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Simple Summary: In Chronic Myeloid Leukemia (CML), intra-clonal heterogeneity is a major factor
in the response to tyrosine kinase inhibitors and in leukemia stem cell persistence. This intra-
clonal heterogeneity could be partially explained by epigenetic abnormalities. This review focuses
on DNA methylation abnormalities in CML and its potential implications for the development
of new biomarkers of the treatment response and new therapy opportunities. DNA methylation
abnormalities are considered an important event in the CML progression phase. Moreover, in
recent years, DNA methylation abnormalities have also been characterized at CML diagnosis (in the
chronic phase), with specific alterations in the immature cells of the tumor clone. Lastly, the review
discusses the importance of these finding for understanding the disease emergence, for developing
new therapeutic strategies, and for a personalized management of CML.

Abstract: Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-
clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the
BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the
existence of intra-clonal heterogeneity, as indicated by the persistence of a minority subclone for
several years despite the presence of the target fusion protein in all cells. Epigenetic modifications
could partly explain this heterogeneity. This review summarizes the results of DNA methylation
studies in CML. Next-generation sequencing technologies allowed for moving from single-gene
to genome-wide analyses showing that methylation abnormalities are much more widespread in
CML cells. These data showed that global hypomethylation is associated with hypermethylation
of specific sites already at diagnosis in the early phase of CML. The BCR-ABL-independence of
some methylation profile alterations and the recent demonstration of the initial intra-clonal DNA
methylation heterogeneity suggests that some DNA methylation alterations may be biomarkers of
TKI sensitivity/resistance and of disease progression risk. These results also open perspectives for
understanding the epigenetic/genetic background of CML predisposition and for developing new
therapeutic strategies.

Keywords: chronic myeloid leukemia; DNA methylation; clonal heterogeneity

1. Introduction

Chronic myeloid leukemia (CML) is a unique model of leukemogenesis. Indeed,
this disease of middle aged adults (median age at disease onset: 56 years) [1] originates
from a single cytogenetic abnormality considered to be the driver of hematopoietic stem
cell (HSC) transformation: the translocation t(9;22)(q34;q11) that results in the formation
of the Philadelphia (Ph1) chromosome [2]. The resulting chimeric BCR-ABL transcript
produces the BCR-ABL fusion protein with constitutive tyrosine kinase activity that leads
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to uncontrolled granulocytic lineage proliferation, adhesion defects, and resistance to
apoptosis. CML is classified in three phases: (i) chronic phase (CP) the natural course
of which is the transformation into (ii) the blast phase (Blast Crisis, BC) that resemble
acute leukemia and has a poor prognosis [3], and (iii) an intermediate phase, known as the
accelerated phase (AP) that may precede the BC. The management of patients is based on
the use of tyrosine kinase inhibitors (TKIs), the first targeted therapy in oncology [4], that
has revolutionized CML prognosis.

The evaluation of the therapeutic response with a 20-year follow-up and the progress
made in residual disease monitoring with the quantification of the chimeric BCR-ABL
transcript have allowed standardizing CML management [5]. However, only a minority of
patients ('15%) can be considered in durable remission. Moreover, half of the patients with
undetectable residual disease relapse after treatment discontinuation [6–8], demonstrating
the persistence of TKI-insensitive leukemic stem cells (LSCs) [9,10]. These relapses also are
the proof of intra-clonal heterogeneity. Indeed, although all malignant cells harbor the BCR-
ABL fusion protein, a small subpopulation resists TKI treatment and persists in vivo. The
immunophenotype of this subpopulation is comparable to that of normal hematopoietic
stem cells and although it is a minority within the initial clone, its presence demonstrates
the existence of intra-clonal heterogeneity. The cells that are more resistant to TKIs seem to
be quiescent, again highlighting the variability of cell behaviors within the same clone [11].
BCR-ABL-related resistance mechanisms, such as point mutations, explain only a minority
of the cases of primary resistance to TKIs [5], but are representative examples of intra-clonal
heterogeneity because cells harboring a BCR-ABL mutation are mostly selected by targeted
therapy [12]. Other BCR-ABL-independent mechanisms have been suggested, for example
related to the microenvironment [13,14]. Similar to many other cancer types, epigenetic
abnormalities also could be involved, notably DNA methylation [15,16].

