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Abstract

Background: Meningiomas may occur either as familial tumors in two distinct disorders, familial
multiple meningioma and neurofibromatosis 2 (NF2), or sporadically, as either single or multiple
tumors in individuals with no family history. Meningiomas in NF2 and approximately 60% of
sporadic meningiomas involve inactivation of the NF2 locus, encoding the tumor suppressor merlin
on chromosome 22q. This study was undertaken to establish whether genomic profiling could
distinguish familial multiple meningiomas from sporadic solitary and sporadic multiple meningiomas.

Methods: We compared 73 meningiomas presenting as sporadic solitary (64), sporadic multiple
(5) and familial multiple (4) tumors using genomic profiling by array comparative genomic
hybridization (array CGH).

Results: Sporadic solitary meningiomas revealed genomic rearrangements consistent with at least
two mechanisms of tumor initiation, as unsupervised cluster analysis readily distinguished tumors
with chromosome 22 deletion (associated with loss of the NF2 tumor suppressor) from those
without chromosome 22 deletion. Whereas sporadic meningiomas without chromosome 22 loss
exhibited fewer chromosomal imbalance events overall, tumors with chromosome 22 deletion
further clustered into two major groups that largely, though not perfectly, matched with their
benign (WHO Grade |) or advanced (WHO Grades Il and Ill) histological grade, with the latter
exhibiting a significantly greater degree of genomic imbalance (P < 0.001). Sporadic multiple
meningiomas showed a frequency of genomic imbalance events comparable to the atypical grade
solitary tumors. By contrast, familial multiple meningiomas displayed no imbalances, supporting a
distinct mechanism for the origin for these tumors.
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Conclusion: Genomic profiling can provide an unbiased adjunct to traditional meningioma
classification and provides a basis for exploring the different genetic underpinnings of tumor
initiation and progression. Most importantly, the striking difference observed between sporadic and
familial multiple meningiomas indicates that genomic profiling can provide valuable information for
differential diagnosis of subjects with multiple meningiomas and for considering the risk for tumor

occurrence in their family members.

Background

Meningiomas, which arise from arachnoidal cap cells of
the leptomeninges, display an annual incidence 5.5 per
100,000, accounting for ~20% of all primary intracranial
tumors [1,2]. They may be classified histologically into
three grades, according to World Health Organization
(WHO) criteria [3]: WHO grade I meningiomas (~90%)
are slow growing benign tumors; WHO grade II meningi-
omas (6-8%) are described as atypical and display
increased cellularity and mitotic activity; and WHO grade
[II meningiomas (2-3%) are termed anaplastic or malig-
nant and have a high recurrence risk. Meningiomas com-
monly occur as sporadic solitary tumors in the general
population and may be found at autopsy in asympto-
matic individuals. They also occur in ~50% of individuals
with the inherited disorder neurofibromatosis 2 (NF2)
[4], which involves inactivation of the NF2 gene on chro-
mosome 22, encoding the merlin tumor suppressor [5,6].
About 60% of sporadic solitary meningiomas occur due
to merlin inactivation and usually display loss of one copy
of chromosome 22, while the mechanism of tumorigene-
sis in the remaining 40% remains unknown [3,7,8]. In 1-
8% of patients, meningiomas present as multiple tumors
either due to a predisposing NF2 mutation or due to non-
contiguous spread of a single sporadic tumor [9-15]. Non-
NF2 multiple meningiomas may appear either as sporadic
or familial cases [9,11,12,16-20]. Like sporadic solitary
meningiomas, sporadic multiple meningiomas may dis-
play somatic NF2 mutations [14,16], whereas familial
multiple meningiomas do not [16]. Like NF2, familial
multiple meningioma has been reported to show auto-
somal dominant inheritance [21-23], but it does not show
linkage to the NF2 locus [24] and tumors from at least one
kindred exhibit immunoreactivity for merlin [18].
Together, the accumulated evidence indicates that in addi-
tion to inactivation of merlin, there are one or more other
mechanisms for initiating formation of a meningioma.

Array Comparative Genomic Hybridization (array CGH)
is a powerful whole genome profiling technology capable
of detecting both DNA copy gain and loss that has the
potential for unbiased classification of tumor specimens
based upon the constellation of genomic alterations that
they possess. Here we have applied this technology to
examine genomic imbalance events in familial multiple
meningioma, in comparison with a cohort of sporadic
solitary meningiomas and sporadic multiple meningi-

omas. Our findings indicate that while genomic profiling
can implicate an etiology for sporadic tumors and suggest
candidates for initiation or progression loci, the revelation
of an absence of gross genomic imbalance events in famil-
ial multiple meningioma suggests that it is a distinct
genetic entity.

