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Valley‑selective energy transfer 
between quantum dots 
in atomically thin semiconductors
Anvar S. Baimuratov1* & Alexander Högele1,2

In monolayers of transition metal dichalcogenides the nonlocal nature of the effective dielectric 
screening leads to large binding energies of excitons. Additional lateral confinement gives rise to 
exciton localization in quantum dots. By assuming parabolic confinement for both the electron and 
the hole, we derive model wave functions for the relative and the center-of-mass motions of electron–
hole pairs, and investigate theoretically resonant energy transfer among excitons localized in two 
neighboring quantum dots. We quantify the probability of energy transfer for a direct-gap transition 
by assuming that the interaction between two quantum dots is described by a Coulomb potential, 
which allows us to include all relevant multipole terms of the interaction. We demonstrate the 
structural control of the valley-selective energy transfer between quantum dots.

The unique properties of two-dimensional (2D) materials provide versatile opportunities for nanomaterial 
physics1. Within this realm, monolayers of transition metal dichalcogenides (TMD) represent 2D crystalline 
semiconductors with unique spin and valley physics for opto-valleytronic applications2–4. Coulomb electron–hole 
attraction and the nonlocal nature of the effective dielectric screening lead to a large binding energy of exci-
tons, which dominate both light absorption and emission5–8. The combination of exceptional brightness and 
spin–valley coupling opens up novel opportunities for tunable quantum light emitters for quantum information 
processing and sensing9 realized on the basis of excitons confined in TMD-based systems.

There are various approaches to realize exciton confinement in TMD monolayers. Impurities, vacancies, 
or strain in monolayer TMD crystals, as well as local modulations of the immediate environment, modify the 
energy gap of 2D materials10. By providing additional lateral confinement, local disorder is known to confine 
excitons in a relatively small area of TMD monolayers and give rise to quantum dot (QD) excitons. Spectral 
signatures of quantum dot exciton localization with bright and stable single-photon emission were observed 
from unintentional defects in monolayer tungsten diselenide11–15. Subsequently, strain engineering has proven 
as a viable deterministic approach to obtain spatially and spectrally isolated quantum emitters in monolayer 
and bilayer TMDs16–19, and controlled positioning has been achieved by irradiating monolayer crystals with a 
sub-nm focused helium ion beam20. Alternatively, QDs have been realized by electrostatic confinement21–23, or 
by creating lateral TMD heterostructures forming a potential well24. In vertical TMD heterostructures, moiré 
superlattices give rise to periodic QD arrays hosting localized excitons25,26.

By preserving strong spin–valley coupling, TMD QDs inherit optovalleytronic properties from their 2D host 
system27, as the intervalley coupling is weak due to the vanishing amplitude of the electron wave function at the 
QD boundary and hence valley hybridization is quenched by the much stronger spin–valley coupling28. As in 
conventional QDs, the oscillator strength and radiative lifetime of confined excitons are strongly size-dependent, 
which results in oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from 
a few tens of femtoseconds to a few picoseconds29. In the presence of an external magnetic field bound states in 
TMD QDs can be considered as quantum bits for potential applications in quantum technologies30–32.

In this work, we study nonradiative resonance energy transfer between two adjacent QDs in TMD 
monolayers33. Building on theories initially developed for molecular systems by Förster in the framework of 
dipole–dipole interaction34 and generalized by Dexter for quadrupole and exchange interactions35, we derive 
the theory of nonradiative resonance energy transfer for atomically thin QDs hosted by 2D crystals. For conven-
tional QDs with sizes in order of tens of nm, the multipole nature of Coulomb interactions and energy transfer 
through dipole-forbidden states must be taken into account36,37. For QDs hosted by 2D systems considered 
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here, we account for multipole terms of the transfer process and analyze the effect of the donor–acceptor system 
geometry on transfer efficiency.

