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Abstract

Background

Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths
worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive
intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic
Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protect-
ing normal neuronal structures.

Methods

Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma
cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy
brain and RG2 glioma of naive Fischer rats. Hypothermia was induced at 1 hour pre- to 2
hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and
normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry,
MRI, and survival studies, respectively.

Findings

In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuro-
nal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following
PpIX mediated PDT by T, mapping at day 10, reflecting edema/inflammation volume reduc-
tion. Mild hypothermia increased PplX fluorescence in tumors five-fold, and the median
post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and
immunohistochemistry show close to complete cellular protection in normal brain structures
under hypothermia.
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Conclusions

The benefits of hypothermia on both normal neuronal tissue as well as increased PplX fluo-
rescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-
based surgical techniques, and that a hypothermic intervention could lead to considerable
patient outcome improvements.

Introduction

Glioblastoma Multiforme (GBM), comprising the most common and aggressive adult intra-
cranial malignancy, has presented with a constant increasing incidence rate at over 2% per
year between 1970 and 2000 [1]. While the median survival has increased during this time, it is
still reported at just 14-16 months following standard therapies including surgical removal,
radiation, and chemotherapy[2]. Various therapies including image guided surgical resection
[3-5], gamma knife surgery[6], intensity modulated ionizing radiation therapy[7] and brachy-
therapy[8], or adjuvant chemotherapy[9] are being investigated for GBM. Even with the most
aggressive treatment plans, the patients’ benefit has extended to a few months of additional
survival time[10]. Encouraging is that the fraction of long-term survivors is increasing, possi-
bly due to the realization that 98% tumor resection is required to afford long-term benefit to
the patient[5].

Current therapeutic options are limited for non-surgically accessible GBM and those
tumors which are proximal to eloquent areas of the brain, as most lengthy surgical interven-
tions are not recommended. For these cases, photonics-based assistive tools including Photo-
dynamic Therapy (PDT) and Fluorescence-Guided Resection (FGR) with the pro-drug
Aminolevulinic Acid (ALA) are being investigated [11, 12]. One advantage of exogenous
ALA-induced PpIX is that tumors show a preferential uptake of ALA, increasing synthesis of
PpIX and retention thereof within the tumor mitochondria, versus normal intracranial tissues
[13, 14]. This difference in PpIX concentration provides contrast between normal brain and
tumor, enabling FGR and an increased therapeutic index for PDT.

Clinical studies demonstrated survival benefits for FGR or PDT adjuvant therapy of GBM.
FGR adjuvant therapy is now well established in neuro-oncology [Stummer et al.], while PDT
adjuvant therapy remains investigations outside of Japan using Talaporfin sodium as a photo-
sensitizer [15]. For PDT survival time and progression-free survival have been extended by
months to years compared to the current standard of care[11, 12, 16-18]. However, the pro-
nounced improved outcomes were observed in small single-site clinical trials, with only lim-
ited improvements demonstrated in large multi-center trials[19]. One discrepancy could be
heterogeneity in PpIX accumulation at the time of surgery, causing treatment failure and early
recurrence [18].

Therefore, factors which improve PpIX accumulation can enhance FGR and PDT therapeu-
tic efficacy in surgically inaccessible GBM. Our own in vitro study demonstrated that hypo-
thermia (32-34°C) increased PpIX concentrations in glioma tumor cell lines, and improved
FGR selectivity and the PDT therapeutic index [20]. Consistently, Dereski et al. demonstrated
a thermal induced PDT-responsivity shift of healthy brain leading to a change in the therapeu-
tic index([21], whereby hypothermia demonstrated neuroprotective effects for vascular-acting
Photofrin mediated PDT[21]. Mild hypothermia has been shown to protect neurons following
various in vitro and in vivo stroke-like insults[22], following hypoxia or glucose deprivation
[23, 24] or acute neuronal injury[23, 24].
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In this work, the PDT protective effect of hypothermia is demonstrated in vitro involving pri-
mary rat neuronal cells, rat and human glioma cell lines, and a human glioma stem cell line. In
vivo the RG2 glioma model was utilized with whole-body hypothermia, assessing long-term sur-
vival, neuronal metrics, and quantitative MRI. The goal of the work was to increase the PDT
selectivity in the brain adjacent to tumor, so that local micrometastasis can be effectively treated.

Materials and methods

The University Health Network’s Animal Care Committee complying with regulations of the
Canadian Council on Animal Care approved all procedures.

Cell culture

Six (6) human glioblastoma cell lines (U373, U373vIII, U87, U87VIII, U343, and U118) and a
differentiated rat glioma stem cell line (RG2) were grown in DMEM (Life Technologies, Carls-
bad, CA, USA) supplemented with 10% Fetal Bovine Serum (Life Technologies, Carlsbad, CA,
USA), 2mM glutamine (Life Technologies, Carlsbad, CA, USA), and Penicillin/Streptomycin
(Life Technologies, Carlsbad, CA, USA). GS2 cells were cultured in McCoy’s5A (Life Technol-
ogies, Carlsbad, CA, USA) supplemented with 10% FBS, MEM Non-Essential Amino Acid
Solution (Life Technologies, Carlsbad, CA, USA) and Penicillin/Streptomycin following the
procedure by Gunther et al.[25].