Methods

Tumor specimens

Patients and tumors were ascertained through the Neu-
rofibromatosis Clinic at Massachusetts General Hospital
as previously reported [13,16]. Excess tumor tissue not
required for diagnosis was flash frozen in liquid nitrogen.
Genomic DNA was extracted from tumor tissue as previ-
ously described [16]. When available, pathology sections
were re-reviewed using 2007 WHO criteria [3]. Pathology
sections were not available for the 5 sporadic multiple and
4 familial multiple meningiomas. In addition, some of
the sporadic solitary meningiomas could not be scored for
histological subtype, particularly tumors that were more
anaplastic (in the grade IT and III tumors). Specimens that
are "not scorable" had small fragments of tissue, insuffi-
cient for determination of histological subtype. In menin-
giomas WHO grade II or III, disruption of the tumor's
growth pattern by hypercellular foci and sheeting often
does not allow the accurate classification of the underly-
ing histological subtype. Specific patterns associated with
WHO Grade II or III meningiomas (such as rhabdoid,
papillary etc.) have been specified, as advised by the WHO
classification.

The characteristics of the sporadic solitary tumors are
shown in Table 1. This tumor set partially overlaps with
the set investigated previously by Nunes et al. [25] and
contains eight tumors reported in that study to show dele-
tion at the NF2 and EBP41L3 (DAL1) genes. Of the 9 mul-
tiple meningiomas studied here, 3 (2 sporadic and 1
familial) were investigated previously in Heinrich et al.
[16] for deletion of the NF2 and EBP41L3 (DAL1) genes.
This study was approved by the Institutional Review
Board of Massachusetts General Hospital and informed
consent was obtained from all study subjects.

MLPA analysis

For NF2 gene dosage analysis of all multiple meningi-
omas and a subset of ten sporadic solitary meningiomas,
we performed multiplex ligation-dependent probe ampli-
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Table I: Characteristics of Sporadic Solitary Meningiomas

Tumor Designator Patient Age Gender Tumor Grade Histology Recurrence
7B 79 F | Fibroblastic no
8B 33 F | Fibroblastic no
9B 50 F | Fibroblastic no
1B 69 F | Fibroblastic no
12B 45 F | Fibroblastic no
13B 43 F | NS no
14B 59 F | Fibroblastic n/a
15B 55 F | Fibroblastic no
46B 36 F | NS no
48B 41 M | Papillary n/a
50B 63 M | NS no
51B 80 M | Transitional no
52B 39 F | NS no
55B 72 F | Fibroblastic no
56B 70 F | Transitional no
57B 69 F | NS no
58B 39 F | Microcystic no
61B n/a F | Meningothelial no
63B 52 M | Transitional no
65B 58 F | Meningothelial no
66B 59 F | NS no
68B 35 F | NS no
71B 34 F | Meningothelial yes
73B 77 F | Fibroblastic no
75B 67 F | NS no
10A 8l F ] Transitional yes
17A 58 M ] Fibroblastic no
20A 75 F 1l NS no
26A 77 F 1l Meningothelial no
27A 59 F 1l NS no
29A 46 M Il Transitional no
30A 59 M 1l Transitional no
34A 54 M 1l NS no
35A 58 M I Fibroblastic no
37A 58 F 1l NS no
38A 78 M 1l Meningothelial yes
39A 85 M Il Fibroblastic yes
40A 36 M Il NS yes
42A 69 F ] Fibroblastic no
43A 35 M ] Transitional no
44A 50 F Il Transitional no
45A 56 M 1l NS no
47A 53 F 1l NS no
49A 74 F ] Transitional no
54A 78 M Il Transitional no
67A 54 F 1l NS no
72A 41 F 1l Meningothelial no
76A 63 M 1l Meningothelial no
77A 29 F 1l Meningothelial yes
80A 59 F 1l NS no
81A 62 F ] Angiomatous no
83A 60 M 1l Meningothelial no
IM 52 F N NS n/a
2M 73 F 1 NS yes
3M 46 M I NS no
1M 73 F N NS yes
2IM 57 F 1] Fibroblastic yes
22M 60 F 1] Meningothelial no
33M 55 M 1] NS no
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Table I: Characteristics of Sporadic Solitary Meningiomas (Continued)
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126M 70 M
127M 44 F
128M 28 F
129M 62 M
130M 80 M