Model for confined excitons
We start our analysis from delocalized excitons in TMD monolayer, by focusing on excitons formed by states at 
the bottom of the conduction band and the topmost valence band at K± points of the first Brillouin zone. Using 
the two-band effective mass model the wave function of the exciton can be written as a factorization of the rela-
tive motion of charge carriers and their center-of-mass motion38,39:

where α = ±1 is the valley index, re(h) is the radius vector of the electron (hole), σ is the normalization 
area, R = (mere +mhrh)/M is the center-of-mass vector, me(h) is the effective mass of the electron (hole), 
M = me +mh , Q is the wave vector of the center-of-mass motion, ψ̃N (ρ) is the wave function of the relative 
motion with coordinate ρ = re − rh , and uα(re) and vα(rh) are the Bloch functions of the electron and hole in 
valley α . For very small QDs (nanoflakes) the effective mass approach is not applicable, but it is possible to use 
ab-initio calculations to study their properties40.

We solve the Schrödinger equation for the relative motion of states with circular symmetry, namely S-states 
with zero angular momentum,

where ρ = |ρ| , µ = memh/M is the reduced mass, ǫ̃N is the eigenenergy of the S-state with the principal quantum 
number N. The nonlocally screened electron–hole interaction is described by the Rytova–Keldysh potential41–43

where e is the electron charge, ρ0 is the screening length, ε is the effective dielectric constant, and H0(x) and Y0(x) 
are Struve and Neumann functions.

Without considering the details of lateral confinement we focus on TMD QDs with in-plane localization 
of charge carriers and make the approximation of a harmonic confinement. If the coordinates of the relative 
motion, ρ , and the center-of-mass motion, R , of the confined exciton are not separated, one can use a variational 
procedure without the separation of coordinates to find the wave function44. Here we assume for simplicity that 
both the electron and hole are confined by parabolic potentials of the form

which are characterized by the confinement frequency ω . With this potential we separate the coordinates of the 
relative motion and the center-of-mass motion45. Therefore, the energies and wave functions of the excitons in 
QDs are written as:

respectively. The total energy of the exciton confined in the QD takes discrete values and is dependent on the 
band gap of the TMD monolayer, Eg , and on Enl and ǫN , which are the energies of the confined center-of-mass 
and relative motions.

We solve the Schrödinger equation for the center-of-mass motion

in polar coordinates R ≡ (R, θ) . The exact eigenenergies and eigenstates are those of the 2D harmonic oscillator46, 
namely

and
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where n = 0, 1, 2, . . . and l = 0,±1,±2, . . . are the principal and angular momentum quantum numbers, respec-
tively, L =

√
�/(Mω) is the QD size, and L|l|

n (x) are the associated Laguerre polynomials.
The radial part of the relative motion with zero angular momentum is determined not only by the nonlocally 

screened potential from Eq. (3) as in the case of free excitons, but also by the parabolic potential µω2ρ2/2 . The 
Schrödinger equation for the relative motion is written as

To find an approximate solution of this equation one can use the 2D hydrogen-like wave functions with the Bohr 
radius as variational parameter5. Using the material parameters from Table 1, we solve this equation numerically 
for the first three exciton S-states in four specific TMDs, namely MoS2 , MoSe2 , WSe2 , and MoTe2.

The energies ǫN and wave function overlaps of the electron and hole at the same spatial position |ψN (0)|2 
are shown in Fig. 1 as functions of the QD size L. In the top panel of Fig. 1 we observe for all materials the same 
trends for the energies ǫN , they decrease with the size of the QD. The 1S state (N = 1) is less dependent on the 
QD size as it is the most localized state. The wave function overlaps |ψ1(0)|2 are shown in Figs. 1e–h. Due to the 
confinement effect these overlaps are larger for smaller QDs and decrease monotonically with size. QDs in WSe2 
exhibit larger size effect than in MoS2 , MoSe2 , and MoTe2 due to smaller reduced mass. For large QDs all three 
states converge to those of delocalized excitons shown by the dashed lines in Fig. 1.

Resonant energy transfer
In the following, we calculate the nonradiative resonant energy transfer between two 2D QDs coupled by a 
Coulomb potential. Due to the finiteness of QD dimensions in the xy-plane, the point dipole model developed 
by Förster leads to large errors when the distance between the QDs is of the order of their sizes. Therefore, the 
multipole nature of Coulomb interaction must be taken into account as in the case of conventional 3D QDs36. For 
conventional colloidal QD and molecular systems the orientations of QDs and molecules are random, whereas in 
layered systems the positions of the QDs are fixed and the localized excitons with lowest energies have an in-plane 
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Table 1.   The effective masses of electrons and holes (in units of the free electron mass) and 2D screening 
lengths are taken from Refs.53,54.