Primary cortical cells and astrocytes isolation. Using a modified protocol presented by
Brewer et al.[26], cortical cells were isolated from embryonic day 18 Wistar rats (Charles River
Laboratories, Wilmington, MA, USA). The cell suspension was seeded in plating medium
(Neurobasal medium containing 2% B-27 supplement, 1% fetal bovine serum, 0.5 mM L-gluta-
mine, and 25 mM glutamic acid, Life Technologies, Carlsbad, CA, USA) at 30,000 cells/well in
96 well plates. After 96 hrs of isolation, cells were fed fresh growth medium (Neurobasal
medium containing 2% B-27 supplement, 0.5mM L-Glutamine, (Life Technologies, Carlsbad,
CA, USA) containing AraC (Cytosine arabinoside 4 uM, Sigma-Aldrich, Oakville, ON, CAN)
and left to incubate for 48 hrs. Primary cortical neurons are selected by this procedure as veri-
fied by confocal microscopy on a subset of cultures, with versus without AraC, through stain-
ing of Map2. AraC was necessary to remove glial contaminates in the final culture. These
cultures were maintained with new medium every 3-4 days, and used on days 12-14 after
plating.

For the generation of primary astrocytes, day 1-2 postnatal pups were euthanized, their cor-
tex separated and placed in ice-cold HBSS, to remove the meninges. After rinsing in HBSS, tis-
sue was chopped into 1 mm” cubes while being in a minimal quantity of media. Brain cubes
were incubated with 0.05% Trypsin for 30 min at 37°C, dissociated with trituration 12-15
times using a polished Pasteur pipette, centrifuged at 1000 rpm for 5 minutes, re-suspended
and triturated again followed by centrifugation. 350 pL phosphate-buffered saline with 100 uL
Trypan Blue (Sigma-Aldrich) were mixed with 50pl of cell suspension, and 10 uL of this
loaded into a hemocytometer for cell counting. The cell suspension was plated in Astrocyte
Medium (1xN2 Supplement, 2 mM Glutamax, Penicillin/Streptomycin, supplemented with
5ng/ml EGF). Cells were fed this media every other day until differentiation as determined by
confocal microscopy in a subset of cultures using GFAP staining to identify astrocytes. Hereaf-
ter, differentiation media (Astrocyte Media plus 1 mM dbcAMP) was used twice weekly.

In vitro PDT

Tumor cell lines, primary cortical neurons and primary astrocytes were plated on black-walled
96 well plates at densities of 15,000, 50,000, or 25000 cells depending on the cell line and
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allowed to grow for 2 or 12 days prior to PDT. On the day of PDT, cells were incubated with
ALA (Sigma-Aldrich, St. Louis, MO, USA) at concentrations from 0-6000 uM with each plate
containing a solvent (ddH,0) and a cell death control (4% Methanol). Cells were incubated
with ALA for 4 hours followed by rinsing to remove unbound ALA and PpIX prior to light
exposure.

For Normothermia tissue cultures were maintained in an incubator maintained at 37°C
whereas hypothermia was achieved by setting an incubator to 32°C while keeping CO,, rela-
tive humidity, and oxygen at standard values of 5%, ~95%, ambient respectively. For hypo-
thermia, the tissue cultures were placed 2 hrs before, and 2 hrs post light exposure into the
incubator set to 32°C. Measurements showed that plates reached 32°C before light irradia-
tion and maintained the target temperature + 1°C for 5 min at room temperature during
light illumination. Hypothermic tissue cultures were returned to the incubators set at 32°C
for another 2 hours. At this time the hypothermia tissue samples were returned to a normo-
thermia incubator.

PDT was executed using a custom-built lightbox containing one LED emitting 635nm
(Newark Corp, Palatine, IL, USA) per well providing an irradiance of 75 mWcm, requiring
170 sec for 12.75 Jem ™ radiant exposure. Cell viability was measured 24 hours later using the
Presto Blue metabolic assay (Invitrogen Corp., Carlsbad, CA, USA)[27], employing a Flexsta-
tion 3 plate reader (Molecular Devices, Sunnyvale, CA, USA) at ten reads per well.

The survival percentage, normalized at 100% survival (ddH,0) and 0% survival (4% metha-
nol), was plotted versus ALA concentrations on a logarithmic scale and a non-linear, sigmoi-
dal, regression analysis was performed, using GraphPad Prism Software (Version 6.0 Mac,
GraphPad, La Jolla, CA, USA) determining the LDsg,. The tested null hypothesis was that the
LDs slopes of the hypothermia and normothermia curves are not significantly different.

In vivo study design and humane endpoints

In total, 34 animals were used for the in vivo experiments. Animals were followed for up to a
period of 30 days including both tumor generation until PDT (approximately 10 days) and
survival following PDT (up to 17 days). The thirty days also includes rats used for the T, map-
ping experiment involving PDT on a healthy brain.