This review focuses on methylation abnormalities in the CML clone, and their role in
intra-clonal heterogeneity and disease progression.

2. DNA Methylation Functions in Hematopoiesis
2.1. DNA Methylation

DNA methylation is one of the most described epigenetic mechanism, and it plays
an essential role in gene expression regulation and chromatin organization [17]. In this
process, a methyl group is added to the fifth carbon of cytosines in CpG sequences to
form 5-methylcytosine (5mC). In mammals, DNA methylation is predominantly found
at cytosines in symmetrical CpG dinucleotide base pairs. Indeed, 70–80% of them are
methylated, although they represent only 3–8% of all cytosines. CpG dinucleotides are
enriched in genomic areas called CpG islands (CGIs) that are frequently present at gene
promoters and are, therefore, poorly methylated. CGI methylation is often associated with
transcription repression and long-term silencing [17].

DNA methylation is controlled by different enzymes (Figure 1). DNA methyltrans-
ferases (DNMTs) [18] catalyze the addition of the methyl group and include three main
enzymes: DNMT1, DNMT3A and DNMT3B. DNMT1 is involved in DNA methylation
maintenance during DNA replication, whereas DNMT3A and DNMT3B are implicated in
de novo methylation. Other enzymes, such as ten-eleven translocation (TET), activation-
induced cytidine deaminase (AID) and thymine DNA glycosylase (TDG), play a role in
demethylation [19–22]. DNA methylation is involved in various biological phenomena,
for instance the epigenetic regulatory mechanisms of genomic imprinting, X-chromosome
inactivation and cell differentiation [23,24], and plays a major role also in hematopoiesis.
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2.2. DNA Methylation in Hematopoiesis

Hematopoiesis is a dynamic process that proceeds in a hierarchical manner. Multi-
potent HSCs give rise to oligopotent progenitors that then differentiate into uni-potent
progenitors committed towards a specific lineage. This model is finely regulated and
controlled. DNA methylation plays an essential role in cell plasticity, lineage commitment
and cell differentiation. Indeed, DNA methylation contributes to the maintenance of HSC
stemness and participates in cell differentiation [25] (Figure 2). Thus, the methylation
profile differs according to the differentiation stage and the cell type. For instance, myeloid
progenitors are characterized by lower global DNA methylation than lymphoid cells where
DNA methylation silences the myeloid differentiation program [26,27].
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etic stem cells (HSC).

The finding that some hemopathies are accompanied by a maturation block while
others can maintain cell differentiation suggests that epigenetic mechanisms, particularly
alterations in DNA methylation, may be involved in the development of the leukemic
phenotype. Consequently, as the CML clone is derived from the leukemic transformation
of one HSC [28] and that myeloid differentiation is maintained during the disease, it can be
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hypothesized that epigenetic alterations, particularly DNA methylation, are involved in
leukemogenesis and intra-clonal heterogeneity.

3. DNA Methylation Abnormalities in CML

In cancer, DNA methylation abnormalities can be associated with aberrant gene
expression. For example, the genome-wide DNA hypomethylation observed in the cancer
cell genome has been associated with genomic instability, whereas DNA hypermethylation
of CGIs at specific promoters leads to aberrant gene repression [29]. These methylation
abnormalities are found at particular genomic locations called cancer-specific differentially
methylated regions [30]. Although more limited than in solid tumors, significant DNA
methylation changes are also observed in CML.

3.1. DNA Methylation Abnormalities of BC-CML Cells
3.1.1. Methylation Abnormalities Are Associated with CML Progression

The mechanisms of transformation from CP to BC-CML are still poorly understood,
particularly due to the high genetic heterogeneity and complexity of blast phase cells. Several
genetic mechanisms of transformation have been suggested on the basis of the results ob-
tained by comparing primary CML cells in chronic phase and in accelerated/blast phase: (1)
increased BCR-ABL1 expression associated with genetic instability [31]; (2) appearance of
mutations in the BCR-ABL1 kinase domain, responsible for resistance to TKIs [32–34];
(3) appearance of additional cytogenetic abnormalities in 60–80% of cases [35];
(4) presence of gene mutations, notably in ASXL1 (tumor suppressor), RUNX1 (HSC
self-renewal), and IKZF1 (myeloid cell differentiation) [32–34]; (5) presence of copy number
variations [32,34]; and (6) presence of other fusion genes (26% of patients in the study by
Branford et al.) [32].