1] NS no
1] NS yes
1 NS yes
I} NS yes
1] NS no

NS = not scorable (see Methods); n/a = data not available

fication (MLPA) using kit P044-NF2 following the manu-
facturer's protocol (MRC-Holland, Amsterdam, The
Netherlands; http://www.mrc-holland.com). Briefly, 200
ng of DNA were incubated overnight with probe mix
(P044) at 60°C. A 15-min ligation was performed after-
wards at 54°C. Ten pl of ligation products were used for
PCR using FAM-labeled universal primers. PCR products
were resolved using ABI 3730XL DNA analyzer and peaks
were quantified by Genotyper software. The data were
analyzed and plotted by a custom excel based program.

Array CGH

Array CGH was performed for all tumors using Agilent
c¢DNA microarrays as previously described [25]. These
arrays contain 14,160 cDNA clones (Agilent Technolo-
gies, Palo Alto, CA) with a median interval between
mapped elements of 100 kb, with 92.8% of intervals <1
Mb and 98.6% <3 Mb [26]. Briefly, one pg of tumor or
normal genomic DNA (male or female) was digested with
Dpnll (New England Biolabs, Beverly, MA, USA), purified
with DNA Clean & Concentrator (Zymo Research,
Orange, CA, USA) and labeled with Cy3-dCTP or Cy5-
dCTP (Amersham Bioscience, UK) using the Bioprime
DNA Labeling System (Invitrogen Life Technologies,
Carlsbad, CA, USA). Labeled DNA was precipitated using
isopropanol together with Cot-1 DNA (Invitrogen Life
Technologies, Carlsbad, CA, USA), which was used to
block repetitive sequences. The probe pellet was then
washed with 70% ethanol, dried and dissolved in hybrid-
ization buffer consisting of 50% formamide, 2 x SSC,
10% dextran sulphate, 2% SDS and 10 pg/pl yeast tRNA.
Dye swap experiments were performed in all cases. One
common male control DNA and one common female
control DNA were used for all hybridizations. The com-
parison between test sample and control sample was done
in a sex mismatched manner for most cases. Hybridiza-
tions were performed in sealed chambers for 60 h at
37°C. After hybridization, slides were rinsed in 2 x SSC,
0.5% SDS at room temperature; washed for 20 min in 2 x
SSC, 50% formamide at 50°C; 20 min in 2 x SSC, 0.1%
NP-40 at 50°C; and 10 min in 0.2 x SSC at 50°C. Slides
were then air dried by centrifugation before imaging. Six-
teen-bit TIF images were collected using an Axon 4000B
scanner and processed initially using GenePix Pro 4.1
(Axon Instruments, Inc. Union City, CA). Defective spots
were flagged by visual inspection of the images and subse-
quently custom software was used to exclude spots that

demonstrated low signal to noise ratios [27]. The baseline
CGH level (two genomic copies) was calculated by the
software as the median Cy3 and Cy5 ratio of all clones
analyzed. Dye swap experiments were merged to calculate
the mean and standard deviation of the signal for each tar-
get clone. The normalized values were transformed to
log2 format to ensure equal weighting for gains and
losses.

For the familial multiple meningiomas, array CGH was
also performed using the Agilent 44 K CGH array (Agilent
Technologies, Palo Alto CA), which contains more than
43,000 coding and noncoding human oligonucleotide
sequences with an overall median probe spatial resolution
of 43 kb (24 kb within RefSeq genes) [28]. Oligo array
CGH was performed according to the manufacturer's pro-
tocol. Briefly, three ug of DNA (both test sample and con-
trol sample) were double digested with AluIand Rsa I and
subsequently purified with QIAprep Spin Miniprep kit
(QIAGEN GmbH, Hilden, Germany). Digested samples
were labeled with Cy3-dUTP or Cy5-dUTP (Amersham
Bioscience, UK) using the Bioprime array CGH DNA
Labeling System (Invitrogen Life Technologies, Carlsbad,
CA, USA); paired samples were mixed and subsequently
purified by MicroCon YM-30 (Millipore, Billerica, MA,
USA). Labeled probes were mixed with Cot-1 DNA (Invit-
rogen Life Technologies, Carlsbad, CA, USA), blocking
solution and hybridization solution (Agilent Technolo-
gies, Palo Alto, CA, USA) and hybridized to a 44 K CGH
array. Hybridizations were performed in a 65°C oven on
rotating rack for 40 hrs. Arrays were washed with wash 1
and 2 solutions (Agilent Technologies, Palo Alto, CA,
USA) and scanned immediately using the Agilent scanner.
Images were analyzed using Feature Extraction software
and data visualized with CGH analytics (Agilent Technol-
ogies, Palo Alto, CA, USA).

