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1  |  INTRODUC TION

Immunoglobulin G (IgG) antibodies provide a dominant form of de-
fense against infectious diseases. IgGs are composed of two dis-
tinct structural domains that enable coupling of the recognition 
of pathogens to cellular responses including both adaptive and in-
nate immune functions. This is achieved through direct binding of 
pathogens by the IgG Fab domain to form antigen-IgG immune com-
plexes. These immune complexes, in turn, direct the inflammatory 
response elicited during an infection through interactions with Fc 

gamma receptors (FcγRs) on immune cells. FcγRs are expressed on a 
variety of immune cells and serve as conduits for crosstalk between 
the adaptive and innate arms of the immune system (Figure  1A). 
Depending on the cell type and the specific FcγRs engaged, FcγRs 
transduce signaling that can escalate or limit the degree of the in-
flammatory response to an ongoing infection.

Viral infections are controlled through a combination of adaptive 
and innate pathways, including virus neutralization, IgG Fc-mediated 
effector/inflammatory cellular functions and innate antiviral path-
ways such as the Type I interferon system.1,2 Upon viral infection, 
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IgG-mediated effector control is initiated when viral particles are 
bound by reactive antibodies to form high-valence immune complexes 
that stabilize the otherwise low-affinity interactions between IgG 
Fc and FcγR-expressing cells. Some viral immune complexes may be 
neutralizing, thus preventing direct infection of host cells by viral par-
ticles. In the absence of neutralizing antibodies, immune complexes 
form that can both trigger FcγR-mediated functions and remain infec-
tious. Neutralizing and non-neutralizing viral immune complexes as 
well as IgG-bound viral debris may activate FcγR-expressing host cells 
to initiate cellular processes that facilitate the resolution of infections. 
Clearance of immune complexes formed from viral particles and debris 
is critical for FcγR-driven homeostatic mechanisms and persistence of 
immune complexes can drive prolonged activation of FcγR-expressing 
cells leading to inflammatory sequelae and disease.3–5 Once control 
of an infection is established and the viral load wanes, decreasing 
amounts of viral antigen are available to form immune complexes 
and perpetuate the inflammatory response. Consequently, antibody-
dependent immune activation and inflammation decrease as the anti-
gen is cleared and immune homeostasis is restored.

In this review, we discuss how IgGs can modulate inflammatory 
signaling during viral infections with a focus on CD16a-mediated 
functions. While inflammation is a mechanism required for immune 
homeostasis and resolution of acute infections, we focus here on 
two infectious diseases that are driven by pathogenic inflammatory 
responses during infection. Specifically, we review and discuss the 
evolving body of literature showing that afucosylated IgG immune 
complex signaling through CD16a contributes to the overwhelming 
inflammatory response that is central to the pathogenesis of severe 
forms of dengue disease and coronavirus disease 2019 (COVID-19).

2  |  MECHANISMS GOVERNING 
HETEROGENEIT Y IN ANTIBODY EFFEC TOR 
FUNC TIONS IN VIVO

IgG antibody effector functions are determined by the ratio of ac-
tivating to inhibitory (A/I) signaling transduced through FcγRs on 
the surface of immune cells following their engagement by immune 
complexes. The A/I signaling ratio, first articulated by Ravetch and 
colleagues, governs the maturation of effector cells and is a major 
determinant of protection mediated by IgG antibodies.6–9 A/I signal 
transduction is impacted by variables within both host IgG Fc and FcγR 
repertoires. Studies in the last decade have revealed a tremendous 
amount of heterogeneity in human IgG Fc domain repertoires.10,11 
These observations lead to the broader hypothesis that antibody 
heterogeneity is a dominant driver of divergent effector responses 
during infection.12 The cumulative work on this topic shows that spe-
cific IgG Fc domain repertoires are predictors of clinical outcomes in 
some human diseases, yet it also shows that IgG repertoires, alone, do 
not clearly predict outcomes in many diseases where antibodies are 
thought to have a critical role in immunity. This invites the hypothesis 
that the less well studied heterogeneity on the other end of the signal-
ing axis – FcγR expression and FcγR-mediated effector cell functional-
ity – may be an equally, or more important, driver of clinical outcomes 
that depend on antibody effector function.13 FcγR heterogeneity 
might be particularly relevant to the increased risk for many infec-
tious diseases that is associated with some demographic and health 
features such as advanced age, obesity, and diabetes, where effector 
cells are known to be different from healthy adults in distribution and/
or functionality.14–18 Studies characterizing IgG Fc repertoires and 