For all procedures that were survival, animals were pre-treated with buprenorphine (0.05
mg/kg) and dexamethasone (5 mg/kg IV-PDT only) prior to surgery (using aseptic tech-
niques). Following surgery, animals were given buprenorphine every 8 hours (0.05 mg/kg) for
72 hours, while dexamethasone was given for 6 days post PDT at once a day 2 mg/kg. If indi-
cated post-treatment, the 72 hour period of supportive analgesia was provided, including
buprenorphine and meloxicam at 0.05 mg/kg and 1 mg/kg, respectively.

Animals were monitored twice daily for the duration of the study, and a clinical monitoring
sheet was used for humane endpoint determination. Once an animal reached humane end-
point, it was euthanized immediately, brain resected and sent to histology. The monitoring
sheet examined 6 parameters (activity and mentation, general appearance, posture, weight and
condition, respiratory quality, and neurological signs). The scores were assigned a value
between 0-3 with 0 being considered ‘normal.” At a score of 3, supportive care was assigned
(soft food, fluid support, and KMR) and a score of 9 was considered humane endpoint. Moni-
toring was performed by a mixture of veterinary technicians and lab staff.

All animals were euthanized by an intracardiac injection of sodium pentobarbital (>120
mg/kg) under deep anesthesia. Of the total cohort, 4 animals were found dead within the cage
between the evening observation period and the morning observation period. No animals
need to be euthanized or died unexpectedly following tumor induction or PDT in the study.
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RG2 tumor inoculation

RG2 tumors were generated by injection of 5000 cells in sterile DPBS via a burr hole 1 mm
into the neocortex of CDF Fischer rats (Charles River Laboratories, Wilmington, MA, USA), 3
mm from the midline and 3 mm from the bregma utilizing a stereotactic frame. Following
injection, animals were monitored using T,w and Gd-enhanced T1w MRI until the tumors
reached 4 mm diameter for treatment. An overview of the in vivo timelines for the tumor bear-
ing rat experiments in provided in S1 Fig.

In vivo and ex vivo PplX concentration quantification by point
spectroscopy and tissue solubilization

Glioma and normal brain PpIX concentration were quantified in vivo using a point spectros-
copy method and ex vivo by tissue solubilization. Point spectroscopy utilizes fiber optical
delivery[28, 29] measuring local absolute PpIX concentration. Two 3 mm burr holes ipsi- and
contralateral to the tumor were drilled to the dura and the 1 mm probe head lightly pressed
against the tissue. The 405 nm excitation light is strongly absorbed, and the interrogation vol-
ume is limited to 1 mm® adjacent to the probe tip.

For PpIX quantification by the tissue solubilization method, animals were euthanized, and
50-100 mg tissue samples harvested [14] and, mechanically homogenized followed by a chem-
ical digestion prior to dilution for uniform excitation of the homogenate. Fluorescence emis-
sion after 405 nm excitation was performed using a Fluorolog spectrofluorometer (Horiba
Scientific, Kyoto, Japan). The fluorescence spectrum was decomposed into PpIX and endoge-
nous fluorophores, including reduced nicotinamide adenine dinucleotide and Flavin adenine
dinucleotide, using standard emission spectra of these fluorophores. Comparing the homoge-
nate’s PpIX fluorescence against a PpIX standard concentration (0.05 ugmL ™), provided the
tissue ‘s PpIX concentration.

MRI scanning and analysis

MR imaging used a 7 Tesla Biospec 70/30 USR system (Bruker Corporation, Ettlingen, DE),
equipped with B-GA12 gradient coil insert, 7.2 cm inner diameter linearly-polarized cylin-
drical volume RF transmission coil, and a 4-coil phased array surface receiver coil for RF
reception all part of the Biospec line. After anesthesia induction by 2% isoflurane (in O, at
0.5 Lmin™"), rats lay prone, breathing via nose cone and resting on a 37°C water bed for
imaging. Respiratory was monitored by pneumatic pillow (SA Instruments, Stony Brook,
NY). When required, the tail vein was cannulated by a 27G catheter for injection of 90 pl
gadolinium- MR contrast (Gd-DTPA, Magnevist, Bayer Corporation) using an injector
pump (PHD 2000, Harvard Apparatus).

T,-weighted imaging used a Rapid Acquisition with Relaxation Enhancement (RARE) tech-
nique with an 85 ms echo time (TE), 5200 ms repetition time, with a RARE factor of 18, and 5
averages, requiring ~ 3min imaging time. T,-weighted imaging used the RARE technique with
9.6 ms TE, 1000 ms TR, a RARE factor of 2, and 4 averages requiring 4 min 16 sec.

MRI tumor volume assessment was performed on days -4, -1, 10, and weekly after that, and
included multi-slice 2D T,-weighted and contrast-enhanced T;-weighted acquisitions. The
geometric features of both acquisitions were matched (25.6x25.6 mm field-of-view, 128x128
matrix, 0.2x0.2 mm in-plane resolution, at least eighteen 0.5 mm thick slices collected).