Data analysis

Imbalanced chromosome segments (ICS) were identified
by change-point analysis using a circular binary segmen-
tation algorithm [29]. An ICS is defined in this study as a
segment identified by change-point analysis with mean
log2 ratio >0.20 (gain) or <-0.20 (loss) based upon a sep-
aration of 2 standard deviations from the mean. The
binary segmentation procedure applies the test recursively
until no more changes are detected in any of the segments
obtained from the change-points already found. When no
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change point was found over the whole chromosome or
chromosome arm and the mean log2 value of the whole
chromosome or chromosome arm was either >0.20 or <-
0.20, the whole chromosome or chromosome arm was
considered imbalanced. The calling of whole chromo-
some or chromosome arm imbalance was therefore
dependent upon the even distribution (no change point)
and mean of all data points involved in the whole chro-
mosome or chromosome arm, rather than on how many
probes have log2 ratio above a pre-defined number. The
physical map positions of subchromosomal segments
were based on NCBI build 33. The Kolmogorov-Smirnov
(KS) test was used for comparing the ICS number differ-
ence between tumor groups. Hierarchical cluster analysis
was performed using the CGHsmooth [30] transformed
whole genome dataset. Probes with no copy change are
designated as 0, probes with one copy loss designated as -
1, probes with a copy number gain designated as 1, and
probes with amplification designated as 2. Uncentered
correlation using the means of all pair-wise data points for
distance metrics (average linkage) was used for cluster
analysis [31].

Results

Array CGH analysis of sporadic solitary meningiomas

To provide a basis for comparison of tumors from subjects
with multiple meningiomas, we first used two-color array
CGH with Agilent human cDNA chips to generate
genomic profiles for 64 sporadic solitary meningiomas:
25 WHO grade I (benign), 27 WHO grade 11 (atypical)
and 12 WHO grade III (malignant). Representative array
CGH profiles with segmentation analysis are shown in
Figure 1 (two benign meningiomas: Panels A and B; one
atypical: Panel C; one malignant meningioma: Panel D).
We observed a progressively increasing number of ICS in
higher grade tumors (see Figure 2 for the distribution of
ICS in each tumor group). The difference in total ICS (P <
0.001), as well as in gain events (P = 0.01) or loss events
(P <0.001) considered separately, was significant between
benign and high grade tumor groups (atypical and malig-
nant) whereas the difference in total ICS between atypical
and malignant tumor groups was not (P = 0.47).

The above analysis revealed a number of recurrent ICS,
shown in the HEAT map of Figure 3, that are largely con-
sistent with previous studies using a variety of technolo-
gies. Deletion events occurred frequently on
chromosomes 22 (71%), 1 (39%), 14 (25%), 6 (22%), 18
(20%), 3 (17%), 10 (16%), 9 (13%), 4 (13%), 11 (11%)
and X (11%). Gain events occurred on chromosome 1, 17
and 20 (11%, 12.5% and 11% respectively). The predom-
inant event in benign meningiomas was 22q deletion, in
64% of the tumors. In atypical meningiomas, 22q dele-
tion occurred in 67% of the tumors, followed in frequency
by deletion of 1p (52%), 14q (41%) and 6q (26%),

http://www.biomedcentral.com/1755-8794/2/42

whereas in malignant meningiomas, 1p deletion was
equally as frequent as 22q deletion, occurring in 75% of
these tumors, followed by deletion of 6q, 9p and 10q (all
at 50%), 3p at 42%, and gain of 20q (33%). These data are
consistent with the accepted view that deletion of chro-
mosome 22 is an early event responsible for initiation of
the major fraction of sporadic meningiomas, but that a
significant minority of tumors arises via some other mech-
anism. It is also thought that meningiomas progress via a
stepwise pathway, i.e., atypical and malignant meningi-
omas develop due to accumulation of additional genomic
lesions [32]. Our whole genome profiling data for spo-
radic solitary meningiomas largely support such a model,
as there was significantly (P < 0.001) greater genomic
instability in high grade tumors than in low grade tumors.