F I G U R E  1  (A) Type I Fcγ receptors (FcγRs) expression pattern on human white blood cell subsets. + indicates constitutive expression; 
− indicates no expression; +/− indicates no or low expression; * indicates inducible expression; */− indicates low or inducible expression; # 
indicates expression depending on FCGR2C allelic status. Classical monocytes are defined as CD14 highCD16 - and non-classical monocytes 
are defined as CD14 dimCD16 ++. (B) Binding affinities (association constant of binding [KA]) of four IgG subclasses (IgG1, IgG2, IgG3 and 
IgG4) to the various type I FcγRs. No color and * indicates that binding was either negligible or not detected to that FcγR. IgG1 AF denotes 
afucosylated IgG1, whereas IgG1 F is the core fucosylated IgG

B cells + #
T cells

Natural Killer (NK) cells # +
Dendri c cells + + -
Macrophages + + + +
Classical monocytes + +
Non-classical monocytes + +
Neutrophils + +

CD64 CD32a CD32b CD32c CD16a CD16b

(A) (B)



66  |    GONZALEZ et al.

effector cells from matched donors are needed to truly address the 
role of antibody effector function in human immunity.

2.1  |  Regulation of A/I signaling by IgG Fc 
domain structure

FcγR affinity for a particular IgG antibody is determined in large part 
by the structural aspects of the Fc domain (Figure  2). The human 
IgG isotype is comprised of four subclasses: IgG1, IgG2, IgG3, and 
IgG4 with decreasing abundance from IgG1-4. Each subclass con-
tains a structurally distinct Fc domain, which has additional struc-
tural heterogeneity arising from IgG allotypes,20 and variable Fc 
glycosylation.21 IgG subclass and Fc glycoforms are clear modula-
tors of Fc-FcγR interactions while the role of specific allotypes is 
less understood.

Fc glycosylation introduces even greater structural and func-
tional diversity to the Fc domain repertoire. All IgG subclasses 
contain a highly conserved core N-linked glycosylation site at 
Asn-297 within the CH2 domain of each heavy chain. The core N-
glycan structure is composed of four N-acetylglucosamine (GlcNac) 
and three mannose residues arranged in a biantennary formation 
(Figure 2). As the IgG1 glycoprotein travels through the endoplasmic 
reticulum and Golgi apparatus, the core N-glycan structure can be 
modified by the addition of other sugar residues such as core fu-
cose linked to the innermost GlcNac, an additional bisecting GlcNac 
linked to the central mannose, as well as galactose and sialic acid 
residues that can be added to either or both antennae. Not all modi-
fications are wholly independent; for example, sialic acid can only be 
added to glycans that contain galactose. Nonetheless, the many pos-
sible combinations of these modifications contribute to a variety of 
complex glycans at Asn-297. The presence or absence of particular 
residues within these glycans impacts the binding affinity between 
IgG and Type I and Type II FcγRs.12 At present, our understanding of 
the functional diversity conferred on IgG by various Fc glycoforms is 
largely limited to the most abundant subclass, IgG1. For IgG1, a major 
regulator of inflammatory FcγR signaling is core fucosylation of the 
Fc glycan that regulates interactions with the activating FcγR, CD16, 
as reviewed in greater detail below (Figure  1B). Sialylation of the 
IgG1 Fc confers the ability of immune complexes to signal through 
Type II FcγRs.22 The activity of Type II FcγRs has been demonstrated 

largely in vivo where they have been observed to mediate diverse 
functions via interactions with sialylated immune complexes. For ex-
ample, sialylated IgG ICs promote the anti-inflammatory activity of 
therapeutic IVIG in context of autoimmune diseases through the en-
gagement of DC-SIGN/SIGN-R123–26 and CD23-mediated modula-
tion of B cell selection during adaptive responses.11,27 There remains 
much to learn about the molecular regulation of IgG Fc glycosylation 
but sex and age are known to correlate with specific patterns of gly-
cosylation, as well as factors that correlate with geographic location; 
whether these are heritable or not, is not yet clear.28–30