Parameter MoS2 MoSe2 WSe2 MoTe2

me 0.45 0.53 0.34 0.57

mh 0.54 0.6 0.36 0.64

ρ0 (Å) 6.67 10 8.2 14.4

Figure 1.   QD size effects (solid lines) on the energies ǫN of 1S state (N = 1) , 2S state (N = 2) , and 3S state 
(N = 3) for (a–d) MoS2 , MoSe2 , WSe2 , and MoTe2 monolayers with material parameters from Table 1 and 
ε = 4.5 . (e–h) Same for the overlaps of the electron and hole wave functions at the same spatial position 
|ψN (0)|

2 . Dashed lines show the limit of delocalized excitons with the energies ǫ̃N and overlaps |ψ̃N (0)|
2.
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circular polarization with sign reversal for K+ and K− . This in-plane arrangement of the dipole moments leads 
to characteristic valley-selective orientation effects, which are considered in detail below.

Let us consider two 2D QDs, namely donor and acceptor with sizes LD and LA , located in the same or in two 
different layers of the same TMD material. We assume the centers of QDs to be separated by a 2D-vector d in the 
xy-plane as shown in Fig. 2a. In the z-direction they are separated by a distance h as illustrated in the xz-plane 
projection. In our analysis, it is useful to distinguish two limiting cases. The first case corresponds to the situation 
when the QDs lie in different layers on top of each other and d = 0 . The second case is realized when the QDs 
are located in one monolayer and h = 0 . These two limiting cases allows us to analyze the orientation effects, 
e.g., for h = 0 the system is a truly 2D-object, in which the QDs and their dipole moments are in one plane. For 
d = 0 the problem is quasi-3D, because in principle all dimensions matter.

Without loss of generality we assume that only the 1S states (N = 1) contribute to the energy transfer between 
the donor and acceptor. Then, energy transfer is related to the annihilation of an exciton F (α)

1,nl in the donor and 
the creation of an exciton F (β)

1,mk in the acceptor (see Fig. 2b), where α and nl (β and mk) are the valley index and 
two quantum numbers of the exciton in the donor (acceptor). Here we consider the range of distances between 
the donor and acceptor, s = (d2 + h2)1/2 , much smaller that the de Broglie wavelength of the annihilated exci-
ton and neglect effects of exchange and radiation transfer47,48, but take into the account the multipole nature of 
the Coulomb interaction36. With these assumptions, the energy transfer depends on the matrix elements of the 
Coulomb potential

where r1 and r2 are the 2D center-of-mass vectors originating at the centers of the donor and acceptor. By using 
the Fourier expansion we find the matrix elements

where

If we use the long wave approximation qa ≪ 1 with the lattice constant of TMD a and express the integration as 
a sum of integrals over elementary cells, we simplify
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Figure 2.   (a) Schematic illustration of two TMD QDs, donor and acceptor. The geometries of the two limiting 
cases: the centers of two QDs lie on the z-axis (left) or two QDs lie in one xy-plane. (b) Nonradiative resonant 
energy transfer between donor and acceptor.
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where the interband matrix element of the coordinate operator is

and � is the area of the unit cell. The corresponding expression for FA(q) can be found by replacements D → A , 
α → β , and nl → mk in Eq. (17).

By carrying out the integration over the angular variable of q in Eq. (15) we obtain

with two integrals I1 and I2 given by

where Jη(x) is the Bessel function of the first kind, η = 1, 2 , and n is the unit vector co-directional with d.
Within the two-band approximation of the band structure in TMD monolayer, the interband matrix elements 

of the dipole moment operator in the donor and acceptor are written in Cartesian coordinates as

where D = eat/Eg and t is the nearest-neighbor hopping integral49,50, and angles ϕ and ϑ determine the crystal 
coordination axes of the donor and acceptor. Using these formulas for dipole moments and choosing n = ex , 
we find

where δαβ is the Kronecker symbol and p = ei(βϑ−αϕ) is the phase factor, which is determined by the alignment 
of the crystal coordination axes. Further, for the sake of simplicity, we assume ϕ = ϑ = 0 and p = 1 . According 
to the result, the intravalley matrix element (α = β) corresponds to the annihilation and creation of excitons 
in the same valley and is proportional to the difference I1 − I2/2 . The intervalley matrix element (α  = β) is 
proportional to −I2/2 , because the dipole moments of the excitons are orthogonal to each other and the first 
scalar product in Eq. (19) is zero. It is noteworthy that if we consider the interlayer excitons in TMD homo- or 
heterobilayers instead of intralayer ones, we must take into account the z-component of dipole moments in 
Eqs. (21) and (22).

