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Emerging evidence points to coordinated action of chemical and mechanical cues during
brain development. At early stages of neocortical development, angiogenic factors and
chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in
orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we
explore the intrinsic mechanical properties of the developing marginal zone of the pallium in
the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These
neurons are generated in several proliferative regions in the developing brain (e.g., the
cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/
marginal zone covering the upper portion of the developing cortex. These cells play crucial
roles in correct neocortical layer formation by secreting several molecules such as Reelin.
Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal
distribution in the marginal zone are modulated by both chemical and mechanical factors,
by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness
of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory
capacities than those generated in the pallial subpallial boundary which may be involved in
the differential distribution of these cells in the dorsal-lateral axis in the developing
marginal zone.
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INTRODUCTION

Cajal-Retzius (CR) cells were first described by Santiago Ramón y
Cajal and Gustaf Retzius (in 1890 and 1892, respectively) (Gil
et al., 2014; Martinez-Cerdeno and Noctor, 2014). These cells are
early-generated neurons located in cortical marginal zone/layer I
that split from the embryonic preplate to form the marginal zone
and the subplate when the cortical plate develops during early
cortical development [(e.g., see (Soriano and Del Rio, 2005;
Villar-Cervino and Marin, 2012; Kirischuk et al., 2014;
Martinez-Cerdeno and Noctor, 2014; Marin-Padilla, 2015)].
Although several differences in CR cell phenotype, markers,
physiology, and fate have been described in different
mammals [e.g., (Cabrera-Socorro et al., 2007; Meyer, 2010;
Meyer and Gonzalez-Gomez, 2018)], Reelin expressed by
mouse CR cells during cortical development modulates the
appropriate migration of cortical plate neurons, actively
participating in neuronal network activity in developing
marginal zone/layer I [e.g., (Soriano and Del Rio, 2005)]. In
rodents, CR cells have the capacity to generate action potentials,
establishing synaptic contacts in the marginal zone/layer I and
receiving excitatory and GABAergic and non-GABAergic inputs
(Frotscher et al., 2003; Soriano and Del Rio, 2005; Frotscher et al.,
2009; Marin et al., 2010; Myakhar et al., 2011; Villar-Cervino and
Marin, 2012; Quattrocolo and Maccaferri, 2013; Gesuita and
Karayannis, 2021). Mouse CR cells are mainly generated in
three neurogenic areas: the cortical hem (CH) (Takiguchi-
Hayashi et al., 2004; Garcia-Moreno et al., 2007), the septum
retrobulbar area (SR), and the pallial subpallial boundary (PSB)
(Bielle et al., 2005). Shortly after generation, CR cells migrate
through the preplate/marginal zone to populate the entire cortical
surface following specific rostro-caudal and latero-tangential
processes (De Carlos et al., 1995; Yamazaki et al., 2004; Bielle
et al., 2005; Garcia-Moreno et al., 2007; Griveau et al., 2010;
Miquelajauregui et al., 2010; Villar-Cervino et al., 2013). This
dorsal-ventral migration of CR cells as well as subplate neurons
thorough the preplate has been reported to play a crucial role in
regionally defining the developing neocortex (Saito et al., 2019).
Birthdates of cortical CR cells are between embryonic days 8.5
and 13.5 (E8.5-13.5) in the mouse, with a maximum between E9.5
and E12.5 (del Rio et al., 1995; Hevner et al., 2003; Gu et al., 2011),
although a recent study points to a supply of CR cells from the
olfactory bulb at protracted embryonic stages (de Frutos et al.,
2016). During the first and second postnatal week, mouse CR cells
disappear from layer I by programmed cell death [e.g., (Del Río
et al., 1995; Del Rio et al., 1996)]. In fact, both their distribution
and their differential disappearance play a role in neocortical
regionalization and maturation (Ledonne et al., 2016; Riva et al.,
2019).

Genetic screening of CR cells has revealed that a large number
of factors are involved in their generation, migration, and
maturation, such as p73, p21, Zic1-3, Lhx5, and Fgf8, Tbr1, and
2, MDGA1, Emx1, and Emx2, Nectin1, Dmrt, Dbx1, Foxg1, Ebf2,
Foxc1, LIM-homeobox genes, and miRNA9, among others
(Mallamaci et al., 1998; Hevner et al., 2001; Hevner et al., 2003;
Muzio and Mallamaci, 2005; Zhao et al., 2006; Hanashima et al.,
2007; Takeuchi et al., 2007; Abellan et al., 2010; Zimmer et al., 2010;

Chiara et al., 2012; Zarbalis et al., 2012; Gil-Sanz et al., 2013; Hodge
et al., 2013; Kikkawa et al., 2020). Concerning migration, several
molecules have been identified as regulators of CR cell migration
and distribution in the marginal zone, e.g., CXCL12, Eph/Ephrins,
or Pax6 (Borrell and Marin, 2006; Paredes et al., 2006; Ceci et al.,
2010; Villar-Cervino et al., 2013; Kaddour et al., 2020). In fact,
CXCL12 (also termed Stromal Derived Factor 1, SDF-1), secreted
by meningeal cells, is considered to be mainly responsible for CH-
derived CR cell migration through CXCR4 and CXCR7 receptors
expressed in CR cells. Surprisingly, the migration at the subpial
position of CR cells in CXCR4−/−, CXCR7−/−, and CXCL12−/−
mice, although affected, is largely maintained at dorsal pallial levels
(Stumm et al., 2003). This is in contrast to other studies displaying
relevant changes in CR cells location and cortical layering after the
chemical removal of meningeal cells or genetic modification,
suggesting that other factors associated with meninges are
involved in CR cells migration and distribution (Super et al.,
1997; Paredes et al., 2006; Dasgupta and Jeong, 2019).
Angiogenic factors present in the outermost cortical blood
vessels associated with meninges such as VEGF, Sema3E, and
Ephrins have emerged as important cellular cues regulating the
migration of CR cells, as is the case in other developmental
processes [e.g., (Skaper et al., 2001; Mackenzie and Ruhrberg,
2012; Bribian et al., 2014)].