2.2  |  Regulation of A/I signaling by FcγRs

There are six human Type I FcγRs including FcγRIIc (CD32c), which 
is expressed by a minority of individuals.31,32 Type I FcγRs are made 
up of both activating and inhibitory receptors as determined by their 
signaling through immunoreceptor tyrosine-based activation (ITAM) 
or inhibition (ITIM) motifs, respectively. Type I receptors are activat-
ing, except for FcγRIIb (CD32b), which is the sole inhibitory receptor. 
The extracellular domains of the FcγR alpha chains are variable in 
their affinities for IgG Fc domains. FcγRI (CD64) is the only high af-
finity receptor that can bind to monomeric IgG. Co-expression pat-
terns of FcγR on immune cells shape the direction and magnitude of 
Fc-mediated immune activity (Figure 1A,B).

High-avidity, productive interactions between Fcs within im-
mune complexes and FcγRs on innate cells trigger cell-type spe-
cific signaling cascades that culminate in diverse cellular responses, 
shaping the innate and adaptive immune landscape. FcγR-mediated 
activation of innate immune cells leads to a gamut of cellular re-
sponses ranging from those often modeled in in vivo assays such as 
antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis 
(ADCP), to the induction of more complex immune programs includ-
ing cytotoxic degranulation, proinflammatory cytokine and chemo-
kine production, macrophage polarization, enhancement of antigen 
presentation by APCs, maturation of DCs and maintaining immune 
homeostasis.20,33–35 Despite the distinct effector roles of the differ-
ent cellular subsets, all of them signal through ITAM or ITIM motifs 
via pathways that are fairly conserved and are well reviewed else-
where.36,37 These motifs are present either in the cytoplasmic tail 
of the Fc receptors themselves (CD32a,b,c) or on non-covalently 

F I G U R E  2  IgG glycoprotein and N-
linked glycan. IgG domain architecture 
(PDB 1HZH19) and cartoon representation 
of IgG1 Fc glycans

Fc domain

Fab domain

N-linked glycan at Asn297

Sialyla�on (S)
Galactosyla�on (GS0)

Bisec�on (N)

Fucosyla�on (F)

Fucose 
Sialic acid 
Galactose 

Mannose 
N-acetyl glucosamine (NAG) 



    |  67GONZALEZ et al.

associated ITAM-containing adaptor proteins FcεR1γ (FcRγ) or CD3ζ 
(Figure 1A).

Multivalent Fc-FcγR engagement on the cell surface leads to 
clustering of the FcγRs and CD45 phosphatase exclusion on the 
plasma membrane, enabling the activation of the Lyn and/or Fyn and 
Hgr Src-family kinases, that then phosphorylate conserved tyrosines 
(Tyr) in the cytoplasmic ITAM motifs. Phosphorylation of the two 
Tyrs creates docking sites for Syk kinases through their SH2 do-
mains and leads to activation of these Syk kinases. Subsequently, 
activated Syk then phosphorylates a plethora of downstream adap-
tor molecules that propagate further signaling cascades involving 
phospholipase C-gamma (PLCγ), phosphoinositide 3-kinase (PI3K), 
calcineurin, and Vav-1 pathways.37–43 Many of these pathways co-
regulate or cooperate in the performance of cell-specific immune ac-
tivities. To counterbalance activating signaling through ITAM motifs, 
most of the innate cell subsets co-express an inhibitory Fc receptor 
that signals via the conserved ITIM in its cytoplasmic domain. When 
activating and inhibitory FcγRs are simultaneously cross-linked and 
co-cluster, the ITAM-phosphorylating Src kinases also phosphor-
ylate the conserved Tyrs of proximal ITIMs. ITIM phosphorylation 
promotes non-covalent binding of tyrosine phosphatases SHP-1 and 
SHP2 and the inositol phosphatases SHIP-1 and SHIP2 via the SH2 
domains of the phosphatases. These phosphatases subsequently 
dephosphorylate the Tyr phosphates on proximal ITAMs and other 
adaptor molecules, thereby tempering ITAM signaling and any asso-
ciated immune activation.44,45