The first studies on DNA methylation in CML were performed in blast phase cells,
known for their genetic instability. The first analyses on a limited number of genes [36–42],
reviewed in [43], suggested the existence of methylation abnormalities in CML. A tendency
to DNA hypermethylation was observed in BC compared with CP-CML primary cells.
However, this hypermethylation was rarely correlated with a change in the target gene
expression level [42]. Technological advances allowed more extensive DNA methylation
analyses in parallel with transcriptomic analyses [34,44]. By analyzing 17 CP, 4 AP, 9 BC
and 5 control (healthy donor) samples (mononuclear cells from peripheral blood or bone
marrow) using the Reduced Representation Bisulfite Sequencing (RRBS) technique, Heller
et al. [44] identified approximately 6500 differentially methylated CpG sites in the BC
samples compared with controls. They reported that DNA methylation abnormalities
were discrete in the early phase of CP and increased in the BC (around 0.3% of abnormally
methylated CpG sites analyzed in CP, 1% in AP, and 2% in BC) (see Section 3.2). By RNA-
sequencing, they confirmed the link between DNA methylation and downregulation in
22.5% of genes. More recently, Ko et al. [34] performed a methylation analysis (HM450K
arrays) and RNA-seq analysis of 7 healthy donors (CD34+ cells from bone marrow), 28 CP
(CD34+ cells from peripheral blood and bone marrow) and 30 BC samples (n = 18 acute
myeloid leukemia and n = 12 acute lymphoblastic leukemia; CD34+ cells from peripheral
blood and bone marrow). They confirmed that BC transformation is mainly characterized
by DNA hypermethylation events (>80%), often at promoters. This can be explained by
the fact that these abnormalities could involve areas already methylated in normal and/or
CP-CML cells, corresponding to genes that are normally not or only slightly expressed.
More indirect regulatory mechanisms, such as the use of an alternative promoter or the
presence of a permissive histone mark (such as trimethylation of lysine 4 on histone 3,
H3K4me3), could be involved [45].

The mechanisms involved in the progression to BC could affect DNA methylation via,
for example, polycomb repressive complexes (PRCs). For instance, PRC-2 and enhancer of
zeste homolog 2 (EZH2) might induce the hypermethylation phenotype [34]. However, the
link between BCR-ABL1 and PRCs is poorly understood.
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3.1.2. Differences and Similarities with Ph1-Negative Acute Myeloid Leukemia (AML)

Many methylation abnormalities have also been detected in Ph1-negative AML. In
these hemopathies, different factors may influence the DNA methylation profile. First,
the genetic driver abnormalities present in Ph1-negative AML [46–48], such as recurrent
cytogenetic abnormalities (AML1-ETO, CBFb-MYH11 or PML-RARA) and MLL gene
rearrangements, are associated with specific DNA methylation profiles [46]. However,
inter-individual variability exists within subgroups. This is probably the result of several
factors, including age and the presence of additional mutations [49] that do not appear to
influence DNA methylation in BC-CML [34]. Second, unlike BC-CML where the lymphoid
and myeloid blast phase cells have similar methylation profile [34], Ph1-negative AML is
influenced by the cell origin of the clone and the differentiation stage at which the clone
stalls [50]. Finally, mutations in DNA methylation enzymes (DNMT3A, TET2, IDH1 and
IDH2) have been found in ~44% of AML [48], and only in 16% of AP/BC-CML [51]. These
mutations, particularly in DNMT3A and IDH1/2, are associated with specific methylation
signatures [48,52,53], and are sometimes identified as a driver of disease development,
particularly in AML with normal karyotype [54]. For example, DNA hypermethylation pat-
terns are associated with IDH1 and IDH2 mutations, and hypomethylation with DNMT3A
alterations [46,48,55]. DNA methylation can also be altered by mutations in genes of the
cohesin complex involved in chromatin organization [54]. The consequences of these
DNA methylation abnormalities are variable and multiple: repression of tumor suppressor
gene expression, re-expression of a gene that was initially switched off, promotion of the
appearance of gene (e.g., TP53, DNMT3A) mutations, via C-T transitions, necessary for
disease initiation or progression [29].