Array CGH analysis of multiple meningiomas
Co-occurrence of multiple meningiomas in individuals
who do not have germline NF2 mutation occurs far less
frequently than do solitary meningiomas. We obtained
four familial multiple meningiomas from three unrelated
individuals (all female), along with five tumors from
three individuals with sporadic multiple meningiomas
with DNA quality adequate for this study. Previous muta-
tional analysis identified somatic NF2 mutations in the
sporadic multiple meningiomas but not in the familial
cases [16]. We performed gene dosage analysis by MLPA
to determine whether there was somatic loss of NF2 in
these tumors (Figure 4). One copy of NF2 was deleted in
all sporadic multiple meningiomas, consistent with the
known "two-hit" mechanism of tumorigenesis involving
the merlin tumor suppressor. However, none of the famil-
ial multiple meningiomas showed a loss at NF2. These
findings, and the prior mutation analyses, support the
notion that familial multiple meningiomas do not arise
by inactivation of the NF2 gene.

By genomic profiling using two-color array CGH with Agi-
lent human cDNA chips, we found that the sporadic mul-
tiple meningiomas had several recurrent ICS, including
deletion of the whole chromosome 22 in all 5 tumors,
deletion of 1p, all of chromosome 14, and part or all of
chromosome 10 in 4 of 5 tumors and gain of the whole
chromosome 20 in 2 of 5 tumors. This pattern was similar
to that seen in Grade II sporadic solitary meningiomas, as
was the average ICS/tumor of 5.8 + 2.7 in sporadic multi-
ple meningiomas and 5.0 + 4.5 in atypical sporadic soli-
tary meningiomas. In stark contrast, familial multiple
meningiomas did not show any ICS.

Cluster analysis of meningioma array CGH data

To provide an unbiased global view of these genomic pro-
files, we performed unsupervised hierarchical cluster anal-
ysis using the CGHsmooth transformed dataset [30]. The
cluster analysis was done by average linkage using the
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Representative array CGH profiles of meningiomas. Segmentation analysis of array CGH results generated from Agi-
lent cDNA arrays using four representative sporadic solitary meningiomas is shown: A: Benign meningioma (68B) without
imbalanced chromosome segments (ICS). The X chromosome imbalance is due to use of a sex-mismatched standard DNA as
a positive control; B: Meningioma with chromosome 22 deletion as the only imbalance event (42A); C: Atypical meningioma
with both gain and loss ICS (43A); D: Malignant meningioma with many ICS and focal amplification (129M). X-axis: clones are
ordered from chromosome | to 22, X and Y and within each chromosome, clones are arranged following their physical map
order from short arm telomere to long arm telomere. Y-axis: log2 ratio (test/control) of array CGH signal for each individual
probe (scattered dots) and for segments of consistent dosage (solid lines) defined by binary segmentation. The baseline (no
copy number change) is 0; segments above the baseline indicate gain of copy number and segments below the baseline indicate

loss of copy number.

means of all pair-wise data points as distance metrics,
yielding the tree presentation shown in Figure 3. The
unsupervised cluster analysis split the whole tumor set
into two main branches, one comprised of tumors with
chromosome 22 deletion (left side of Figure 3) and one
comprised of tumors without chromosome 22 deletion
(right side). The procedure further subdivided the spo-
radic solitary meningiomas with chromosome 22 dele-
tion into two major groups, with the exception of four
outliers (27A, 2M, 43A and 81A). One group contained
14 Grade I tumors along with 7 higher Grade tumors (6 11

and 1 IIT). Notably, 13 of these 14 Grade I meningiomas
were grouped into a single subcluster characterized by loss
of chromosome 22 as the only major imbalance event.
The second major group was comprised mainly of menin-
giomas of advanced grade (11 Grade Il and 7 Grade III out
of 20 solitary sporadic tumors), although 2 tumors classi-
fied as Grade I were also present. These tumors had more
ICS than those in the first group and implicate progres-
sion genes at loci involving losses on chromosomes 1p,
14q, 6q, 18, 9p and 10q and gains on chromosomes 17q
and 20.
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The distribution of Imbalanced Chromosome Segments in three groups of sporadic solitary meningiomas. Each
dot represents an individual tumor. Y-axis indicates the total number of imbalanced chromosome segments (ICS) in each
tumor; X-axis shows three groups of meningioma of different grades. The total number of ICS ranges from 0—12 in benign
meningiomas, 0—14 in atypical meningiomas and 2-25 in malignant meningiomas.

