHC), and administration of various doses of miravirsen
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FIGURE 4 | Differentially expressed miRNA profiling identified by microarray datasets or transcriptome sequencing between OLF/HLF samples vs. control samples.

(+) represents upregulation of miRNAs, while (–) represents downregulation of miRNAs.

caused a substantial and sustained decline in plasma miR-122
levels without affecting the levels of other miRNAs in CHC
patients (van der Ree et al., 2016). In addition, a variety of
materials can be used as gene carriers for intracellular delivery
of miRNAs (Gessler Dominic et al., 2019). For instance,
liposome capsules, drug molecules with phospholipid bilayer
vesicles, possess better biocompatibility and stability, which

easily get into the cell through endocytosis and achieve
gene delivery (Lane Rachel et al., 2017). Moreover, multiple
nanosystems, such as organic/inorganic nanoparticles and
polymer nanoparticles, have been introduced as functional
nanocarriers to complete targeted and intelligent gene delivery
by virtue of the physicochemical properties of different
materials (Mao et al., 2019). With the rapid development of
miRNA therapy in different fields, the preparation of new
intelligent gene delivery systems will have broad prospects.
Of course, multifarious concerns should be taken into
account and addressed in the miRNA-based therapeutic
research, such as the stability and the immunogenicity
of miRNAs, delivery manners, proper dosing, target cell
recognition, and intervening time, interval, and so on
(Basak et al., 2016).

CONTEMPORARY CHALLENGES AND
LIMITATIONS OF MICRORNA
RESEARCHES

In this review, we systematically analyzed and summarized a wide
range of supporting evidence on differentially expressed miRNAs
and their roles in the process of ligamentum flavum degradation,
which demonstrated a powerful relationship between miRNAs
and the pathogenesis of OLF/HLF. Nevertheless, no definite
miRNA has been identified as a clinically useful biomarker
or as therapeutic target for OLF/HLF. The current research
findings were restricted by a variety of uncontrollable factors.
First, considering small population samples used for explorative
studies, the biological differences between study samples may
contribute to the discrepancies of miRNAs in plasma and tissue
(van den Berg et al., 2017). Second, study designs fail to take the
natural progression of hypertrophy and ossification of LF into
consideration so as to influence expression difference of various
miRNAs. Third, we found that miRNA expressionmight be tissue
specific because miRNAs derived from HLF and OLF ligament
tissue were significantly different on the whole. Moreover,
diversified microarray platforms and sequencing techniques with
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TABLE 2 | Functional characterization of specific miRNAs in hypertrophy and ossification of ligamentum flavum.

References Histopathology MicroRNAs Deregulation Function Targets/related pathways

Qu et al. (2016b) Thoracic OLF miR-132-3p Downregulated Modulating osteogenic differentiation of LF cells FOXO1, GDF5, SOX6

Qu et al. (2017) Thoracic OLF miR-199b-5p Downregulated Modulating osteogenic differentiation of LF cells JAG1, Notch signaling

pathway

Yang et al. (2018b) Thoracic OLF miR-490-3p Downregulated Modulating osteogenic differentiation of LF cells FOXO1

Yin et al. (2017) Lumbar OLF miR-615-3p Downregulated Modulating osteogenic differentiation of LF cells FOXO1, GDF5

Zhang et al. (2018) Thoracic OLF miR-182 Downregulated Modulating osteogenic differentiation of LF cells NAMPT

Feng et al. (2020) Thoracic OLF miR-29a-5p Downregulated Modulating osteogenic differentiation of LF cells SATB2, SIRT1/Smad3

deacetylation pathway

Chen et al. (2014) Lumbar HLF miR-155 Upregulated Modulating thickness and fibrosis process of

LF cells

NA

Xu Y. Q. et al.

(2016)

Lumbar HLF miR-221 Downregulated Modulating thickness and fibrosis process of

LF cells

TIMP-2

Sun et al. (2017) Lumbar HLF miR-21 Upregulated Inducing inflammation, modulating thickness

and fibrosis process of LF cells

IL-6

FIGURE 5 | Pathogenic role and mechanism of deregulated miRNAs in HLF/OLF.

inconsistent sensitivity and comparability were applied for the
discovery phase, whichmight be responsible for the discrepancies
between studies (Mestdagh et al., 2014; Dave et al., 2019). Finally,
another concern is the lack of representative animal models of

OLF/HLF used for extensive explorative and functional studies
for screeningmiRNA profiles and selecting themost differentially
expressed miRNAs. Accordingly, these existing findings need to
be interpreted with caution.
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CONCLUSION

Through this review of miRNA-based publications, we
summarized up-to-date evidence on the roles of miRNAs
in the pathophysiology of hypertrophy and ossification of
ligamentum flavum, though current investigations were just
emerging. Explorative researches demonstrated that certain
miRNAs in tissue were differentially expressed between patients
with HLF/OLF and controls (Table 1 and Figure 4), while
functional validations revealed that specific miRNAs played an
important part by targeting certain downstream genes or via
related molecular signaling pathways in the development of
HLF/OLF (Table 2 and Figure 5). However, the direct role of
these miRNAs that are abnormally expressed in the pathogenesis
of HLF/OLF remains superficial and obscured. Even so, they
might be conducive in uncovering the potential mechanisms
of HLF/OLF and be promising to discover a group of practical
biomarkers and develop a series of innovative therapies with
more valuable translational research in the near future.
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