Thus, the genetic mechanisms involved in CML development and blast transforma-
tion probably involve epigenetic mechanisms that need to be elucidated due to CML
transformation into acute leukemia.

3.1.3. Epigenetics, CML and AML Predisposition

Exposure to toxic substances, such as benzene, can promote the development of AML
and CML [56,57], suggesting common leukemogenesis mechanisms.

Furthermore, in BC-CML, besides the Ph1 chromosome, other chromosomal abnormal-
ities, called additional karyotypic abnormalities, have been observed (e.g., monosomy 7,
missing chromosome Y, trisomy of chromosome 8, trisomy of chromosome 21, extra Ph
chromosome) [35,58]. These abnormalities are also associated with AML or have poor
prognosis [59], but they concern a minority of patients and exceptionally the CP.

In AML, various mutations in genes involved in the development of myeloid malig-
nancies and constituting predisposition factors (e.g., CEBPA, GATA2, RUNX1, ANKRD26,
ETV6, ASXL1) have been identified, particularly from the study of hereditary diseases,
familial forms, and karyotypic abnormalities [60]. Conversely in CML, the natural course
of which is transformation into acute leukemia, only some of these mutations are detected
(e.g., RUNX1 or ASXL1), and they are present only in about half of patients with BC-
CML, and in a minority of patients with CP-CML [31–33,59,61]. Interestingly, although
gene mutations can be present already in the pre-leukemic clone, therapeutic resistance
to TKI correlates more with mutations occurring during the follow-up than with their
initial presence [62]. The occurrence of these chromosomal/genetic perturbations and/or
BCR-ABL point mutations during the progressive phases of the disease might reflect the
well-known genetic instability in CML, probably favored by DNA methylation abnormali-
ties [37,38,43,63].

Genetic abnormalities that affect telomere dynamics are predisposed to AML develop-
ment [60,64].

More recently, mutations characteristic of age-related clonal hematopoiesis of indeter-
minate potential (CHIP) have been described in healthy subjects [65]. These mutations are
found in 10% of >65-year-old subjects, but only in 1% of <50-year-old subjects [66]. These
recurrent mutations mainly concern genes involved in epigenetic mechanism regulation
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(DNMT3A, TET2, ASXL1, BCOR, IDH1, IDH2), but also tumor suppressors (TP53), genes
involved in signaling pathways (JAK2, CBL), and spliceosome genes (SF3B1) [67–70]. In
healthy subjects, mutations in genes encoding DNA methylation regulators (DNMT3A,
TET2) are associated with DNA methylation abnormalities [65] that influence the dynamics
of hematopoietic differentiation [71]. These mutations are also found in patients with
myelodysplastic syndromes or AML. Studies in large samples showed that CHIP is a
pre-leukemic state that predisposes to AML development [68,69,72–74]. It is also associated
with higher risk of mortality, and particularly of cardiovascular diseases [74,75].

CHIP is found in only about 15% of patients (Table 1) with CP-CML at diagnosis, and
it is mainly related to ASXL1, DNMT3A or TET2 gene mutations. Two studies suggested
that some of these mutations may be present before the diagnosis because they are detected
in the Ph-negative clones after TKI treatment [62,76]. They may also be more frequent
at diagnosis in patients who progress to BC (50%–60%) [32]. This work suggests that in
some patients, CHIP favors progression to AML, but the link between CHIP and CML is
not clear.

3.2. DNA Methylation in CP-CML and Intra-Clonal Heterogeneity

The first studies on DNA methylation abnormalities at diagnosis of CP-CML focused
on a limited number of genes, for instance the promoter Pa of ABL1 [38,77,78] the hyper-
methylation of which is now considered one of the characteristics of the DNA methylation
pattern of the CML clone. These studies found that the promoters of several genes, such as
PU-1 [79] and HOXA4 [63], were abnormally methylated at CP diagnosis. Overall, DNA
methylation abnormalities were more frequent in the progressive phases of the disease, and
methylation changes were proposed as markers of CML progression [34,36–44,79–82] and
of therapeutic resistance [38,43,63,83]. Then, the use of more comprehensive methylation
profiling approaches revealed more extensive changes, but again, mainly in the progressive
phases of the disease [34,44]. Indeed, changes in the CP appear to be minimal (approxi-
mately 0.3% of all CGIs) compared with control mononuclear cells, and their relationship
with the initial therapeutic response is unclear [44].