Multiple factors contribute to the heterogeneity of FcγR reper-
toires including single nucleotide polymorphisms (SNP), copy num-
ber variation (CNV), and glycosylation patterns of FcγRs.21,31,46,47 
SNPs in the FcγR genes modulate binding affinity to IgG Fc. There 
are two major CD32a allotypes, R131 and H131 where H131 ex-
hibits greater binding affinity for IgG1 and IgG2.31 CD16a similarly 
has two well characterized allotypes, F158 and V158 where the less 
frequent V158 allotype exhibits higher affinity for IgG compared to 
F158.31,48–52 While the CD16a allele expressed correlates with the 
clinical response to some therapeutic anti-tumor monoclonal anti-
bodies,53–56 there is limited data supporting a correlation between 
either CD16 variants and clinical outcomes in infectious diseases. 
Recent studies suggest that apart from allelic variations, FcγR expres-
sion levels can also be highly heterogeneous amongst individuals, 
possibly explained in part by CNV, and may be a previously under-
appreciated determinant of antibody signaling outcomes.13,46,47,57,58 
The glycan repertoire of FcγRs is also highly heterogeneous owing 
to the variability in the number of N-glycosylation sites on the FcγRs 
and an array of alternative glycoforms that can exist at each site.59 
Structural and biophysical data have shown that the presence or ab-
sence of certain glycans at particular amino acid positions of these 
receptors impacts CD16a binding to IgG, bringing into focus the 
role of FcγR N-glycans in shaping effector immune functions.60–64 
Elegant profiling studies of FcγRs from primary human NK cells and 
monocytes have shown that receptor glycosylation profiles vary 
amongst different immune cells and are also governed by the FcγR 
allotype of an individual.60,65–68 More studies are required to gain an 
understanding of this heterogeneity of the glycan profiles of FcγR 

and whether they change upon certain activating/inhibitory signals, 
or between healthy and diseased states.

3  |  AFUCOSYL ATED IGG1- CD16A 
SIGNALING A XIS

A major focus of this review is the abundance of recent data that show 
how heterogeneity within the IgG and FcγR repertoires, and spe-
cifically in the afucosylated IgG1-CD16a signaling axis, impacts the 
course of some infectious diseases. Specifically, the proinflammatory 
IgG Fc glycoform lacking a core fucose, here termed “afucosylated”, 
is enriched on IgG1 in people who progress to severe forms of den-
gue disease and COVID-19, the disease caused by SARS-CoV-2.69–74 
Afucosylated IgG1 has high affinity for the activating FcγR, CD16a, 
which mediates diverse inflammatory functions that likely only partly 
overlap in these two very different viral infectious diseases (Figure 1B).

3.1  |  IgG1 afucosylation

In healthy adults and children, IgG1 antibodies are largely modi-
fied by fucosylated Fc glycoforms with afucosylated glycoforms 
generally comprising <10% of the IgG population.29 An increased 
abundance of afucosylated IgG1 has been observed in a number of 
clinical settings including fetal/neonatal alloimmunity, acute dengue 
disease, in people with, or who will develop, severe COVID-19, and 
in malaria.69–76 Increased afucosylated glycoforms have also been 
shown in association with bulk IgG glycans, including glycans on the 
Fab and Fc from all IgG subclasses, in HIV elite controllers and latent 
tuberculosis patients.77,78 The genetic or environmental factors that 
contribute to afucosylated IgG1 production are not yet understood.

3.2  |  CD16a

Expression of the receptor for afucosylated IgG1, CD16a, is mostly 
limited to natural killer (NK) cells, monocytes, and macrophages.79 
Recent intriguing studies also suggest that very low levels of CD16a 
may be expressed on neutrophils and induced on CD4+ and/or 
CD8+ T cell subsets in disease states such as autoimmunity and 
chronic infection.47,80–84 Within the monocyte lineage, CD16a ex-
pression is limited to the non-classical and intermediate subsets, 
while the more abundant classical monocyte subset does not ex-
press CD16a (Figure 1A).85 Historically, it has been unclear whether 
these three monocyte subsets represent distinct developmental tra-
jectories or are part of one linear trajectory, an implication of the lat-
ter being that CD16a is a marker of monocyte maturity, similar to NK 
cells.86 More recent studies on CD16a strongly support one linear 
trajectory in which CD16a expression is acquired as CD16a- classical 
monocytes give rise to CD16a + non-classical monocytes through 
the transitional CD16a + intermediate subset.87–90 Unlike mono-
cytes, a majority of macrophages, including alveolar macrophage, 
express relatively high levels of CD16a.91
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Functionally, CD16a is the major cytotoxic receptor but also 
mediates maturation and activation of CD16a-expressing cells. This 
modulates autocrine and paracrine immunity, impacting antigen pre-
sentation and inflammatory processes including cytokine release 
and chemotactic cell migration.74,79