In addition, evidence emerging from recent research shows
that, in parallel to chemical cues, neural morphogenesis, neuronal
migration, and axon navigation are processes also governed by
sensing the mechanical properties of the extracellular milieu (e.g.,
Young’s modulus and topography) and neighboring cells during
development [e.g., (Franze, 2013; Gangatharan et al., 2018; Javier-
Torrent et al., 2021; Oliveri et al., 2021)]. These interactions
influence the maturation and differentiation of particular
neurons based on transduction of those external mechanical
forces into intracellular biochemical signaling via a
mechanical-transduction process (De Vincentiis et al., 2020;
Javier-Torrent et al., 2021). This mechanical-transduction
process involves the action of integrins and other elements
linking extracellular matrix (ECM) to cellular cytoskeleton
dynamics [see (Elosegui-Artola et al., 2018) for review]. In
addition, specific signaling mechanisms such as
mechanosensory receptors (e.g., Piezo1) and Hippo/YAP
pathways are players in the mechanical transduction process
in several cell types and tissues [e.g., (Nguyen-Lefebvre et al.,
2021; Wu and Guan, 2021)], including neural tissue [e.g., (Sahu
and Mondal, 2021)]. Considering matrix stiffness during mouse
cortical development, Iwasita and coworkers measured, by means
of Atomic Force Microscopy (AFM), the values for Young’s/
Elastic modulus (E) of the cortical plate (CP), the intermediate
zone (IZ), the subventricular zone (SVZ), and the ventricular
zone (VZ) in coronal sections of the prospective parietal cortex of
the mouse at different postnatal stages (from E12.5 to E18.5)
(Iwashita et al., 2014). In a broad sense, all values (for all cortical
layers) increased from E12.5 with a peak at E16.5 and then
decreasing (see Figures 1, 2 in (Iwashita et al., 2014)) at late
(E18.5) embryonic stages. Young’s modulus values ranked (for
the CP) from 30.1 Pa at E12.5 to a maximum of 108.4 Pa (E16.5),
decreasing to 57.4 Pa at E18.5. However, preplate and their
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derivatives: the molecular layer/layer I were not thoroughly
analyzed in the study.

Concerning CR cell migration, a pioneer study described
differences in the migratory properties of these cells depending
on their origin (rostral vs. medial) after ectopic transplantation in
different areas of the embryonic cortical hem (Ceci et al., 2010).
Thus, the study revealed, for the first time, that the local
environment in parallel to guidance molecules can modulate

the migration of CH-derived CR cells (Ceci et al., 2010). In
addition, Barber et al. (2015). demonstrated differences in
migratory speed of subsets of CR cells. In fact, using in vitro
experiments of the complete pallium, Barber et al. (2015).
described how SR-derived and CH-derived CR cells migrate
and then stop their migration at the dorsal pallium levels;
whereas PSB derived CR cells migrate in the rostral caudal
axis in the lateral part of the pallium (Barber et al., 2015).

FIGURE 1 | Differential stiffness between dorsal and lateral regions of the pallial marginal zone in developing mouse embryos (A) Scheme illustrating the procedure
of placement of the telencephalic hemispheres of the embryo (E12.5). (B) Illustration showing the procedure for Atomic ForceMicroscopy (AFM), in which the whole brain
embryo was first embedded in agarose to obtain dorsal and lateral measurement using the BIO-AFM. (C,D) Scheme (C) and highmagnification photograph (D) obtained
from the BIO-AFM illustrating the location of the V-shaped cantilever (circle in C and arrows in D) in the surface of the marginal zone. (E) Histogram showing the
results of the BIO-AFM experiments; E values are displayed in the y axis in Pa. (F) Rheometric values obtained after the analysis of three different hydrogels. The
concentration of the total protein of the analyzed hydrogels is shown in the x axis. (G) Bar plots comparing the amount of differential migration of CR cells (obtained from
CH or PSB) for gradually higher Matrigel™ concentrations (H–J) Examples of CH (H–J) and PSB (I) cultured explants in different Matrigel™ concentrations (5.8 and
7.8 mg/ml) immunostained against CALR to identify CR cells. CH: cortical hem; PSB: pallium subpallium boundary. Data in (E,F,G) are presented as mean ± s.e.m.;
***p < 0.001 and ****p < 0.0001. Scale bars: C = 1 mm, D = 500 μm, H and J = 300 μm and I = 300 μm.
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In this study, we aimed to explore whether putative differences in
the mechanical properties between dorsal and lateral parts of the
developing marginal zone/layer I also influenced the migration and
distribution of CR cells derived from the CHand the PSB of themouse.
Our data reveal that both the stiffness differences between medial and
lateral regions of the pallial marginal zone as well as the intrinsic
mechanical properties ofCR cells contribute to theirmigration from the
CH and PSB in the dorsal and lateral parts of the developing neocortex.

MATERIAL AND METHODS

Animals
The following mice and rat strains were used in the present study:
OF1 mice (E12.5) (RRID: MGI:5649743) and Sprague Dawley

rats (E14.5) (RRID: MGI:5651135) were purchased from Charles
River laboratories (Paris, France). In addition, the mTmG mice
(ROSAmT/mG; RRID: IMSR_JAX:007576; The Jackson
Laboratories; Bar Harbor, ME, United States) were also used.
Plxnd1-eGFP mice were obtained from the Mutant Mouse
Regional Resource Center (MMRRC; RRID: MMRRC_015415-
UCD; University of California, CA, United States). mTmG and
Plxnd1-eGFP mouse genotypes were verified by observing a tail
fragment under a fluorescence microscope (BX61; Olympus
Corporation). In addition, CXCR4-eGFP transgenic mice
(RRID: MMRRC_015859-UCD; kindly provided by J.H.R.
Lubke [Germany) (Anstotz et al., 2014)] were used. All the
animals were kept in the animal facility of the Faculty of
Pharmacy at the University of Barcelona under controlled
environmental conditions and were provided food and drink

FIGURE 2 | TFMmeasurements of CH and PSB-derived CR cells in PAA gels (A,B) Examples of CR cells stained using CALR antibodies derived from CH (A) and
PSB (B). (C–F) Phase contrast (c and e) and constraint force maps (D and F) of CR cells derived fromCH (C,D) and PSB (E,F) after TFM analysis. Forces triggered by the
CR cells are color-coded according to their intensity. The shape of the CR cells is outlined with a yellow contour in the constraint maps to better visualize their extent.
Thesemaps reveals that the highest traction values aremorphologically located at the tips of their neurites, for both CH- and PSB-derived CR cells (G)Results of the
Traction Force Microscopy (TFM) analysis. The bar plots show the mean pressure (force per unit area) generated by the different CR cells. The pressure values are
obtained by dividing the measured forces by the total area pixels occupied by the analyzed CR cells. CH: cortical hem; PSB: pallium-subpallium boundary. Data in (g) are
presented asmean ± s.e.m.. The indicated p value was obtained by using the one-tail permutation test. Scale bars, A = 50 μmpertains to B, C = 50 μmpertains to (D–F).
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ad libitum. For AFM experiments, OF1 pregnant mice were
housed in the animal facility of the Faculty of Medicine at the
University of Barcelona. All the experiments were carried out
following protocols of the Ethics Committee for Animal
Experimentation (CEEA) of the University of Barcelona
(OB47/19, C-007, 276/16, and 47/20).

CH and Pallial Subpallial Boundary Explant
Dissection
In order to obtain CH and PSB regions, embryonic brains (E12.5)
were covered with a mixture of L15 medium (31415-029,
Invitrogen) containing 4% low melting point agarose (50111,
Lonza) which was then allowed to solidify at 4°C for a few
minutes. After gelation, 300 µm-thick coronal sections were
obtained using a vibratome (VT1000S, Leica). Free-floating
slices were collected in cold 0.1 M PBS containing 0.6%
glucose and selected under a dissection microscope, and the
explants of CH or PSB were dissected.