To assess brain and intratumoral edema maps, quantitative T, maps, were acquired on days
2, 10, and 28 using a multiple spin echo technique. At least 9 contiguous tumor containing
slices were collected. The imaging parameters were: 48 echoes ranging from 12 to 576 ms; with
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a 12 ms refocusing interval; TR = 8000 ms; 25.6x25.6 mm field-of-view; 100x100 matrix;
0.256x0.256 mm in-plane resolution; 1 mm thickness; acquisition time 10 min 8 sec.

Independent researchers drew region of interest (ROIs) on T, maps using MIPAV (version
7.2.0 CIT-NIH, Bethesda, MA, USA). Mean, and Standard Deviation of T, and ROI volumes
were exported into GraphPad Prism for 2-way ANOVA testing between the treatment groups.
Mean baseline T, values were derived from the treatment area’s contralateral side across all
image slices excluding the lateral ventricles. At day 2, ROIs were drawn on the treatment vol-
ume across all image slices and transcribed to the next two imaging time points to assess the
amelioration of inflammation and edema over time.

In vivo PDT

PDT was performed on all rats when their tumors reached 3-4 mm diameter to test for neuro-
protective effects of hypothermia, including 8 non-tumor bearing rats and 18 RG2-inoculated
rats. An IP injection of ALA (pH 6.8, 62.5-125 mgkg ') was given 4 hours prior to light delivery.
Two drug doses were required because 125 mgkg™ is an often-reported drug dose which under
hypothermia has proven excessive in most animals. Two hours post-ALA, animals were anes-
thetized and placed on a heating pad set to either 38 or 32°C and kept there for 4 hrs. Animals
were monitored continuously, and temperature measurements logged every 5 min using the
Luxtron system (LumaSMART, LumaSense Technologies, Inc. Santa Clara, CA) and recorded
manually using the digital rectal thermometer. Results demonstrated a 1.5-2°C difference
between the temperature recorded with the rectal probe and the averaged Luxtron sensor mea-
surement (S2 Fig). For our experiments, we utilized the rectal temperature probe plus an offset
of 1.5°C to mark the correct hypothermia conditions. The temperature took approximately 1.5-
2 hours to approach a mild hypothermia level (32-34°C), and for subsequent experiments,
hypothermia was initiated 2.5 hours before PDT. The maximum permissible anesthesia time
without intubation, 5 hrs, determined the total duration of hypothermia in these experiments,
which was achieved 1 hour prior to PDT and maintained for 2 hrs post irradiation.

Animals were irradiated with 24 J of 635 nm light (an irradiation time of 22 mins 13 secs),
delivered via an isotropic emitter inserted 1 mm below the dura in the superior portion of the
tumor, rather than in its center. Following PDT, rats received 2 mgkg ™' dexamethasone daily
for 5 days (derived from [30]) and were followed until they reached a determined protocol
endpoint. Dexamethasone co-therapy was required because its absence resulted in extensive
inflammation and treatment-related mortality in a pilot study.

Histology samples and preparation

Post euthanasia, brains were harvested in whole and placed in 10% formalin. Brains were cut
along a transverse plane 3 mm anterior and 3 mm posterior to the emitter insertion site, result-
ing in a 6 mm thick section containing tumor and its contralateral side. The section was
mounted, embedded in paraffin from which 6 pm sections were cut, mounted onto slides, and
stained with either H&E or GFAP. The latter is an astrocytic marker, which increases in inten-
sity following astrocyte activation or astrogliosis.

Immunohistochemistry stained slides were scanned at 20x magnification in their entirety,
generating a digital image, using an Aperio ScanScope XT (Leica Biosystems, Concord, ON,
CA) brightfield scanner. The analysis used Aperio ImageScope software (Leica Biosystems).

Statistical analysis

Determination of the LDs, concentrations in vitro was based on a non-linear regression analy-
sis performed using GraphPad Prism Software (Version 6.0 Mac, GraphPad, La Jolla, CA,
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USA). To test the normality of the data, using p < 0.05 as a cut-off, residuals were plotted
(D’Agostino and Pearson), and a Brown-Forsythe and Bartlett’s tests were performed to test the
assumption of equal variance between the sample groups. The difference in the tissue accumula-
tions of PpIX was tested using the Student’s T-test (p < 0.05 for significance). The in vivo
Kaplan-Meyer survival curves were analysis using the Mantel-Cox Log-Rank test. To compare
post-PDT inflammation from T, maps, ROIs were drawn by multiple researchers using MIPAV
(version 7.2.0 CIT-NIH, Bethesda, MA, USA) and propagated across time-points. The informa-
tion obtained includes average and standard deviation T,, the number of voxels, and total vol-
ume which was exported to GraphPad Prism to compare ROI regions between therapeutic
groups. Testing of T, values was performed using One-way ANOVA with Turkey correction for
multiple comparisons. ANOVA’s were performed after testing data for normality followed by a
Brown-Forsythe and Bartlett’s tests to determine for equal variance between treatment groups. If
an unequal variance was found, the Welch Test was performed to test for statistical significance.