Table 1. Mutation in genes encoding epigenetic regulators at CP-CML diagnosis (relative to the total number of patients
under study).

Genes
Investigated TET1 TET2 TET3 DNMT3A DNMT1

DNMT3B ASXL1 Epigenetic
Regulator

DNA
Methylation

4 genes [84] / 1/91 / / / 8/91 9/91 1/91
25 genes [76] / 1/15 / 2/15 / 1/15 4/15 3/15
71 genes [85] 0/124 1/124 / 4/124 0/124 9/124 37/124 5/124
92 genes [62] 0/100 6/100 / 2/100 0/100 9/100 19/100 8/100

Whole exome [86] 0/24 1/24 1/24 0/24 0/24 3/24 6/24 2/24
Whole exome [87] 0/40 1/40 0/40 1/40 0/40 6/40 10/40 2/40
Whole exome [32] 0/46 0/46 0/46 0/46 0/46 9/46 11/46 1/46

Total 0/334 11/440 1/110 9/349 0/334 45/440 96/440 22/440
% 0% 2.50% 0.90% 2.60% 0% 10.20% 21.80% 5%

On the basis of the resistance to TKIs of the immature subpopulation of the initial
BCR-ABL1-positive CML clone and the maintenance of myeloid differentiation and there-
fore of cellular heterogeneity, our group hypothesized an initial intra-clonal epigenetic
heterogeneity, particularly concerning DNA methylation, an epigenetic marker that can
be passed from one cell generation to the next [88]. We used a global methylome analysis
approach (HM450k arrays) to analyze immature CD34+ CD15- cells and mature CD34-
CD15+ cells of the CML clone at diagnosis, and also the equivalent cell subpopulations
from healthy controls [77]. The analysis strategy included a step to remove DNA methy-
lation changes related to myeloid differentiation. With this strategy we showed, for the
first time, that the CP-CML clone at diagnosis has a characteristic DNA methylation profile
with an overall tendency to hypomethylation (33 CML-specific abnormally methylated
hotspots), and also that the immature CD34+ CD15- subpopulation has a specific profile
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with a more pronounced hypomethylation. The two cell subpopulations show only 65%
of similarity. The list of target genes includes genes with already known DNA methyla-
tion abnormalities, such as hypermethylation of ABL1, and genes that are overexpressed
in BC-CML, such as PRAME, WT1 and GAS2 [89–91]. The existence of an altered DNA
methylation profile already at CP-CML diagnosis has been confirmed [92], including in the
CD34+ cell subpopulation [34].

Interestingly, among the genes undergoing DNA methylation changes in the CP-CML
CD34+ CD15- cell subpopulation, we noticed a significant number of alternatively spliced
genes. A recent study demonstrated the existence of abnormal splicing already in the CP
of the disease [92].

4. Pathophysiology of DNA Methylation Changes

The mechanisms leading to DNA methylation abnormalities are still poorly under-
stood. Although DNA methylation changes are important in the advanced stages of
CML [34,44] mutations in DNA methylation regulators are rarely observed [32–34,93].

The similarity of the methylomes and transcriptomes of the myeloid and lymphoid
blast phases is in favor of a minimal impact of the cell orientation on DNA methylation alter-
ations in the acute phase [34], and suggests the existence of crucial epigenetic perturbation
steps upstream of the clonal expansion phase that may be related to BCR-ABL1 expres-
sion. Indeed, one of the main hypotheses is the reprogramming of the DNA methylation
signature by the BCR-ABL fusion protein [94].

Vicente-Dueñas et al. [95] demonstrated that expression of the BCR-ABL p210 tran-
script in mice induces global DNA hypomethylation and DNMT1 overexpression, which
can be reduced by the TKI imatinib. In a recent study using a cellular reprogramming
strategy to erase the DNA methylation pattern of BCR-ABL+ cell lines, Amabile et al. [94]
showed that BCR-ABL1 activation induces an aberrant DNA methylation phenotype that is
reversed upon BCR-ABL1 repression. Furthermore, 5-azacytidine, a hypomethylating agent
used to treat some hemopathies, can reduce the oncogenic potential of BCR-ABL+ cells in a
murine model, as observed with imatinib. These results suggest that the BCR-ABL1 fusion
protein can induce a change in DNA methylation, and that DNA methylation abnormalities
are necessary for the maintenance of the leukemic phenotype and the oncogenic potential
of malignant cells. However, this study used BCR-ABL+ cells from patients with BC-CML
and not CP-CML, and did not distinguish between BCR-ABL-dependent and -independent
abnormalities. The disappearance of most of the DNA methylation abnormalities identified
using a global whole-genome bisulfite sequencing approach in patients with a satisfactory
molecular response after TKI treatment suggests a major inductive role of BCR-ABL [92].
However, in patients with optimal therapeutic response, it is difficult to detect possible
abnormalities persisting in the small CML cell population surviving in vivo.