Though the cluster analysis generally reflected, with some
exceptions, the benign or advanced histological grading of
those solitary sporadic meningiomas showing chromo-
some 22 loss, the solitary sporadic meningiomas without
chromosome 22 loss were not at all grouped according to
their grade. There were very few imbalance events for most
benign and atypical meningiomas of this type. Indeed,
there was a notable subgroup of high grade tumors in
both chromosome 22-defined groupings (such as 21M,
33M, 128M, 206A, 29A, 34A, 40A, 42A, 44A, 45A, 72A,
80A, 83A) that did not exhibit extensive genomic imbal-
ance (ICS = 4). Many of these tumors exhibited no chro-
mosome 22 deletion. Overall, we observed a significant
difference in the frequency of non-chromosome 22
genomic imbalance events between solitary sporadic
tumors with chromosome 22 deletion and those without
(P = 0.006). Though the difference was confined to
tumors of advanced grade, it may have contributed, in
addition to chromosome 22 loss, to the segregation of the
solitary sporadic meningiomas into two main branches
(Figure 3). In any event, while our data are generally con-
sistent with a traditional multistep model of tumor pro-
gression for those meningiomas with chromosome 22
deletion, where NF2 inactivation is likely the initiating
event, this may not apply to tumors without chromosome

22 deletion, which apparently harbor unidentified genetic
lesions that may result in more direct progression without
the accumulation of multiple ICS.

In the unsupervised cluster analysis, familial multiple
meningiomas were cleanly distinguished from the spo-
radic multiple meningiomas. The latter were spread across
the left hand side of the cluster diagram in Figure 3,
among the tumors with chromosome 22 loss, one with
the outliers mentioned above, one amid several atypical
tumors in the grouping of mainly benign tumors and
three in the grouping mainly of atypical and malignant
tumors. By contrast, the familial multiple meningiomas
clustered among the solitary sporadic tumors to the right
of Figure 3, characterized by the absence of chromosome
22 loss.

To determine whether the familial multiple meningiomas
might harbor smaller imbalance events that were missed
by the relatively low resolution cDNA chip, we repeated
the array CGH analysis of these particular familial multi-
ple meningioma samples using a newer, higher resolution
Agilent human oligo array. Even with this higher resolu-
tion array, the familial multiple meningioma tumors
showed no ICS in any of the four tumors, supporting the

Page 7 of 12

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:42

TW

L

%-IIIT
I
L
!:

Figure 3

Tree view of unsupervised hierarchical cluster analy-
sis of meningiomas based upon array CGH data. A
cluster diagram generated using array CGH data from Agi-
lent cDNA array analysis of 63 sporadic solitary meningi-
omas, 5 sporadic multiple meningiomas and 4 familial multiple
meningiomas is shown above a HEAT map showing the
occurrence of imbalanced chromosome segments (ICS)
(green = loss; red = gain as defined in Methods) relative to
control DNA observed across the genome from chromo-
some 22 (top) through chromosome | (bottom). The dataset
segregated into two branches based upon chromosome 22
deletion status, with tumors deleted for chromosome 22 on
the left and tumors without chromosome 22 deletion on the
right. Of the sporadic multiple meningiomas, DAV331,
DAV308 and DAV292 are from the same person (but do not
show identical ICS patterns) and DAV261 and DAV263 are
each from different subjects; of the familial multiple meningi-
omas, DAV259 and DAV262 are each from different individ-
uals in two different families while DAV289 and DAV338 are
from the same subject, representing a third family.

view that familial multiple meningiomas are fundamen-
tally different from sporadic multiple meningiomas both
in terms of NF2 mutation and genomic profile.

Discussion

We demonstrate here that histologically similar tumors
with a proposed different genetic etiology can be differen-
tiated based upon their genomic profiles using array CGH

http://www.biomedcentral.com/1755-8794/2/42

as an effective method to generate informative profiles in
a genome-wide manner. Previously, large-scale gene
expression profiling using RNA extracted from tumor tis-
sue has demonstrated its utility in classifying different
tumor subtypes of leukemia and lymphoma [33,34]| and
solid tumors [35,36]. It has also been applied to study the
molecular signatures of meningiomas of different grades
and locations [37-41]. Notably, in a recent study, gene
expression patterns were shown to be predictive of major
cytogenetic patterns seen in meningiomas (chromosome
22 or 22q loss, loss of 1p36 alone, complex karyotypes
with loss of 1p36 and/or 14q and diploid) based upon
altered expression of a combination of genes within the
regions of altered dosage and genes outside these regions
[42]. Each individual gene expression change represented
an apparent correlate of the corresponding cytogenetic
abnormality that could potentially play a role in meningi-
oma initiation or progression. In particular, those altered
genes not actually located in a region of cytogenetic
abnormality may well represent components of pathways
critical to meningioma formation. While it is difficult to
assign such a role to each individual gene without addi-
tional studies, the overall pattern observed was clearly
associated with patient outcome, though not with tumor
histopathology.