Results

Survival assessment based on the Presto blue metabolic assay demonstrated that cultured pri-
mary rat neurons experienced significantly sparing of PDT-induced cell death when using
ALA concentration [uM] LDsq as the PDT dose surrogate for constant radiant exposure. The
normothermia LDs, was 68 M whereas the hypothermia LD5, was 8000 pM or 2 orders of
magnitude higher (p<0.05, Fig 1A).
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Fig 1. Mild hypothermia modulates PDT responsivity of cell lines and primary neuronal cells in vitro.
A) LDsg values of 5 glioma cell lines, one purported glioma cancer stem cell line (GS2), as well as primary
murine neurons (DIV 13) and astrocytes of PDT with and without hypothermia, note LDsq of ALA, was chosen
as a surrogate for PDT dose in these studies. Hypothermia altered LDsq significantly from primary neurons
and astrocytes, as well as GS2 cells (p<0.05, n = 3). B) Normalized dose-response curve of primary
astrocytes and C) of primary neurons.

https://doi.org/10.1371/journal.pone.0181654.g001
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Interestingly, primary astrocyte survival was significantly lower following hypothermia
PDT (LDso = 15 5uM ALA) compared to normothermia PDT controls (LD5, = 1000 uM ALA)
(p<0.05, Fig 1A and 1B). While the dose-response curve for primary neurons retains its shape
it is shifted to higher ALA concentrations, Fig 1C; primary astrocytes treated under hypother-
mic conditions respond with a much sharper dose-dependence to PpIX mediated PDT. This
may be an indication that these cells ability to cope with cytotoxic stress was altered. There
was no significant difference in the LDs, of any glioma cell lines, except GS2 stem cells, pre-
senting a normothermia LDso = 298 uM ALA vs. LDs, = 91 pM for hypothermia (p<0.05, Fig
1A).

Initial in vivo experiments using an ALA dose of 125 mgkg ' resulted in a very strong PDT
response in the hypothermia group resulting in the animals’ death. Hence, all in vivo experi-
ments except the uptake studies are based on an administered ALA dose of 62.5 mgkg .

Fig 2A shows quantitative T, maps in non-tumor bearing rats, at 2, 10 and 28 days post-
PDT under hypothermic and normothermic conditions. At 2 days post-PDT, the acute
responses presented with equivalent T, elevations between groups (p>0.3, n = 4 rats per
group) and similar appearances between groups. At day 10, the ameliorated reduction of
inflammation/edema in the hypothermic cohort approached significance (normothermia T, =
76163 ms; hypothermia T, = 50+15 ms, p = 0.06). The data was dominated by a reduction of
the voxel count with prolonged T, values (50 ms over 47 ms baseline) for hypothermia versus
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Fig 2. Hypothermia reduces volume and intensity of edema/inflammation on the healthy brain
following PDT. A) T2 weighted images of central slice regions (areas with the highest amount of
inflammation) for each of the treatment conditions. B) Mean T2 of the ROIs of T2 maps for each of the
treatment conditions (p>0.3, n = 4 animals) C) Number of voxels above baseline in each treatment group
versus the contralateral side control (no PDT). (p<0.05, n = 4 animals).

https://doi.org/10.1371/journal.pone.0181654.g002
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normothermia (227+61 voxels versus 60+21 voxels, p<0.05), as shown in Fig 2C. At day 28,
ROI T, values and the number of voxels above baseline were no longer significantly different
between the group, (normothermia: T, = 67+63 ms; hypothermia: T, = 5248 ms; p>0.9 for
both parameters). T, value elevation above baseline was not observed in control animals which
did not undergo PDT treatment (Fig 2B).

Histological sections of PDT-treated cortical brain regions, obtained at day 10 post-PDT
and subject to reactive astrocytes IHC-GFAP staining, are shown in Fig 3A. GFAP staining of
PDT-treated regions indicated that following hypothermia brains presented with astrocyte
invasion into the PDT-treated area, suggestive of reactive gliosis and a glial limitans being
established in cortical layer 1 with astrocytes also found in layers 2 and 3 (open arrow). This
was not observable under normothermia PDT. Additionally, for hypothermia PDT a profound
tissue sparing was noted compared to normothermia PDT, indicated by the closed arrows in
Fig 3. The damaged area in each section was summed for each of n = 3 animals respectively,
resulting in 3.9*10"°+1.1*10"° m? for hypothermia and 6.3*10*+2.5*10"® m* for normother-
mia PDT (n = 3, p< 0.01).