Finally, using the Fermi’s golden rule we obtain the rate of the resonant energy transfer from the donor state 
α, nl to all final states of acceptor β ,mk as:

where Ŵ is the sum of the total dephasing rates of interband transitions in the donor and acceptor, and 
�� = Enl − Emk is the energy detuning between the exciton levels in the donor and acceptor involved in the 
energy transfer process. Notably, if the magnitudes of the Coulomb matrix elements in Eq. (24) are much larger 
than �� and �Ŵ , the formation of the entangled states in QDs must be considered51.

Assuming the simplified case when the energy transfer occurs for equal QDs, LD = LA = L , from the state 
nl = 00 in valley α to the states with mk = 00 in valleys β = ±α , we find

where the rate is dependent on the intravalley and the intervalley matrix elements. To quantify these matrix 
elements for h > 0 and d > 0 we evaluate the integrals in Eq. (20) numerically. It should be noted that all other 
S-states of the relative motion and all other mk states of the center-of-mass motion in acceptor contribute to the 
energy transfer, but their contributions are negligibly small.

Before proceeding with the evaluation of the integrals, it is instructive to introduce the dipole–dipole approx-
imation (DDA) of the Coulomb interaction developed by Förster34. This approximation of point dipoles is 
obtained by increasing the distance between the donor and acceptor s to infinity, in particular d → ∞ for h = 0 
or h → ∞ for d = 0 . Then we find the DDA limit for the matrix element from Eq. (23) and the energy transfer 
rate from Eq. (25)
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where the matrix element indexes were omitted for simplicity.
As illustrative examples of our theory, we consider two limiting cases shown in Fig. 2a, as they allow us to 

analyze the matrix elements and rates, and find their asymptotics. For h = 0 , when both QDs are located in the 
same monolayer, we find exact expressions

where C0 = 2πD2|ψ1(0)|2/(εL) , ξ = d2/(8L2) , and I0(ξ) and I1(ξ) are the modified Bessel functions of the 
first kind. In Fig. 3 we show the matrix elements for MoS2 monolayer and ϕ = 0 starting from the close-contact 
distances between QDs, d = 2L . For the shown range of distances the intravalley matrix element C1 first starts 
with a positive value and decreases with distance d. After crossing the zero at d ≈ 2.51L it reaches a minimum 
C1 ≈ −0.03C0 at d ≈ 3.41L and further increases monotonically. On the other hand, the intervalley matrix 
element C2 starts from a negative value, decreases monotonically with distance, and after reaching a minimum 
C2 ≈ −0.15C0 at d ≈ 2.26L it increases monotonically.

The analysis shows that for ξ → ∞ , which is the DDA in Eq. (26) for h = 0 , we obtain

For small distances in the monolayer limit ( ξ ≪ 1 ) exchange effects must be taken into account, because they 
substantially change the intravalley matrix element.

By substitution of Eqs. (28) and (29) into (25) we find the rate of the energy transfer for h = 0 as

where γ0 = 2C2
0/(�

2Ŵ) . By using the material parameters of monolayer MoS2 and assuming L = 3 nm, ε = 4.5 
and �Ŵ = 5 meV20, we estimate the absolute values C0 = 17 meV and γ0 = 176 ps−1 . Again for ξ → ∞ we 
obtain the DDA in Eq. (27) γ (dd)

d = 10γ0(L/d)
6 . This result clearly shows that for this limit, the system can be 

considered as two interacting point dipoles in the Förster model. We plot the rate of the energy transfer γd in 
Fig. 4a and show explicitly the intravalley and intervalley contributions to the transfer. Evidently, the intervalley 
transfer is larger than the intravalley, particularly for large distances it is nearly one order of magnitude larger. 
It should be noted, that for the distance d ≈ 2.51L only the intervalley transfer occurs, this position is marked 
by the red arrow in Fig. 4a.