Culture of CH and Pallial Subpallial
Boundary-Derived Explants on Hydrogels
For explants embedded in hydrogels, a sandwich procedure was
used using a base of homemade rat tail type I collagen (Gil and del
Rio, 2012) and a top of Matrigel™ (354434, Corning, Cultek). To
prepare the Matrigel™ at different densities, cold Neurobasal™
media (21103-049, Invitrogen) was used to dilute Matrigel™
stock solution. One explant per preparation was placed on a
homogeneous collagen base and then another layer of Matrigel™
was added on top. Before theMatrigel™ gels, explant position was
verified and correctly positioned under the dissecting microscope.
Once the explant was seeded, the gel was allowed to coagulate at
37°C, 5% CO2 before adding the supplemented medium. At
2 days in vitro (DIV), explants were fixed for 1 h with cold 4%
buffered paraformaldehyde (PFA) before washing with 0.1 M
PBS, and then stored at 4°C prior to immunocytochemistry or
photodocumentation. The number of cells that migrated out of
the explants was counted, and the maximum distance migrated
from the cell body to the explant edge was also determined using
Fiji™ software, using as calibration pictures of a millimetric
eyepiece at the same magnification. In some experiments, CH-
derived explants were treated with 4 μg/ml of Cytochalasin D
(C8273, Sigma-Aldrich), 10 μM Nocodazole (M1404, Sigma-
Aldrich), or 0.5 μg/ml of Blebbistatin (1760, Tocris).

In vitro Transplantation of CH or Pallial
Subpallial Boundary Explants in
Telencephalic Slices
Brain slices were obtained from E12.5 wild-type mice and the CH
and the PSB from E12.5 mTmGmouse embryos as described [see
also (Bribian et al., 2014)]. Slices were transferred to collagen-
coated culture membrane (PICM0RG50, Millipore) in 1.2 ml of
medium BME-F12 1:1 (41010-026, Invitrogen), glutamine
(25030-024, Invitrogen), 5% horse serum (26050-088;
Invitrogen), penicillin, streptomycin (15140122, Invitrogen),

and 5% bovine calf serum (12133C, Sigma-Aldrich). The CH
and PSB from wild-type slices were removed and replaced with
the dissected CH or the PSB from mTmG mice slices. After
several hours, the medium was changed to Neurobasal™medium
supplemented as above and cultured for up to 48 h before
analysis.

In situ Hybridization
In situ hybridization was carried out as described previously
(Mingorance et al., 2004; Mata et al., 2018) on 50 μm vibratome
fixed brain sections of E12.5 embryos. Both sense and antisense
riboprobes against Wnt2b (provided by P. Bovolenta) and Reln
(provided by T. Curran) were labelled with digoxigenin,
according to the manufacturer’s instructions (Roche Farma).

Immunocytochemical Methods
The processing of each in vitro model was determined by its
culture characteristics (hydrogel, coverslip, or brain slice).
Although the general procedure was similar for all conditions,
the incubation times and mounting methods for analysis differed.
The general procedure started with fixing the tissue samples with
4% PFA, then washing them with 0.1 M PBS and a blocking
solution composed of 10% Fetal Bovine Serum (FBS; 10500064,
Invitrogen) and 0.1 M PBS with Triton X-100 (Sigma-Aldrich)
(concentration determined by each model). After washing with
PBS-Triton X-100, the primary antibody was incubated with 7%
FBS and PBS−0.2% gelatin and Triton X-100. This was followed
by the Alexa-tagged secondary antibodies (Alexa 488; A21206,
Invitrogen) diluted in 7% serum (FBS) and PBS 0.1 M containing
gelatin 0.2% and 0.1% Triton X-100. Afterwards, nuclear staining
was performed using Hoechst (1 μg/ml; B2261, Sigma-Aldrich).
The antibody used for CR cell labeling was Calretinin (CALR; 1:
1,000; 7,697, Swant Antibodies). Details of the
immunocytochemical procedures in each model are briefly
explained below. For explant cultures growing in Matrigel™
0.5% Triton X-100 was used in all steps and long incubation
times were observed. After fixation for 1 h at 4°C with 4% buffered
PFA and blockade for 4 h at room temperature, the primary
antibody was incubated for 2 overnights at 4°C and the secondary
antibody for 1 overnight at 4°C with gentle shaking. Finally,
nuclear labeling with Hoechst was developed for 20 min before
washing with 0.1 M PBS and mounting with Mowiol™ (475904,
Calbiochem). For primary cultures of CH or PSB-derived CR cells
growing on polyacrylamide (PAA) gels for Traction Force
Microscopy (TFM) experiments, a short fixation time (5 min)
with 2% buffered PFA (removing half of the medium), and
10 min in 4% buffered PFA at 4°C, was developed in selected
preparations. Thereafter, fixed neurons were incubated at room
temperature for 1 h with blocking solution, 2 h with primary
antibodies, and 1 h for the secondary antibodies, at room
temperature with gentle shaking. Hoechst staining was run for
10 min before washing with 0.1 M PBS after
immunohistochemistry and photodocumentation. For slice
cultures, coronal slices after CH or PSB transplantation (see
above) were fixed for 1 h with 4% buffered PFA, and after this
detached from the transwell membrane and free-floating
processed with gentle agitation. All the immunohistological
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solutions contained 0.5% Triton X-100 and the samples were
incubated for longer times. Thus, slices were treated with
blocking solution for 4 h, incubated with primary antibodies
for 48 h, and then for 12 h with secondary antibodies at 4°C
with gentle shaking. Finally, the Hoechst solution was incubated
for 20 min before washing with 0.1 M PBS and mounting with
Mowiol™; double labelled CALR-mTmG-positive CR cells were
photodocumented using a Zeiss SLM800 confocal microscopy.

Viscoelastic Properties of Matrigel™
Hydrogels Analysed With Rheometry
The different densities checked in the study were obtained from a
Matrigel™ stock with known total protein concentration diluted
in cold Neurobasal™ medium. The dilutions were different for
different batches of Matrigel™: 12.72 mg/ml (Lot no: 9294006),
12.6 mg/ml (Lot no: 8015325), 11.95 mg/ml (Lot no: 9021221),
and 9.8 mg/ml (Lot no: 9148009). To obtain the hydrogels, a
minimum of 100 µl of mixture was needed per dish, carefully
depositing the mixture and leaving it to gel for 2–4 h at 37°C.
Once gelled, complete Neurobasal™medium was added to cover,
and left in an incubator at 37°C and 5% CO2. At 2 DIV the dishes
were carefully lifted and placed on a rheometer plate previously
heated to 37°C and calibrated. For rheometry measurement of the
hydrogels, an ∅ 8 mm Peltier (Peltier plate Steel — 108990)
coupled to a Discovery Hybrid Rheometer HR-2 (Discovery HR-
2; 5,332-0316; TA instruments) was used. To prevent
evaporation, rapeseed oil was used as a solvent-trap after
applying loading gap to the sample and deleting medium and
excess hydrogel. Finally, the geometry was taken to the gap to
geometry and the chosen measurement began. With the TRIOS
program (v. 5.0.0.44608) the Frequency sweep test using a gap of
0.5 mm (previously determined) was selected. To obtain the
elastic modulus E, we first measured the storage and loss
moduli in experiments at 1 Hz frequency sweep, which
provided a strain modulus G given by the equation:

G �
������������
(G′)2 + (G′′)2

√

Where G′ corresponds to storage modulus and G″ to loss
modulus. Once G was obtained, the elastic modulus E values
were determined as equation:

E � 2G(1 + υ)
Where υ is the Poisson’s ratio, defined as the ratio of transverse
contraction strain to longitudinal extension strain, and that was
assumed to be 0.5 for low stiffness hydrogels.