Like gene expression profiling, whole genome profiling by
array CGH using DNA extracted from tumor tissue has
also shown its power to differentiate solid tumors of both
mouse and human [27,43-45]. Solid tumors often exhibit
genomic imbalance events and some of these imbalance
events are specific to certain types or subtypes of tumors.
In view of the stable nature of DNA compared with RNA,
array CGH is a potentially more widely applicable, easy
and effective method for histo-molecular classification. In
addition, array CGH provides information about genome
stability of the tumor, which may be critical information
for assessing its biological state and pathogenic potential.

Our array CGH analysis of sporadic solitary meningiomas
detected a wide variety of genomic events, largely consist-
ent with those which have been detected previously by a
variety of cytogenetic and molecular techniques, and have
often been associated with tumor progression [32,46-52].
Notably, through unsupervised cluster analysis using our
entire genome array CGH dataset, we observed a clean
separation of meningiomas with or without chromosome
22 deletion for both solitary and multiple meningiomas.
Chromosome 22 deletion is a frequent mechanism for
somatic inactivation of the NF2 gene, thought to account
for ~60% of meningiomas [7]. The initiating event(s) in
meningiomas that retain chromosome 22 has not yet
been identified. The distinction between the two groups
of meningiomas by array CGH cluster analysis apparently
reflects the existence of at least two main types of genetic
mechanism for meningioma tumorigenesis. Since no con-
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MLPA analysis of sporadic and familial multiple meningiomas. Representative MLPA analyses of a familial multiple
meningioma (DAV338, top panel) and a sporadic multiple meningioma (DAV308, bottom panel) are shown with probe IDs on
the X-axis. There are 21 MLPA probes for the NF2 gene (one probe for each exon, two probes for the promotor region and
one probe on either side of the gene) and |12 control probes located on other chromosomes. The Y-axis shows the relative
probe peak height as an indication of copy number. The relative peak heights were calculated by normalizing the peak height of
control probes between normal control DNA and tumor DNA. Gray bars indicate the mean peak height with standard devia-
tion from 10 normal control DNAs. Black bars indicate the peak height for the tested tumor DNA. The top panel reveals no
deletion of the NF2 gene while the bottom panel is consistent with deletion of one copy of the NF2 gene, including its flanking
regions. All multiple meningiomas and a sampling of 10 sporadic solitary meningiomas were tested by MLPA, with results at this

locus identical to those from array CGH.

sistent imbalance event predominates among tumors
without chromosome 22 deletion, there may be a greater
genetic diversity in the initiation of these tumors. The
lower number of ICS in tumors that retain chromosome
22 is consistent with the lack of genomic events detected
previously using multi-allele marker techniques [53].

Our data also revealed segregation, based upon a variety
of genomic events, of tumors that lost chromosome 22

into two major groups, one consisting predominantly of
benign tumors and the other predominantly of tumors of
advanced histological grade (Figure 3). The cluster analy-
sis therefore illustrates some potential utility and power of
array CGH profiling as an objective means for tumor sub-
classification and subgrouping. Due to the existence of
genetic heterogeneity among meningiomas and the
nature of histological examination, we did not expect all
tumors to be assigned by cluster analysis precisely in con-
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cert with their pathological grade and indeed, that was the
case. However, the tendency, with some exceptions, of
Grade 1 tumors to cluster separately from higher grade
tumors suggests that further refinement of the genomic
profiling strategy is warranted, in combination with more
extensive molecular analysis to determine whether differ-
ences are due to misclassification by array CGH or rather
represent tumors whose molecular changes and predicted
behavior are not efficiently recognized in the standard his-
tological examination.