4  |  PATHOGENIC ROLE OF 
AFUCOSYL ATED IGG1- CD16 SIGNALING IN 
SE VERE DENGUE DISE A SE AND COVID -19

There are multiple viral and host-derived factors that determine the 
trajectory of disease following dengue virus or SARS-CoV-2 infec-
tions, yet severe disease caused by these viruses is fundamentally 
the result of inadequate pre-exiting immunity together with an in-
flammatory host response during infection that damages tissues 
and disrupts critical physiologic processes. Dengue viruses and 
SARS-CoV-2 are similar in that they are both enveloped, positive-
sense, single-stranded RNA viruses; however, dengue viruses are 
mosquito-borne and can infect cells in a broad range of organs 
while SARS-CoV-2 is a respiratory virus with a majority of replica-
tion thought to take place in the upper and lower respiratory tracts. 
While hyperinflammation is common to severe forms of disease 
caused by dengue viruses and SARS-CoV-2, severe dengue disease 
and severe COVID-19 are distinct and result from very different 
pathological inflammatory processes. That both diseases are likely 
mediated in part by an aberrant afucosylated IgG1-CD16a signaling 
speaks to the diversity of functions that can arise through engaging 
this effector pathway.

4.1  |  Afucosylated IgG1 in dengue disease

There are four serotypes of dengue viruses (DENV), DENV1-4 
and primary infection with one serotype elicits antibodies that 
are broadly reactive, but that do not neutralize other DENV sero-
types. The vast majority of DENV infections result in a subclinical 
or mild clinical phenotype but a subset of individual's progress to 
more severe disease. The most severe dengue disease forms, den-
gue hemorrhagic fever and dengue shock syndrome (DHF/DSS), are 
characterized by sequelae including thrombocytopenia and plasma 
leakage due to increased capillary permeability, in some cases re-
sulting in shock (DSS).92 A majority of DHF/DSS occurs in secondary 
DENV infections when non-neutralizing, reactive IgGs are present 
that modulate the level of infection and the cellular response to 
infection, through “extrinsic” and “intrinsic” antibody-dependent 
enhancement (ADE) mechanisms, respectively.93,94 An aggressive 
inflammatory response including elevated production of interferon 
(IFN)-gamma, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, 
IL-8, and vascular endothelial growth factor (VEGF)95 likely contrib-
ute to capillary permeability and other sequalae of severe disease. 
These cytokines are thought to derive from virus-infected mono-
cytes, dendritic cells, platelets, mast cells and T cell subsets. Inherent 

cellular differences have been associated with cytokine production 
in both protective and pathologic inflammatory responses during 
infection.96

Although the presence of reactive, non-neutralizing IgG is a risk 
factor for progression to severe disease, it has been appreciated for 
several decades that the presence of non-neutralizing IgG alone 
does not predict the development of DHF/DSS. This suggests that 
only specific IgG repertoires, and potentially specific FcγRs, mediate 
ADE of disease. Recent studies have begun to resolve this important 
topic in dengue disease pathogenesis. In 2017, our group and others 
studied a cohort of patients with secondary DENV infection with 
mild or severe disease. They observed that patients who progressed 
to DHF/DSS produced anti-DENV IgG1 with significantly elevated 
Fc afucosylation over those that did not develop severe disease.69 
An increased frequency of anti-DENV IgG1 relative to IgG2 was 
also associated with severe disease. Further, afucosylated IgG from 
patients with severe disease could activate platelets and trigger 
platelet loss in an FcγR-dependent manner, in vivo, consistent with 
thrombocytopenia characteristic of severe dengue. The identifica-
tion of afucosylated anti-DENV IgG1 as a biomarker of severe den-
gue disease shed light on why only a subset of DENV patients with 
anti-DENV IgGs develop severe disease.