Atomic Force Microscopy Experiments
For in situ AFM measurements, whole E12.5 mouse embryonic
brains were carefully dissected without damaging the cortical
surface. Then, a 4% agarose (SeaPlaque™ GTGTM Agarose,
50111; Lonza) solution was prepared in 0.1M PBS and left at
45°C in a dry bath. The whole brain was dissected and examined
at dorsal and lateral regions of the pallium for AFM analysis
(Figure 1). Two brain orientations were generated in embedding
the whole brain in specific orientation with agarose to achieve

dorsal and lateral AFM measurements of the brain surface
avoiding the supallial areas (Figure 1B). Briefly, a large plate,
with a glass slide for AFM calibration, containing 2–3 mm
thickness of 4% agarose, was prepared. Once jellified, one
hemisphere was carefully placed over the agarose surface
adding more agarose to embed the subpallial brain regions,
leaving the dorsal pallial area to develop the dorsal AFM
measurements (Figure 1B). In parallel experiments, the other
whole hemisphere was placed laterally over the bottom agarose
with the medial brain portion in contact with agarose, being
leaving the lateral part of the pallium of the agarose-embedded
brain for AFM measurement (Figure 1B). After gelling, the plate
was covered with complete Neurobasal™ medium and placed in
the incubation chamber at 37°C.

Measurements were carried out on a custom-made BIO-AFM
mounted on an inverted optical microscope (TE 2000; Nikon).
AFM was equipped with a V-shaped silicon nitride cantilever
(0.01 N/m nominal spring constant) terminating in a 6 μm-radius
borosilicate spherical tip (Novascan Technologies). The
cantilever deflection was measured by using the optical lever
method, and the sensitivity of the photodiode was calibrated prior
to probing each sample by using the agarose semi-embedded glass
slide in the preparation as reference. For each measurement
(dorsal or lateral), 4 separate probing points were selected by
laterally displacing the AFM probe 40 µm between
measurements. For each probing point, the E modulus was
calculated from the force-displacement curves by adjusting the
Hertz model for the tip-surface contact (Alcaraz et al., 2018).
From these 4 separate values, the average was calculated, and data
were represented by mean ± standard error of the mean (s.e.m.)
for each brain at the different positions.

Primary Cultures and Traction Force
Microscopy Measurements of CH or Pallial
Subpallial Boundary-Derived CR Cells
Pieces of CH and PSB were obtained as above and collected in cold
dissection media (0.1M PBS (14200, Invitrogen) containing 0.65%
glucose (G8769, Sigma-Aldrich)) and centrifuged for 5 min at
800 rpm. After removal of the dissection media, 3 ml of
dissection medium containing 10X trypsin (15400-054,
Invitrogen) at 37°C for 15 min was added. After digestion and
inactivation with heat-inactivated normal horse serum (1:3 ratio);
10X DNase (AM2222, Ambion) diluted in fresh dissection media
was added, and incubated for 15 min at 37°C. Finally, 10 ml of
dissection medium was added and centrifuged for 5 min at
800 rpm. The pellet was resuspended in complete Neurobasal™
medium, and the cells were seeded on the plate. Then cell density
was approximately 100,000 cells per 9.5 cm2 plate. For acrylamide
gels, a Matrigel™ coating (diluted 1:40) was made the day before
and incubated at 37°C overnight. The next day, the surface was
rinsed with Neurobasal™ medium. For the TFM assay, only
isolated cells with clear morphology of CR cells (see below)
were analysed to avoid interference from traction forces
between different cells. PAA gels with different stiffness were
generated by modifying the proportion of acrylamide 40%
(1610140; BioRad) and Bis-acrylamide Solution (2% w/v;
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10193523; ThermoFisher) and the level of crosslinking in the gel
(between ≈40 Pa up to supraphysiological values) (Nocentini et al.,
2012). To detect gel displacements due to CR cell mediated forces,
the PAA gels was labelled with FluoSpheres® Carboxylate-
Modified Microspheres 0.2 µm [(625/645) F8806;
LifeTechnologies]. In order to generate a good homogeneous
Matrigel™ coating for CR cells, the PAA gels were treated with
SulfoSANPAH (803332; Sigma-Aldrich). Thus, 0.1 M PBS was
removed and a mixture of SulfoSANPAH (and 20 µl of reagent
diluted in 480 µl bidistilled water) was added. After two rinses with
0.1M PBS, treated gels were coated overnight at 37°C. The
following day, coated gels were washed with the fresh culture
medium and allowed to stabilize for a few minutes before seeding
with CR cells. Once adhered to the PAA gel, isolated CR cells were
selected ( × 40 objective, inverted Olympus microscope I×71). For
image acquisition and data processing, a Matlab™ script was used
(see (Reginensi et al., 2015) for details), and the displacements were
represented on the bright field image of the cell.

Calcium Analysis in Cultured CR Cells With
Fluo4-AM
To develop analysis of the changes in Ca2+ levels in CR cells, CH-
derived explants were cultured on Matrigel™ coated dishes as
indicated above. In order to enhance explant adhesion and
correct CR migration, culture media contained 1%
methylcellulose. In previous experiments, we determined the
appropriate concentration of methylcellulose maintaining the
morphology of CALR-positive cells (Supplementary Figure
S1). After 24 h of culturing, explants were incubated for
30 min with the cell–permeant calcium-sensitive dye Fluo4-
AM (F14201, Molecular Probes). The culture was washed with
fresh medium after incubation and finally placed in a recording
chamber for observation. The recording chamber was mounted
on an IX71 Olympus inverted microscope equipped with a
Hamamatsu Orca Flash 4.0 CMOS camera (Hamamatsu
Photonics). Cultures were recorded and images (1,024 × 1,024
pixels) were captured using a 20× objective and 470 nm
wavelength (CoolLED’s pE-300white, Delta Optics) every 50 ms
for 1 min using the CellSens™ software (Olympus). The
recordings were analyzed offline using the Matlab™ toolbox
NETCAL (www.itsnetcal.com). Identified CR cells were
associated with a single region of interest (ROI). The average
fluorescence Fi (t) in each ROI (CR cell) i along the recording was
then extracted, corrected for global drifts and artifacts, and finally
normalized as (Fi (t) — F(0,i)) / F(0,i) = fi (t), where F0,i is the
background fluorescence of the ROI. The time series of fi (t) was
analyzed with NETCAL to determine sharp calcium transients
and that reveal neuronal activity. Obtained movies were edited in
Fiji™ and the lockup table “physics” was applied. In this
experiment, the mechanosensory channel inhibitor GsMTx-4
(ab141871, Abcam) was used at a final concentration of 10 μg/
ml during video recording.