Control Normothermia Mild Hypothermia

g e O

GFAP IHC

- GFAP [HC

H&E

Area of PDT Treatment/Damage

Fig 3. Hypothermia reduces lesion volume on the healthy brain following PDT treatment. A) Extracted regions of GFAP
staining used in the analysis. For each subgroup, 2 animals were subjected to PDT and followed for 10 days using MRI. Note:
Normothermia animals demonstrated some necrosis that was not seen in the other subgroups (The top and bottom panels
represent different animals) (blue arrows mark out increased GFAP staining, red arrows mark out cell death).

https://doi.org/10.1371/journal.pone.0181654.9003
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Following the initial non-tumor bearing rat studies, tumor studies commenced utilizing the
RG2 glioma model, whereby hypothermia resulted in increased PpIX concentration at four
hours following ALA administration, compared to normothermic controls. Fiber based point
spectroscopy (Fig 4A) showed four-fold higher PpIX accumulation in hypothermia exposed
tumors compared to normothermic tumors (0.04+0.02 pgmL™" versus 0.01+0.005 pgmL™,
p<0.05, n = 4). Sub-detection levels of PpIX fluorescence were registered in the contralateral
brains. Tissue solubilization (Fig 4B) revealed a similar 5-fold PpIX concentration increase in
hypothermia versus normothermia exposed tumors at the same time-point, reporting 3.6
+0.6 pgmL ™" and 0.74+0.5 pugmL ", respectively (p<0.05 for n = 4) with sub-detection levels of
PpIX in the contralateral sides. The differences in absolute concentrations between the tech-
niques were caused by the ~ 1 uL sample volume of the optical probe, undersampling the
tumor volume.

Untreated RG2 tumors measured 3-4 mm diameter at day 8-10 post tumor induction (Fig
5A) and reached a predetermined endpoint at day 15-17 approximately 8.5 days later, which
represents the control median survival time for comparison with the PDT treated groups.
Experiments demonstrated a significant survival increase, p <0.05, according to the Mantel-
Cox Log-Rank test, for RG2 bearing rats when treated with hypothermia PDT 14 days versus 9
days for the normothermia PDT and 8.5 days for the untreated controls (Fig 5B).

MRI T, mapping of the tumor at day 3 post-PDT suggests greater edema/inflammation in
tumors treated by hypothermia PDT compared to normothermia-PDT rats (Fig 6B) with
hypothermia PDT mean T, values significantly longer (p<0.01, n = 4) then post normother-
mia. Within hypothermia PDT-treated volumes an average of 86+17 voxels exceeded the pre-
PDT baseline+5 standard deviation T, threshold whereas only 19+4 voxels did so for the nor-
mothermia, PDT-treated animals (p<0.05, Fig 6C).

Discussion

Factors which modify PpIX accumulation may lead to improved FGR and PDT efficacy. This
study builds on a prior in vitro study demonstrating hypothermia (32-34°C) leading to higher
PpIX concentrations in tumor cell lines, thus allowing for higher selectivity in FGR and a
greater therapeutic index for PDT[20]. For glioma invading the normal brain, PDT selectivity
cannot be provided by the fluence rate (¢), nor the oxygen gradient, as neither will vary across
the size of the micro invasions. Thus, selectivity is provided only by the difference in PpIX
accumulation in the tumor versus the normal host brain and the tissue’s intrinsic responsivity
to the cytotoxic dose from PDT. The tissue responsivity is given by its PDT threshold value, T.
When the PDT dose, given by the light dose, or fluence rate ¢ [mWcm ] and the photosensi-
tizer concentration [PpIX], exceeds a threshold value T, tissue destruction occurs. To achieve
selective GBM destruction up to the clinically required depth, d, the following conditions need
to be satisfied.

P(0) T

TTumor < [

[PPIX] Tumor ¢(d)
whereby, the light fluence rate is a function of depth, d, provided by

_ PO
 dmpd

Brain
PpIX] (V)

Brain

¢(d) et (2)
The PpIX concentrations are given by [PpIX]mor and [PpIX]pain respectively, and the T-

values are presenting the tissue’s PDT responsivity in units of photons absorbed by PpIX per

unit volume. The fluence rate is given by P(0) the optical power delivered by the light source
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Fig 4. PpIX fluorescence increased in tumor cells following mild hypothermia treatment. A) Point
spectroscopy of PplX fluorescence in live animals. Capital C stands for contralateral (non-tumor bearing

PLOS ONE | https://doi.org/10.1371/journal.pone.0181654  July 31,2017

11/20


https://doi.org/10.1371/journal.pone.0181654

@' PLOS | ONE

Hypothermia and PDT for glioma therapy

TIW + Gd

T2W

Control

100 ey

501

Percent survival

hemisphere), while capital T is for the tumor-bearing hemisphere (p<0.05, n = 4). B) Tissue solubilization data
of PpIX fluorescence between the same animals from panel A, following euthanasia (p<0.05, n = 4 animals).

https://doi.org/10.1371/journal.pone.0181654.9004

and its depth dependency is modulated by the tissue optical properties pz{cm™], the effective
attenuation coefficient and ps’[cm’l] the reduced scattering coefficient. To maximize the PDT
selectivity and hence GBM resection d in (1), must be maximized.