To compare the exact result for the energy transfer in Eq. (31) with the DDA we calculate the ratio between 
the energy transfer rates γ /γ (dd)

d  in Fig. 4b. The gray dashed line corresponds to the DDA asymptotic. For 
the monolayer limit with h = 0 we use Eq. (31), whereas for QDs separated in the z-direction with distances 
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Figure 3.   Contour map of (a) the intravalley and (b) the intervalley Coulomb matrix elements for QDs in 
MoS2 monolayer as a function of their size L and distance d. The material parameters of monolayer MoS2 are 
a = 3.193 Å, t = 1.56 eV, and Eg = 1.85 eV49,52.
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h = 0.1L, 0.5L, L we substitute Eqs. (23) and (20) into  (25). Evidently, for small distances between the QDs the 
multipole contribution becomes sizable and the distance dependence deviates from the DDA. It is a result of the 
finite sizes of the QDs in the xy-plane. With increasing distance d the ratios γ /γ (dd)

d  become larger than unity, 
and also have maxima, e.g. for the monolayer limit we observe the maximum γd ≈ 2.35γ

(dd)
d  at d ≈ 4.14L . With 

increasing separation in the z-direction, h, we observe a decrease in the energy transfer and a shift of the ratio 
maximum to larger distances d. Summarizing the above, the monolayer limit exhibits the largest energy transfer 
rate, that is up to 2.35 times larger than the energy transfer for the DDA.

Another limiting case with d = 0 is shown in Fig. 2a and corresponds to the geometry, where the centers 
of the two QDs lie on the z-axis. For this symmetry only the intravalley energy transfer occurs, and its matrix 
element is given by

where ζ = h/(2L) and Erfc(ζ ) is the complementary error function. Using Eq. (25) we calculate the transfer 
rate as

From the asymptotic behavior of these functions for ζ → ∞ , which corresponds the DDA in Eqs. (26) and (27) 
for d = 0 , we obtain 2C0(L/h)

3 for the intravalley matrix element and γ (dd)
h = 4γ0(L/h)

6 for the energy transfer 
rate. In Fig. 4c we show that with increasing distance h the transfer rate γh decreases subexponentially. For all 
distances this ratio is smaller than unity and the DDA overestimates the energy transfer (see Fig. 4d). This holds 
generally if all multipole contributions are taken into account, which is necessary when the distance s is in the 
order of the QD sizes and the energy transfer deviates from the Förster model.
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Figure 4.   (a) Energy transfer rate between two QDs in one monolayer, h = 0 (solid line). The dashed and 
short-dashed lines show the intravalley and intervalley contributions. The red arrow shows the distance d, which 
corresponds to the pure intervalley transfer. (b) Ratio between energy transfer rates γ /γ (dd)

d  for fixed distances 
h = 0, 0.1L, 0.5L, L . (c) Energy transfer rate between two QDs for d = 0 . (d) Ratio between energy transfer rates 
γ /γ

(dd)
h  for a fixed distance d = 0.
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Summary and conclusions
In summary, we developed a simple theory for excitons confined in QDs of atomically thin TMD semiconductors. 
Using the approximation of harmonic confinement we derived the energy spectrum and the wave functions of 
QD excitons. By calculating the intravalley and intervalley Coulomb matrix elements and taking into account 
not only dipolar contributions but also multipole corrections, we determined resonant energy transfer rates 
between two adjacent QDs. We derived exact expressions for two simplified cases of possible donor–acceptor 
geometries, and found that for small distances all multipoles must be taken into account. At large distances, the 
energy transfer was found to converge asymptotically towards the Förster DDA. The largest energy transfer rate 
was found in the monolayer limit, where the major contribution stems from the intervalley matrix element of 
the Coulomb interaction and the intravalley matrix element is small. Moreover, the intravalley matrix element 
can be drastically suppressed by geometry, rendering the energy transfer valley selective. This aspect is important 
when considering collective light-matter effects such as superradiance for QD ensembles, and might prove useful 
for spin-valley selective transfer of quantum information.
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