Statistical Analysis
Data in this manuscript are expressed as mean ± s.e.m. of at least
four independent experiments unless specified. Means were

compared using the Mann-Whitney U non-parametric test.
The asterisks pp, ppp and pppp indicate p < 0.01, p < 0.001
and p < 0.0001, respectively. For TFM and AFM analysis, a
permutation test (one tail) was performed and p, pp indicate p <
0.05 and p < 0.01, respectively was considered statistically
significant. Statistical test and graphical representation were
performed with Prism v.8 (GraphPad Software), RStudio
(RStudio, PBC), and R software (The R Foundation).

RESULTS

Dorsal to Lateral Stiffness (E) Differences
are Present in Developing Marginal Zone of
Developing Mouse Cortex
As a first set of experiments, we developed BIO-AFM
measurements in dorsal and lateral parts of the pallial surface
of embryonic mice (E12.5) (Figure 1). At this embryonic stage, a
lateral growth of the pallium takes place (Jacobson and Rao, 2005)
and CR cells tangentially migrate through the marginal zone and
cover the entire pallial surface (see introduction for references). In
our experiments we focused on the dorsal and lateral portions of
the pallium, avoiding the most ventral/subpallial regions of the
telencephalon. By placing the brain semi-embedded on agarose,
we can immobilize the brain without disrupting the whole
preparation and leaving a free-agarose zone for the BIO-AFM
measurements (Figure 1B). A representation of the dorsal zone is
showed in low magnification and at higher magnification the
cantilever can be seen across the brain tissue (Figures 1C,D). Our
BIO-AFM results indicate clear differences in stiffness between
the dorsal and lateral portions of the pallial surface (dorsal:
128.1 ± 12.08 Pa vs. lateral: 52.46 ± 12.08 Pa, mean ± s.e.m.,
pppp = 0.0002) (Figure 1E) (n = 9 for each condition).

Differential Migration of CH and
PSB-Derived CR Cells in Different
Matrigel™ Concentrations
Next, we aimed to explore whether these stiffness differences
might affect the migration of CR cells (Figures 1F–J). Classical
studies analyzing CR cell migration used 3D-Matrigel™
hydrogels as a migration substrate [e.g., (Borrell and Marin,
2006; Bribian et al., 2014)]. In order to determine whether the
stiffness of the environment could modulate the migration of CR
cells in a region-specific manner, we first analyzed the stiffness of
different Matrigel™ concentrations using rheometric analysis
(Figure 1F). We selected the Matrigel™ concentrations taking
into account the total protein level in the different batches
obtained from the supplier (see Materials and Methods for
details) in terms of the generation of a homogenous hydrogel
at each of these concentrations [see (Gil and Del Rio, 2019) for
example]. Data illustrate that, as expected, high Matrigel™
concentrations led to significantly higher Elastic moduli E
(Figure 1F), with E decreasing from 12.6 mg/ml to 3.8 mg/ml
Matrigel™ dilutions. Measured E at 1 Hz for 12.6 mg/ml was
268 ± 10.11 Pa (n = 6), for 7.8 mg/ml it was 45.39 ± 8.93 Pa (n =
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5), and for 3.8 mg/ml it was 13.34 ± 3.02 Pa (n = 4), data as
mean ± s.e.m. (Figure 1F). When comparing the elasticity of the
hydrogels with those previously obtained in BIO-AFM, E values
obtained using 12.6 mg/ml of Matrigel™ were around 2 times
than those measured in the in vivo BIO-AFM. However, the data
obtained using 7.8 mg/ml were similar to those observed in lateral
regions of the apical surface and the values using 3.8 mg/ml were
4 times lower than the lateral telencephalic portion of the
marginal zone. For this reason, we used three different
concentrations of Matrigel™ ranging around physiological
values as measured: 5.8 mg/ml, 7.8 mg/ml, and 9.8 mg/ml.

As indicated in several studies, CR cells derived from the CH
and PSB showed an overlapping distribution in the developing
marginal zone-layer I [e.g., (Barber and Pierani, 2016)]. Taking
this into account, we cultured CH and PSB-derived explants in
Matrigel™ hydrogels with different concentrations. CH-derived
CR cells were able to migrate longer distances in 5.8 mg/ml,
7.8 mg/ml, and 9.8 mg/mlMatrigel™ dilutions (values for 9.8 mg/
ml: CH = 113.4 ± 1.7 μm (n = 1632) vs. PSB = 72.86 ± 1.3 μm (n =
915). Values for 7.8 mg/ml: CH = 131.7 ± 2.1 μm (n = 1471) vs.
PSB = 88.52 ± 1.4 μm (n = 1911). Values for 5.8 mg/ml: CH =
137.1 ± 2.2 μm (n = 1737) vs. PSB = 92.35 ± 2.2 μm (n = 1194); all
mean ± s.e.m.) (Figure 1G; SupplementaryMaterials movies S1,
S2). This suggests that 1) CH-derived CR cells have greater
motogenic capacity than PSB-derived CR cells when migrating
in hydrogels with the same E value, and 2) CH-derived CR cells
are able to migrate greater distances in hydrogels displaying E
values closer to those observed in the dorsal portion of the
pallium in contrast to PSB-derived CR cells. In Figures 1H–J
we offer some examples of the distribution of CALR-positive CR
cells after completing their migration for 2 DIV in different
Matrigel™ concentrations.

Hem-Derived CR Cells Displayed Greater
Mechanical Forces Than PSB-Derived CR
Cells in PAA Gels
In a next set of experiments, we aimed to determine whether
these migratory differences could be attributed to intrinsic
differences between CH- or PSB-derived CR cells in order to
generate mechanical forces when cultured on PAA substrates.
First, we generated PAA gels with very low E using the protocol
published in (Sunyer et al., 2012; Sunyer et al., 2016). We
obtained soft PAA gels with E values around ≈ 40–100 Pa.
This E value is the lowest stiffness that allowed us to obtain good
distribution of the nanoparticles used in TFM. Below these
values the PAA is not stable and does not generate reliable TFM
measurements. We aimed to analyze the behavior of CH- and
PSB-derived CR cells when cultured on these low-Pa PAA gels.
CR cells adhered to the PAA gel and did not migrate but
generated forces on the substrate (Figure 2). In some cases,
due to the absence of a 3D-hydrogel environment, CR cells
modify their morphology from the typical unipolar to a more
bipolar shape as also observed in other studies in 2D-cultures
(Villar-Cervino et al., 2013). In previous experiments we also
categorized the cell morphologies as CR cells in PAA gels using
CALR immunostaining (Figures 2A,B). Thus, we developed the