Hence, improving the PDT selectivity as a function of distance from the light source
requires one or a combination of the following four conditions to change. First increasing the
PpIX concentration in the tumor, second reducing it in the healthy brain, third increasing

Normothermia

Hypothermia

10

Days Post-PDT

15 20

= Control (n=4) - Normothermic (n=7) -~ Hypothermic (n=7)

Fig 5. Mild hypothermia leads to significant increases in survival following PDT of RG2 tumors. A) MR images of central slices of 5 different RG2
tumors before PDT treatment (images were taken at day -1) including (a-e) contrast-enhanced T1w; and (f-j) T2w images. B) Survival post-treatment of
animals in each cohort (solid black line—control, short broken line—normothermia, broken line—hypothermia).

https://doi.org/10.1371/journal.pone.0181654.g005
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Fig 6. Mild hypothermia leads to increases in edema/inflammation through the tumor volume
following PDT treatment. A)T2 maps of 3 animals for hypothermia and normothermia PDT-treated at day 3.
B) Mean T2 of the ROlIs of T2 maps for each of the treatment conditions around the tumor treated area
(p<0.01, n =7 animals per group). C) The volume of inflammation reported as some voxels above baseline T2
in the PDT-treated area (p<0.05, n = 7 animals per group).

https://doi.org/10.1371/journal.pone.0181654.g006

normal brain resilience against PDT or fourth decreasing it in the GBMs. Any significant
changes in any of these four parameters would result in a beneficial change towards tumor
destruction.

In vitro experiments

Based on previous published quantitative PpIX imaging in live tissue cultures in vitro [20], we
expected a higher cytotoxic cell kill as a consequence of the higher cellular PpIX concentration.
However, in vitro, this higher cytotoxicity was not observed post-PDT, save for GS2 cells, with
a reduction in LDs, following the largest mitochondrial PpIX fluorescence increase under
hypothermia. While RG2 cells showed a similar PpIX associated fluorescence increase, it did
not translate into increased hypothermia PDT responsivity. However, the observed PpIX fluo-
rescence increase may be an artifact as RG2 cells grew in clusters and the observed fluores-
cence may be associated with PpIX at less sensitive cellular structures within the cytoplasm.
PDT protection provided by hypothermia to neurons, as reflected by the dramatic increase
in the LDs, even exceeding the most PDT resistant cell lines with constitutively active EGFR
signaling (U87vIII and U373vIII) [31] is exciting. Hence, an increase in the distance (d), over
which the PDT dose and selective can be provided, according to Eq. 1 can be driven by an
increase in Tp,,in, and an increase in [PpIX]ymor- Conversely, the significant decrease in hypo-
thermia PDT LDs, in normal astrocytes is of concern. Reactive astrogliosis following neuronal
insults could be beneficial or a hindrance to long-term neuronal survival, as reactive gliosis can
both contain or lead to neuronal tissue cell death in an area larger than initially injured[32].
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In vivo experiments

While the timing of hypothermia induction and cessation relative to light exposure was similar
for in vitro and in vivo studies, the actual time-course of hypothermia was different due to the
thermal capacity, and hemodynamics of an animal subject, which may have modified the
response of astrocytes and normal neural tissue.

The increased PpIX fluorescence from RG2 tumors in vivo following hypothermia is
expected from our in vitro studies but contrary to studies on skin demonstrating an increase
PpIX accumulation at 38.5°C versus 29°C [33]. This may be attributable to the much lower
temperature in that study; 29°C being considered outside the range of mild hypothermia and
not examined in this work. The higher PpIX accumulation can improve contrast to detect
micro-invasion and may allow tumors with a weak accumulation of PpIX, such as Grade II or
III gliomas to be detected easier, thus improving patient outcome [34-36].

PpIX accumulation is governed by a multitude of effects, ranging from tissue stiffness[37],
enzymatic activity, transmembrane transport of ALA and PpIX and hypothermia effects on
BBB permeability. Moan et al.,[38] demonstrated increased PpIX fluorescence from ALA
exposed skin at 37°C compared to 31°C, citing diffusion of ALA through the skin and the
activity of porphobilinogen deaminase one of the key enzymes in PpIX synthesis, so both are
not temperature dependent. Qualitative assessment of mild hypothermia on BBB permeability
showed no effects in either isoflurane- or pentobarbital-anesthetized rats [39]. Indeed, BBB
permeability appeared to be reduced during hypothermia for several means of opening the
BBB such as Oleic acid infusion[40], traumatic brain injury[41] or hyperosmolar solutions.
Hypothermia should not affect ALA diffusion across the BBB significantly [42, 43]. However,
PpIX does not cross the BBB by diffusion and as it is quickly excreted from glioma cells[44],
tightening of the BBB could cause added retention of PpIX in the healthy brain.

Prolonged T2 relaxation times (MRI T2 values) in images from tumor-free animals
acquired at days 2, 10, 28 post PDT, demonstrated the presence of free water protons not asso-
ciated with structural proteins, which is characteristic of edema and inflammation. An inverse
correlation between PDT-induced inflammation and animal survival was noted, similar to
benefits from steroids (prednisone) ameliorating inflammation resulting in longer survival
[30]. To mitigate excessive, immediate, post-therapy inflammation, animals were given dexa-
methasone for 5 days starting at PDT, and no mortalities or signs of neurological distress were
noted during that 28 days period. Steroids co-therapy reflects the current standard of care fol-
lowing brain tumor diagnosis[45] but is in contrast to early PDT trials which commonly incor-
porated a corticosteroid holidays during treatment[46].