In 2020, we further showed that elevated afucosylated anti-
DENV IgG1 in maternal circulation predicted the development of 
clinically significant disease in their infants during primary dengue 
infection.70 This was presumably due to transplacental transfer of 
the maternal IgG, rendering infants susceptible to ADE of disease 
during primary infections. This study reproduced our earlier find-
ing that afucosylated anti-DENV IgGs predicted dengue disease se-
verity. As afucosylated IgG1 has increased affinity for CD16a, the 
identification of IgG1 afucosylation as a correlate of dengue disease 
severity implicates CD16a in the pathophysiology of ADE. We as-
sessed the requirement for CD16a in antibody-dependent DENV 
infections using engineered human monocytic cell lines (U937) that 
express different combinations of CD16a and the other low-affinity 
activating FcγR, CD32a70. This work showed that CD16a and CD32a 
had distinct roles in ADE of dengue infection. CD32a mediated the 
majority of entry by DENV immune complexes (extrinsic ADE), while 
the presence of CD16a did not modify the ability of DENV immune 
complexes to enter cells. However, in the presence of both CD16a 
and CD32a, infection was enhanced through a mechanism that re-
quired functional CD16a signaling. Thus, CD16a-mediated ITAM sig-
naling triggered intrinsic ADE of DENV infection in a mechanism that 
was shown to require the calcineurin signaling network. Together 
these data support a functional role for afucosylated anti-DENV 
IgG1 in driving severe DENV disease though increased infection in 
and ITAM signaling of CD16a expressing monocytes (Figure  3). In 
addition to modulating viral infection in CD16a-expressing cells, afu-
cosylated DENV immune complexes likely contribute more broadly 
to the hyperinflammmatory sequelae in severe dengue disease.

In 2021 Bournazos et al. again demonstrated afucosylated IgG1 
as a correlate of severe disease and provided significant additional 
insights into the kinetics of afucosylated IgG1 production in less 
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severe cases of DENV infection. Using matched patient plasma, 
Bournazos et al. showed that the abundance of afucosylated IgG1 
increases during convalescence after mild primary infection and 
separately in response to secondary infection.71 These two inde-
pendent increases in afucosylated IgG1 drove a generally higher 
abundance of afucosylated IgG1 in patients with secondary DENV. 
The timing of these increases in afucosylated IgG1 strongly suggests 
that production of afucosylated IgG1 is part of the host response to 
DENV infection. However, only a subset of DENV patients exhibited 
increased afucosylated IgG1, indicating that some individuals may 
be more predisposed to produce antibodies with this modification 
than others. Further investigation into the regulation and mecha-
nism of afucosylated anti-dengue IgG1 production and activity are 
required to understand the role of these antibodies in DENV disease 
pathogenesis.

4.2  |  Afucosylated IgG1 in severe COVID-19

As with dengue virus infections, the vast majority of infections 
with SARS-CoV-2 result in subclinical or very mild disease. Severe 
COVID-19 arises in part from aberrant activation of cells in the mye-
loid compartment, triggering a hyperinflammatory cascade.97,98 High 
concentrations of proinflammatory cytokines, particularly IL-6 and 
TNFα are strongly associated with severe disease and poor progno-
sis.99 Further, unlike other respiratory viral infections, patients with 
severe COVID-19 benefit from steroid treatment and other medica-
tions targeting inflammatory pathways, highlighting the underlying 
hyperinflammatory pathophysiology of this disease.

In 2021, our group described a proinflammatory feature of IgG 
that correlated with severe COVID-19: afucosylated IgG1.72 While 
this was a familiar correlate of disease severity from dengue disease 
studies, this finding was unexpected given the distinct pathophysiolo-
gies of severe COVID-19 and dengue disease. Afucosylated IgG1 anti-
bodies against the SARS-CoV-2 receptor-binding domain (RBD) were 
more abundant in hospitalized COVID-19 patients compared to both 
adult COVID-19 outpatients and seropositive children. This increased 
abundance of afucosylated IgG1 was predominantly observed in 
hospitalized male patients from two independent cohorts but did 
not correlate with age. IgG subclass differences amongst the various 
groups were also probed as they are known modulators Fc-FcγR in-
teractions. A significant increase in anti-RBD IgG3 antibody level was 
observed in patients admitted to the intensive care unit (ICU).72 The 
IgG3 subclass and afucosylated IgG1 are among the most inflamma-
tory IgG structures due to their higher affinities to activating FcγRs, 
particularly CD16a (Figure  1B). Thus, the Fc signature observed in 
hospitalized COVID-19 patients was highly proinflammatory, and IgG 
from patients with elevated afucosylation (>20%) had 5–6 fold higher 
affinity to recombinant CD16a as compared to patient IgG that exhib-
ited low afucosylation (<10%). Enhanced binding to CD16a translated 
to higher inflammatory potential as evidenced by robust production 
of IL-6, TNFα, and other proinflammatory factors by healthy donor 
monocytes stimulated with ICs composed of afucosylated IgG and 
SARS-CoV-2 spike trimer in vitro. A subsequent study by Larsen et al. 
reproduced the finding of enriched afucosylated IgG1 in sera of se-
vere COVID-19 patients and proposed an interesting hypothesis that 
Fc fucosylation is regulated by whether an antigen is presented to the 
B cell in a membrane-bound or soluble form.73 Findings from Hoepel 