TFM measures in isolated CR cells with these morphologies
(Figures 2C, F) and did not analyze TFM in cells with
multipolar morphology nor did we group them to compare
equal populations. TFM results demonstrated, as expected, that
CR cells independently of their origin, do not generate large
forces to the PAA substrates compared to other cell types [e.g.,
endothelial cells or fibroblasts, (Roca-Cusachs et al., 2017)].
TFM analysis reported that CH-derived CR cells can develop
greater forces on the substrate when compared to PSB-derived
ones (p = 0.0346, one tail permutation test, n = 18 and 14,
respectively) (Figure 2G). This also points to differing intrinsic
mechanical properties between CH and PSB-derived CR cells
that might allow CR cells to sense the different stiffness of the
marginal zone. One potential mechanism to sense stiffness is the
expression of mechanosensory channels (Roca-Cusachs et al.,
2017). To assess this, we developed a loss of function experiment
using the mechanosensory channel inhibitor GsMTx-4
(Gnanasambandam et al., 2017) (Figure 3). This compound
is a spider venom that inhibits cationic mechanosensitive
channels. In fact, although the specific mechanisms of the
drug have not been fully determined, when GsMTx-4 is
applied to several cell types expressing mechanosensitive
channels (e.g., Piezo channels) Ca2+ influx is blocked
(Jacques-Fricke et al., 2006). Taking this into account, we
cultured hem-derived explants, and after 40 h in order to
obtain isolated CR cells, cultures were incubated with Fluo4-
AM. After incubation, the changes in the Ca2+ waves in CR cells
were analyzed using NETCAL Software (Orlandi et al., 2014).
First, we checked the health status of cultured CR cells in 1%
methylcellulose containing medium by analyzing their
depolarization, using KCl (Figures 3A–C). After KCl
treatment, an increase in the fluorescence ΔF/F0 values was
observed in all analyzed CR cells (Figure 3C). Next, we
developed similar experiments, first incubating CR cells with
the inhibitor GsMTx-4 and then after that with KCl
(Figure 3D–E). Results demonstrated that treatment with
GsMTx-4 transiently decrease intracellular calcium levels in
CH-derived CR cells, reducing their migration (CH, Veh = 130,
8 ± 2.5; GsMTx-4 = 124, 4 ± 3.5, mean ± s.e.m., ppp = 0.0015, n =
1,218 and 782, respectively) (Figures 3E,F). On the graph
(Figure 3E) there is a first fluorescence increase by GsMTx-4
application by medium disruption, but after that, the cell senses
the inhibitor and react with a second peak. As a result of the
inhibitor entry, the cell decreases their calcium activity and
decrease their levels under the baseline. For PSB, CR-cell
migration was lower after incubation with the inhibitor but
did not reach statistical significance (p = 0.063, n = 1,289 for
GsMTx-4, and n = 382 for vehicle) (Figure 3F). In addition, we
analyzed whether the blockage of cytoskeletal proteins and
myosin II also impaired their migration. These experiments
showed, as expected, that inhibiting tubulin (Nocodazole;
pppp < 0.001, n = 21) and myosin II (Blebbistatin; ppp =
0.0032, n = 22) almost blocked the migration of CR cells
(Figure 3G). In addition, when inhibiting actin dynamics, we
also achieved an inhibition of CH-derived CR cell migration
(Cytochalasin D, 4 μg/ml; ppp = 0.0045, n = 9; Figure 3G).
Taken together, the present data demonstrate that CR cells can
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generate mechanical forces to the substrate (CH > PSB-derived
CR cells), but that cytoskeletal disruption impairs their
migration on Matrigel™ hydrogels.

Ectopic Transplantation of CH and
PSB-Derived CR Cells Demonstrates
Intrinsic Mechanical Properties in Vitro.
Due to the above illustrated data, we aimed to develop ectopic
transplantation experiments in an in vitro preparation of
telencephalic slices (see Materials and Methods for details)
(Figure 4). Thus, coronal embryonic telencephalic slices
(E12.5) from wild-type mice were cultured on transwells,

essentially as described (Bribian et al., 2014), and the
endogenous CH and PSB were removed, while the CH and
PSB from mTmG reporter mice were transplanted
(Figure 4D). Migrated CR cells generated after explant
transplantation could be easily identified by their red
fluorescence protein (tdTomato) expression, but also by using
double labeling with CALR antibodies. Results demonstrated that
CH-derived CR cells transplanted in their original position are
able to migrate long distances tangentially in dorsal and medial
marginal zones of the slices (mTmGCH in CH location = 565.7 ±
101.3 μm, n = 9, mean ± s.e.m) (Supplementary Figure S2).
However, PSB-derived CR cells were unable to migrate longer
distances in dorsal portions of the pallium (mTmG PSB in CH

FIGURE 3 | Involvement of mechanosensory receptors in the migration of CH-derived CR cells (A–C) Fluorescent calcium imaging experiments demonstrating that
CR cells are able to depolarize in the presence of KCl. The images in panel A corresponds to representative neuronal cultures of CH on methylcellulose-containing
medium (A). The same image is shown in panel B together with the detected regions of interest (ROIs, colored patches) and that ascribed as neuron (B). (C) The
application of 0.1 M KCl is indicated with an arrow. The abrupt increase in fluorescence reveals neuronal response to the chemical stimulation. (D) Fluorescence
images at preset time points (2, 5, 15, and 40 s) from identified CR cells illustrating the changes in Ca2+ upon application of GsMTx4 (at 5 s) and KCl (at 40 s). Images
were extracted from the Supplementary Material Movie S3). Fluorescence images were color edited to visually enhance the transient decrease in Ca2+ after GsMTx4
(at 5 s) and KCl (at 40 s). White arrows help identifying the fluorescence evolution of four neurons (E) Fluorescent traces for 10 representative neurons upon treatment
with GsMTx4 (at 5 s) and KCl (at 40 s), highlighting their strong response to stimulation (F) Bar plots comparing the effect of GsMTx4 treatment on the migration of CH-
and PSB-derived CR cells, and relative to untreated, control cells. CR cells exhibit a larger migration distance as compared to PSB ones (G) Bar plots comparing the
migration capacity of control CR cells with those treated with cell-mobility blockers, namely cytochalasin D, Nocodazole, and Blebbistatin. For panels (F,G), data are
presented as mean ± s.e.m.. Veh: Vehicle; CytoD: Cytochalasin D; Noco: Nocodazole; Bleb: Blebbistatin; CH: cortical hem; PSB: pallium subpallium boundary. The
specific p values are included in (F), and **p < 0.01 and ***p < 0.001 in (F,G), respectively. Scale bar A = 300 μm pertains to B; D = 50 μm.
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FIGURE 4 | Examples of the differential behavior of CH- and PSB-derived CR cells after transplantation experiments in telencephalic slices (A) Example of an E12.5
coronal section showing the location of the CH after Wnt2b in situ hybridization (B,C) Scheme (B) and low-power fluorescence photomicrographs (C) illustrating the
microdissection procedure for theCHand the PSB using the reportermTmGmice (D,E)Scheme (D) and confocalmicrocopy photomicrographs (E) illustrating the location of
the transplanted CH and PSB in telencephalic slices (F) Photomicrographs illustrating the migratory stream of CH-derived CR cells after their lateral transplantation. The
dashed labelled box is depicted in panels G-I (G,I) Representative images of double-labelled CR cells identified with CALR antibodies (left) and mTmG (center), together with
the resulting combined image (right). White arrows mark cells that are both CALR- and mTmG-positive, while arrowheads point to CALR-positive cells. The panels highlight
the large number of double-labelled cells thatmigrate ventrally to the transplantedCH, that contrastswith the fewer CALR-positive cells (J)Bar plots of the migration distance
of double-labelled (CALR-mTmG) CR cells in transplantation experiments, comparing the extent of migration of PSB and CH-derived cells transplanted in the natural CH