Whole genome array CGH analysis revealed a significant
distinction between sporadic meningiomas with or with-
out chromosome 22 deletion. Advanced grade tumors
with chromosome 22 deletion had significantly more
imbalance events in the rest of the genome than those
without, suggesting not only a different genetic etiology,
but also a different pathway for tumor progression. This
distinction also raises the possibility that prior chromo-
some 22 loss itself may contribute directly to subsequent
genomic instability. Therefore, the array CGH analysis
points to the need to unravel potential alternative genetic
pathways for a complete understanding of meningioma
tumorigenesis. The cDNA array used here did not provide
a sufficiently dense coverage to identify small regions of
loss that could target specific suppressor genes and we
detected no cases of homozygous deletion. There may be
potential clues to alternative pathways revealed by the
amplification events readily detected in some tumors,
though these also typically covered relatively large seg-
ments and occurred primarily in malignant meningiomas.
For example, meningioma 126M displayed amplification
of an ~500 kb region (1.9-2.4 Mb) on chromosome 11
spanning, among other genes, the loci for insulin (INS)
and insulin-like growth factor 2 (IGF2), which has been
implicated previously in some meningiomas through
expression studies [41]. However, the same tumor also
displays larger amplifications on chromosome 1 (78.6-
87.5 Mb) and chromosome 17 (41.8-64.0 Mb), both of
which contain numerous genes that could potentially play
arole in meningioma growth. Similarly, tumor 128M dis-
played a focal amplification of the c-myc oncogene (MYC)
on chromosome 8, whose expression may correlate with
proliferative index and help predict recurrence of menin-
giomas [54,55], but the same tumor also had a high level
gain on chromosome 17 (49.2-64.0 Mb), overlapping
with the large region amplified in 126M. When compared
with all tumors that showed a gain on chromosome 17,
the minimum shared segment is 58.9-64 Mb and spans
more than 40 genes, including such known growth con-
trol-related genes as the growth hormone-chorionic
somatomammotropin cluster and a protein kinase C fam-
ily member (PKCA) among others. One benign meningi-
oma (63B) had a focal amplification in a gene-rich
segment on chromosome 12 (56.19-56.45 Mb), which
includes CDK4, a known regulator of G1-S progression

http://www.biomedcentral.com/1755-8794/2/42

that phosphorylates the retinoblastoma gene product, Rb,
along with several other potential candidates. These dis-
parate events support the possibility that different mecha-
nisms of progression may occur in different tumors but
their large size, inconsistent occurrence and lack of a uni-
fied predictive pattern suggests that an integration of
detailed genomic, genetic, gene expression and functional
studies will be needed to delineate the array of alternative
pathways to meningioma growth in vivo.

Most importantly in our study, array CGH analysis
revealed strikingly different genomic profiles between
familial multiple meningioma and sporadic multiple
meningioma. Though this represents only a small number
of tumors and even a single case of loss in one familial
multiple meningioma of chromosome 22 or of one of the
other chromosomal regions altered in the sporadic multi-
ple meningiomas would reduce the apparent distinction,
the absence of all genetic rearrangements in the familial
multiple meningiomas is noteworthy. For example, the
likelihood that all 4 familial multiple tumors retained
chromosome 22 (based upon its overall rate of retention
in meningiomas) is ~0.04. Combined with the absence of
any other genomic rearrangement in all 4 such tumors,
the retention of chromosome 22 provides further evi-
dence that familial multiple meningioma is a genetically
distinct tumor predisposition syndrome. Given that NF2
mutation was not seen and that chromosome 22 deletion
is not a shared feature in these tumors, we believe that one
or more other tumor suppressor genes or oncogenes is
responsible for the tumor initiation of familial multiple
meningioma. Although no genomic imbalance event was
identified, even with the higher resolution oligonucle-
otide array, it is conceivable that loss of heterozygosity
without copy number change may be uncovered using
high density single nucleotide polymorphisms (SNP)
arrays. The finding that sporadic multiple meningiomas
harbor a similar level of genomic imbalance events to
atypical solitary meningiomas should also draw attention
to the potential for greater subarachnoid spreading or
higher aggressiveness that would produce a worse progno-
sis than familial multiple meningiomas. Further, as spo-
radic multiple meningioma and familial multiple
meningioma cannot be distinguished histopathologi-
cally, array CGH can provide an important means of dif-
ferential diagnosis.

Conclusion

Genome profiling using array CGH can be a valuable
complement to histopathology for routine tumor diagno-
sis and grading and for implicating etiology of meningi-
omas. Moreover, it can aid differential diagnosis of
multiple meningiomas, distinguishing sporadic and
familial forms, with potential clinical implications for the
risk of meningioma occurrence in other members of the
family.
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