F I G U R E  3  Model for antibody-
dependent enhancement (ADE) in dengue 
infection and the roles of activating type 
I Fcγ receptors (FcγRs) and afucosylated 
IgG. Viral attachment and entry occurs 
mostly by CD32a mediated endocytosis 
after interactions with anti-E IgG1:dengue 
ICs. Additionally, high affinity interactions 
between afucosylated anti-E IgG1:dengue 
ICs and CD16a promotes increased 
ITAM signaling. ITAM signaling triggers 
downstream calcium flux and activates 
the calcineurin signaling network. Specific 
calcineurin inhibitors prevented FcγR-
dependent dengue virus infection
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et al. reinforced the proinflammatory capability of afucosylated ICs as 
they demonstrated that even homeostasis-promoting human alveo-
lar macrophage could be thoroughly reprogrammed toward a proin-
flammatory phenotype by stimulation with afucosylated immune 
complexes.100

While these studies established that afucosylated IgGs were 
present in severe COVID-19, it was not clear whether this was a 
cause or effect of severe disease. In either case, afucosylated im-
mune complexes might modulate disease severity, yet clarifying the 
timing of production was important to determining whether Fc afu-
cosylation was an early biomarker of risk in SARS-CoV-2 infections. 
To assess whether elevated afucosylated IgG1 preceded progression 
to severe symptoms, samples were studied from two independent, 
longitudinal cohorts of mild COVID-19 patients, a subset of whom 
would go on to develop more severe disease. From this analysis, 
in 2022, our group further reported that elevated IgG1 afucosyla-
tion, together with absent or low early neutralizing antibodies was 
an early predictor of risk for disease progression in mild COVID-19 
patients.74 Receiver operating curve (ROC) analysis showed that, 
individually, neutralizing titers and IgG afucosylation were only 
moderate predictors of disease progression; however, combining 
the two features enabled robust predictive capacity to identify mild 
COVID-19 patients who were at risk for developing severe symp-
toms (“progressors”).74 We also observed that ASCs, specifically 
plasmablasts from “progressors” expressed significantly less of the 
enzyme α-1,6-fucosyltransferase (FUT8) that is responsible for core 
fucosylation, consistent with increased afucosylated IgG1 in this 
group.74

Dysregulation in innate immune effector cell subsets has been 
shown to correlate with COVID-19 disease severity.101–104 As IgG-
mediated, inflammatory effector cell activity is a function of both 
cell frequency and FcγR co-expression by these cells, we went on 
to perform an in-depth profiling of peripheral innate immune cells 
from “progressors” and non-progressor controls to quantify both 
cell frequency and FcγR expression. We observed that monocyte 
distribution within peripheral blood immune cells (PBMCs) was 
distinct in “progressors” prior to the development of more severe 
symptoms. Specifically, “progressors” had an increased frequency 
of CD16a-expressing immune cells, non-classical and intermediate 
monocytes. In addition to being more frequent, non-classical and 
intermediate monocytes from “progressors” expressed more sur-
face copies of CD16a protein. Other activating and inhibitory FcγRs 
were not distinct between “progressors” and controls. ROC analysis 
showed that, separate from the non-neutralizing, afucosylated IgG1 
correlate of progression to more severe COVID-19, CD16a expres-
sion alone within the peripheral myeloid cell compartment was also 
strongly predictive of disease progression.74 Together, these data 
link the afucosylated IgG1-CD16a axis to the development of wors-
ening symptoms in COVID-19.