(Continued )
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location = 200.7 ± 72.7 μm, n = 12; mean ± s.e.m.) (Figures
4D–E). In contrast, when mTmG CH explants were transplanted
in the PSB location, a large number of double-labeled CR cells
(mTmG + CALR) could migrate dorsally as well as towards
ventral portions (mTmG CH in PSB location, lateral-dorsal
migration = 603.1 ± 55.0 μm; lateral-ventral migration =
706.7 ± 79.5 μm; n = 17; mean ± s.e.m.) (Figure 4F–K). In
parallel, mTmG PSB transplanted in the PSB location showed
increased migration when compared after transplantation in the
CH (mTmG PSB in PSB, dorsal migration = 310.5 ± 44.25 μm;
ventral migration = 232.9 ± 30.94 μm; n = 11; mean ± s.e.m.)
(Figures 4J–K). From these experiments we may conclude that
PSB dorsal migration is ≈ 1.55 times greater when transplanted in
PSB than in CH regions. In contrast, CH showed ≈ 1.25 times
greater migration distances when transplanted in the PSB than in
the CH. These data agree with previous TFM results indicating
that CR cells originating from the CH were able to generate
stronger mechanical forces to the substrate and they migrate in
hydrogels ranking from 5.8 mg/ml to 9.8 mg/ml greater than
PSB-derived CR cells. Thus, CH-derived CR cells, when
transplanted in PSB, were able to strongly migrate both due to
the lesser stiffness of the region (as compared to dorsal regions)
and to their intrinsic mechanical properties. In contrast, PSB-
derived CR cells migrate less towards or within dorsal pallial
regions with increased stiffness. Taken together, the present data
suggest that both the differing stiffness in marginal zone/layer I
(dorsal vs. lateral) of the developing pallium and the intrinsic
differences in the motogenic properties of the CR cells depending
on their origin play a role in determining their distribution in the
developing marginal zone as observed in vivo.

DISCUSSION

Several studies in the literature combines lineage analysis, in vitro
cultures, and CR cell markers, and have revealed the migratory
routes of CR cells in developing pallium have been revealed [see
among others (Takiguchi-Hayashi et al., 2004; Bielle et al., 2005;
Yoshida et al., 2006; Zhao et al., 2006; Garcia-Moreno et al., 2007;
Imayoshi et al., 2008; Ceci et al., 2010; Gu et al., 2011; Villar-Cervino
et al., 2013; Barber et al., 2015)]. To summarize these studies, CH-
derived CR cells migrate in the marginal zone expanding to dorsal
and medial parts of the neocortex with a preponderance in the
medial level in the caudal axis [see (Barber and Pierani, 2016) as
example], since the more rostral levels are mainly populated by SR-
generated CR cells. In contrast, PSB-derived CR cells are more
confined to lateral portions of the pallial marginal zone with a
decreased presence in the medial and dorsal regions [see (Barber
and Pierani, 2016) as example]. However, the limits of their
distribution in the marginal zone are no hardly defined and
these CR populations overlaps in their distribution.

Several groups have focused their attention on defining
chemical factors that mediate the migration of the different
sets of CR cells (see Introduction). Concerning migration
properties of subsets of CR cells, an elegant study carried out
by Barber et al. (2015). demonstrated in vitro using whole
flattened cortical vesicles that CR cells originating in the CH
showed increased migratory speed compared to PSB-derived CR
cells. The difference (≈ 18%–20% at E10.5) was also associated
with differences in VAMP3 expression (increased in CH-derived
CR cells with respect to PSB-derived ones). VAMP3 is involved in
endocytosis, a crucial process that modulates membrane
dynamics at the leading edge of migrating neurons and axons
(Kamiguchi and Yoshihara, 2001; Kawauchi, 2015) as occurs in
other cell types (Llanses Martinez and Rainero, 2019). In
addition, the authors showed that CH-derived CR cells
migrate towards the dorsal pallium while PSB-derived CR cells
migrate laterally in the rostro-caudal axis (Barber et al., 2015).
Our current data corroborate these results.

Concerning expansion of the CR cells in marginal zones, several
hypotheses have been proposed. For example, Villar-Cervino et al.
(2013), indicated that the distribution of different CR cells is
mediated by a contact repulsion process. These effects were not
observed when they analyzed groups of CR cells growing in
Matrigel™ (Bribian et al., 2014), nor were they seen in present
results. However, Barber et al. (2015). suggested that, after analysis of
their experiments and time-lapse results, factors other than contact
repulsion might regulate CR cell expansion and trajectories in the
developing pallium. Our present results are in line with their study,
since we show that mechanical factors might contribute to the
distribution of CR cells in the dorsal-lateral axis of the
developing marginal zone. As indicated, emerging evidence
demonstrates that, in parallel to chemical cues, mechanically-
mediated processes play relevant roles in axonal guidance,
neuronal migration, neurite growth, and brain development [e.g.,
(Franze, 2013; Gangatharan et al., 2018; Javier-Torrent et al., 2021)].
Concerning pallial morphogenesis, recently published studies from
the Miyata’s lab reported new results. In fact, a study of Nagasaka
and Miyata (2021) analyzed the stiffness differences between the
ventricular zone and the pallium and subpallial ganglionic eminence.
Relevantly, in this study the authors reported greater E values in the
pallial vs. the subpallial ventricle, which could be a factor involved in
pallial folding (Nagasaka and Miyata, 2021). Our present results
reinforce and expand these observations, demonstrating a significant
difference for E values between the dorsal part of the marginal zone
and the lateral regions of the pallium. However, we cannot rule out
the possibility that these differences are also linked to those observed
in the ventricular zone. From a developmental point of view, during
the early stages of cortical development, the pallium expands in
thickness with the addition of postmitotic neurons, generating the
cortical plate in a lateral-to-medial gradient, but it also expands
laterally [see (Bayer and Altman, 1991)]. Concerning the lateral-to-