GFAP and H&E staining at day 10 following PDT demonstrated substantial differences in
both astrocyte recruitment and cell death between hypothermia and normothermia PDT
groups. The lack of apparent tissue death in the hypothermia group is promising, and although
there is GFAP invasion into the PDT damaged area, the tissue is spared, enabling subsequent
therapeutic strategies towards improving overall brain function. The micrographs suggest the
presence of astrogliosis and glial limitans. However, its presentation is not as prominent as in
stroke. Regarding improved PDT efficacy and FGR selectivity, hypothermia tissue sparing sug-
gests an impetus towards evaluating PDT doses exceeding those used here in anticipation of
clinical improvement in survival for higher radiant exposures [46, 47].

The in vivo and in vitro results suggest a strong neuroprotective effect for neural tissues,
including neurons, by hypothermia. The mechanism may be similar to those from stroke like-
models, whereby the volumes of inflammation and damage were reduced by half[48, 49], albeit
some studies did not employ corticosteroids. The data confirm and extend work by Dereski
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et al.[21] who showed limited neuronal damage for Photofrin mediated hypothermia PDT,
suggesting that the hypothermia effect is photosensitizer independent.

The survival increase in tumor-bearing animals following hypothermia PDT (Fig 5) is
encouraging, particularly because it is readily translatable into the clinic. The close to 2-fold
survival time increase in this RG2 model is comparable to multiple immunology studies
reporting a survival increase of 40-70% versus saline controls[50, 51]. However, these studies
commenced treatment 3-5 days post-implantation, compared to the 10-12 days chosen here
[50-52]. Hypothermia PDT exceeded the survival advantage of multiple anti-angiogenic thera-
pies tested in the RG2 model[53, 54]. The general agreement between T, values and overall
survival of the animals is similar to that seen in other PDT studies[55, 56].

In both temperature conditions, MRI did not show complete tumor removal by T;w+Gd
contrast and regrowth began around day 8-14 including in hypothermia animals. However,
this treatment protocol is not optimized, and as animals, post-hypothermia PDT reacted well,
a further increase in the PDT dose via photosensitizer or radiant exposure is feasible. An
attempt to increase the dose by a factor of 4, piloted in 4 rats, led to the animals’ deaths within
12 hours of the treatment, starting with seizures immediately following PDT or from paralysis
the next day. An initial speculation is that hypothermia disrupts GABAergic signaling within
the brain, as suggested previously[57, 58]. That disruption, combined with an excitatory
response from PDT effects on astrocytes and other cells surrounding the glioma tissue could
lead to rebound hyperexcitability culminating in seizures. If that assumption is correct, admin-
istration of anticonvulsive drugs before PDT should alleviate many of the post-PDT[58] sei-
zures and allow for higher PDT dose under hypothermia targeting larger tumors and distant
micro invasions.

Conclusions

Multiple clinically translatable benefits were demonstrated by hypothermic PpIX mediated
PDT and FGR in neuronal tissue. Relevant tumor cell lines were employed in vitro and the
RG2 model in vivo. For FGR applications, a five-fold increase in PpIX concentration was mea-
sured in vivo for the tumor cells. This contrast improvement allows for greater resection rates
as smaller tumor cell clusters will become positive. For PDT, hypothermia provides two
improvements. First, protection of healthy tissue may allow for potentially higher clinically
light doses such that therapy may become curative for low-grade gliomas, and second that a
higher PDT dose can be delivered to malignant cells due to improved synthesis or retention of
PpIX. Improvements in PpIX mediated PDT selectivity for GBM therapy is based on higher
PpIX accumulation in the malignant tissue and improved resistance or higher PDT threshold
for normal neuronal tissues. The latter effect can also apply to other photosensitizers used in
the brain as hypothermia itself demonstrated a neuroprotective benefit under acute neuronal
damage settings similar to stroke patients. The prevention of tissue death at 10 days post-PDT
is exciting, suggesting that hypothermia on its own could provide benefits to many therapies
beyond PDT through a reduction in inflammation and subsequent neuronal cell death.

Supporting information

S1 Fig. Temporal sequence of in vivo experiments. Overview of in vivo experiments begin-
ning at tumour injection through to humane endpoints.
(TIF)

S2 Fig. Temperature measurements vs. time. Using the Luxtron FOT kit for cortex and heat-
ing pad measurements while the rectal temperature was recorded manually using a digital

PLOS ONE | https://doi.org/10.1371/journal.pone.0181654  July 31,2017 15/20


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181654.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181654.s002
https://doi.org/10.1371/journal.pone.0181654

@° PLOS | ONE

Hypothermia and PDT for glioma therapy

rectal thermometer for small animals. Temperature measurements were recorded every 5 min-
utes over a period of 150 minutes (n = 2).
(TIF)

$3 Fig. Humane endpoint checklist. Completed humane endpoints checklist in regard to all
in vivo studies as they pertain to this article.
(DOCX)
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