Although the recruitment of monocytes and other innate im-
mune cells to sites of infection and inflammation is fundamentally 
a homeostatic immune mechanism, autopsies from patients with 
COVID-19 revealed extreme infiltration of lungs thought to result 

in poor gas exchange, and co-localization of viral RNA with myeloid 
cell infiltrates, likely demonstrating an overwhelming inflammatory 
response to viral antigens.105,106 To study how afucosylated immune 
complexes might modulate inflammation in the lung, specifically, 
our group developed a mouse model enabling assessment of human 
immune complex-mediated lung inflammation. Administration of 
human afucosylated immune complexes into the lungs of FcγR-
humanized mice107 promoted a rapid and robust inflammatory re-
sponse characterized by neutrophil and monocyte infiltration, as 
well as the production of numerous proinflammatory soluble factors 
including IL-6, TNFα, and myelo-attractive chemokines.74 This in-
flammatory response to afucosylated immune complexes was CD16a 
dependent and was not present in mice that received fucosylated 
immune complexes. The absence of virus and infection in this mouse 
model allows for the characterization of the inflammatory potential 
of afucosylated IgG1, as well as other human IgG subclasses and gly-
coforms, unconfounded by viral and antiviral activity alike. While the 
humanized mouse model used to study how antibody signaling im-
pacts the lung is not a model of COVID-19 pathogenesis, the inflam-
matory response within the lung in response to afucosylated IgG1 
resembles the inflammatory state of the lungs of severe COVID-19 
patients, namely a persistence of neutrophils and inflammatory 
monocytes or monocyte-derived macrophages (Figure  4).108–112 
These data collectively demonstrate that the enhanced afucosylated 
IgG1-CD16a signaling axis observed in COVID-19 “progressors” can 
promote a rapid and robust inflammatory response in vivo that ex-
hibits similarities to findings in severe COVID-19.

5  |  CONCLUDING REMARKS AND 
OUTSTANDING QUESTIONS

The molecular regulation of IgG1 Fc glycosylation, particularly Fc fu-
cosylation is incompletely understood. Although a number of stud-
ies have identified genes other than Fut8 that might be involved in 
core fucosylation, including Ikzf1, Ikzf3, Hnf1a, Hnf4a, and less en-
igmatic genes involved in fucose biosynthesis, the details of how 
these genes might participate in the regulation of FUT8 expression 
in ASCs and the production of afucosylated IgG1 have yet to be fully 
described.113–116 Sex and age are also known to correlate with IgG 
Fc glycoforms28–30 and exogenous delivery of sex hormones can im-
pact Fc glycosylation.117,118 A greater understanding of how and why 
afucosylated IgG1 antibodies are produced in healthy and disease 
contexts could lead to the development of therapeutic interventions 
to modulate IgG afucosylation for clinical benefit.

Another key question in regulation of human antibody effector 
function is the extent to which heterogeneity in FcγRs, as opposed 
to IgG Fcs, impacts disease outcomes. Is FcγR repertoire heteroge-
neity a more, less, or equivalently important variable relative to Fc 
heterogeneity in driving antibody-mediated disease outcomes (both 
positive and negative outcomes)? As demonstrated in vivo, the in-
flammatory potential of afucosylated IgG1 in the lung was mediated 
almost entirely by CD16a. Further, humans with mild COVID-19 



    |  71GONZALEZ et al.

who progressed to more severe disease had increased expression of 
CD16a on myeloid cells and this early cellular feature alone predicted 
progression to more severe disease.74 These observations point to 
the question of how CD16a protein expression is regulated within the 
myeloid compartment. Additional identification of the viral or host-
derived factors responsible for eliciting classical monocyte differenti-
ation or maturation into CD16a-expressing non-classical monocytes 
might also clarify the distinct monocyte response observed in patients 
who progress to severe COVID-19. Structural heterogeneity of CD16a 
imparted by genetics and glycosylation, as well as heterogeneity of 
CD16a expression by immune effector cells are likely co-determinants 
of both protective and hyperinflammatory antibody signaling out-
comes in infectious disease and are deserving of further investiga-
tion. Ideally, studies would characterize both human FcγR-expressing 
effector cells and IgG antibodies from matched donors to clarify how 
heterogeneity in antibody signaling contributes to infectious disease 
outcomes.
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