FIGURE 4 | location (K) Bar plots of migration distance of double-labelled cells in the dorsal and ventral regions of the CH and PSB transplants after a lateral transplantation.
Data on panels (J,K) are presented asmean ± s.e.m.. ****p < 0.0001. Abbreviations: Cp = choroid plexus; CH = cortical hem; Hp = hippocampal primordia; LGE andMGE =
Lateral and medial ganglionic eminences; NCx = neocortex; SE = septal region; Str = striatum; PSB = pallial subpallial boundary. Scale bars, A = 300 μm pertains to C; E =
200 μm pertains to F and G = 50 μm pertains to (F–I).
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ventral expansion of the neocortex, a study by Saito et al. (2019).
described how a migratory stream of the early generated (E10.5)
dorsally preplate cells (mainly subplate cells) participated strongly in
this lateral pallial expansion, as evidenced by a dorsal-to-lateral
migration, andmost probably acting on the orientation of radial glial
cells and generating axon tensions at the level of subpallium, at E14.5
(Misson et al., 1988). The presence of these subplate corticofugal
axons (labelled with anti-GABA antibodies or 1,1′-Dioctadecyl-
3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (DiI) tracing)
at E14.5 was also reported by a number of pioneering studies
(De Carlos and O’Leary, 1992; Del Rio et al., 1992; Del Rio et al.,
2000). Under this scenario, the lateral part of the pallium which is
closest to the ganglionic eminence will allow the tangential migration
of these preplate-derived cells (Saito et al., 2019). However, whether
these early generated VZ-derived subplate cells with monopolar
morphology also show mechanical differences with the non-
monopolar cells located in the medial-dorsal portions of the
subplate warrants further study and is of interest in fitting their
functions and behavior into the stiffness differences observed in the
developing pallium.

With respect to CR cells, these studies of Miyata’s lab did not
focus on this cell type. Our results demonstrate that CH-derived CR
cells can migrate long distances in the marginal zone in both the

lateral and the dorsal part of the pallium. Interestingly, theywere able
to migrate more in the lateral than the dorsal regions in our
transplantation experiments. In contrast, PSB-derived CR cells
showed reduced migration when transplanted into dorsal regions
of the neocortex. This observation is likely related to their migratory
properties in the differing stiffness of the dorsal vs. lateral parts of the
marginal zone (BIO-AFM experiments) as corroborated in our
Matrigel™ experiments. Taking this into account, our
observations and those of Saito et al. (2019). suggest that the
migration of CR cells follows the changes in cortical stiffness
generated between E10.5 and E12.5. This is of relevance since in
the absence of these coordinated actions, CR cell mechanical
properties, dorsal-lateral E differences in the ventricular and
marginal zones, as well as the described dorsal-lateral stream of
preplate-derived cells, might trigger altered neocortical development.
In fact, it is widely recognized that correct CR cell distribution in
marginal zone-layer I is a crucial factor in both radial glia
maintenance (Super et al., 2000) and neuronal radial migration
(Rice and Curran, 2001). With altered CR cell distribution, changes
in cortical plate development and layer specification might occur
[e.g., (Super et al., 2000; Alcantara et al., 2006; Villar-Cervino et al.,
2013)]. Our study describes for the first time how subsets of CR cells
can also be characterized by their mechanical properties which,

FIGURE 5 | Mechanical and chemical cues modulate the migration of PSB- and CH-derived CR cells. Data presented in this figure illustrate some of the cues
involved in the CR-cell migration (A–D) Scheme (A) and eGFP immunostaining using immunoperoxidasemethods of PlexinD1 in transgenicPlxnd1-eGFPmice. PlexinD1
is present in blood vessels as well as in CR cells in the complete marginal zone (arrows in B-D). The specific location of the PSB is labelled in (D) and illustrates the
absence of PlexinD1 in this region. This demonstrates that its expression is postmitotic and linked to its position in marginal zone (E,F) Reln in situ hybridization (E)
and eGFP fluorescence in CxCR4-eGFP mice (F), respectively, illustrating their distribution in the developing pallium. Asterisks and dashed regions in (F) illustrate the
absence of Reln and CXCR4 in the proliferative regions, especially the PSB (G) Scheme summarizing the results observed in our studies (see Discussion for details).
Abbreviations as in Figure 4 in addition to Bv = blood vessel; dTh = dorsal thalamus; GE = ganglionic eminence; MZ = marginal zone; PCx = piriform cortex; V = lateral
ventricle; VZ = ventricular zone. Scale bars, B = 50 μm pertains to (C,D); E = 300 μm pertains to (F).
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along with the differential dorsal-lateral stiffness of the marginal
zone and additional chemical cues, allow the orchestrated dorsal-
lateral migration of two different CR-cell populations (CH and PSB-
derived) leading to a specific regional distribution that plays a role in
cortical development and maturation.

Coordinated Action of Mechanical and
Chemical Cues Modulates the Dorsal-
Lateral Migration and Distribution of CH and
PSB-Derived CR Cells: A Putative Scenario
in Early Neocortical Development
In Figure 5we hypothesize a putative scenario for the dorsal-lateral
CR-cell migration generated in the CH and the PSB. This summary
includes results published by several research groups [among
others (Bielle et al., 2005; Borrell and Marin, 2006; Bribian
et al., 2014; Barber and Pierani, 2016)] and the present results.
In this scheme, the dorsal-medial difference in pallial stiffness is
illustrated (present results) and the presence of CXCL12 and
Sema3E is illustrated. In addition, we include data related to the
expression of CXCR4 as well as PlexinD1. In this hypothesis,
during development, SR-, CH-, and PSB-derived CR cells are
generated in parallel. However, neither the CH nor the PSB
express PlexinD1 or CXCR4 (Figures 5A–D,F). In contrast, in
the marginal zone, both CH- and PSB-derived CR cells express
PlexinD1 and CXCR4, as well as Reelin (Figures 5A–F). Due to the
differing stiffness of the pallium, PSB-derived CR cells can migrate
in their lateral portions to themarginal zone, while being blocked in
dorsal pallial regions displaying greater stiffness and increased
Sema3E expression. In contrast, CH cells with greater
mechanical properties can migrate in dorsal portions but are
also progressively affected by the action of Sema3E (Figure 5G).
Both CR-cell populations are positioned in the marginal zone by
the action of CXCL12, and their final distribution in the dorsal-
lateral axis is promoted by the inhibition of CXCL12/CXCR4
signaling by Sema3E, as demonstrated in (Bribian et al., 2014),
along with their differences in intrinsic mechanical properties and
the stiffness of the developing pallium (present results). In addition
to this, other factors such as the expression of VAMP3 leading to
intrinsic differences in CR-cell migration as well as other repulsive
actions described in other studies play crucial roles in parallel to
accomplish their regional distribution in the rostral-caudal and
medial-lateral axis of the pallium (see Introduction for details).
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