On the other hand, several observations suggest that the BCR-ABL fusion protein
may not be the only inducer of DNA methylation alterations. First, the initial intra-clonal
heterogeneity of the CML clone and the existence of a specific profile of the immature
CD34+ subpopulation [34,77] indicate that although BCR-ABL is expressed in all the cells of
the clone, the DNA methylation alteration profile is different between immature and mature
cells. This suggests the existence of BCR-ABL-independent mechanisms. Furthermore, a
possible amplification of the chimeric BCR-ABL1 gene in CD34+ cells, as demonstrated in
TKI-resistant cell lines [96,97], cannot explain a change in the methylation targets of BCR-
ABL. Therefore, it is likely that the “immature” status of the cells also plays a role in DNA
methylation changes. Second, as these studies did not use the new sequencing techniques
that allow for a more comprehensive analysis of methylation abnormalities, they might
have missed some alterations. Third, the effect of epigenetically targeted drugs, alone or
in combination with TKIs, suggests the existence of therapeutic resistance mechanisms
independent of BCR-ABL (see Section 5).

The most recent studies support a link between PRCs and DNA methylation changes.
PRCs primarily target histones and modify their marks, and are essential for HSC and LSC
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stemness. Unlike other hemopathies, in CML, E2H2 (PRC2 complex) is rarely mutated, but
is overexpressed in CP cells [98]. Its exact role remains unclear. As PRC2, which catalyzes
trimethylation of lysine 27 on histone H3 (H3k27me3), is recruited to unmethylated CGIs,
it is possible that the overall DNA hypermethylation of the CML clone alters the PRC2
target profile. Interestingly, Ko et al. [34] found evidence of a strong relationship between
PRCs and methylation changes in the blast phase. At this stage, the overall change is
mostly towards DNA hypermethylation, particularly at gene promoters. The DNA se-
quence of methylated genes is enriched in PRC targets. Using integrative and chromatin
immunoprecipitation-sequencing approaches, this group compared the methylation pro-
files of BC and CP cells. They found stronger binding of EZH2 and BMI1 (another PRC
protein) in the CP than BC samples, and many hypermethylated promoters in BC cells.
An enrichment in H3k27me3 (repressive mark) and a decrease in H3k4me3 (activating
mark) at hypermethylated sites correspond to the canonical PRC effect. Moreover, an
enrichment in genes with bivalent chromatin (i.e., with both repressing and activating
epigenetic marks) was noted, particularly in BC cells [77]. It seems that EZH2 plays a
more important role than BMI1 in the DNA methylation-dependent repression of genes in
BC-CML, particularly those involved in differentiation. Thus, PRCs might play a significant
role in the methylation profile changes observed in BC cells.

However, the mechanisms of the early DNA methylation alterations in CML cells
during leukemogenesis and then in the CP (i.e., global DNA hypomethylation and hyper-
methylation of specific promoters) remain unknown.

In summary, besides BCR-ABL-dependent mechanisms, other mechanisms are im-
plicated in the DNA methylation alterations observed in the CML clone and they might
be involved in the observed intra-clonal epigenetic heterogeneity (Table 2), and in the
mechanisms of resistance of immature cells to targeted therapy. More studies are needed
to better understand the pathophysiology of these epigenetic anomalies.

Table 2. DNA methylation alterations and intra-clonal heterogeneity.

DNA Methylation Alterations Observations Main Contribution

Genetic driver: BCR-ABL1

BCR-ABL1 induces DNA hypomethylation
through DNMT1 overexpression in mice [95]

BCR-ABL1 induces an aberrant DNA
methylation profile that is reversed upon

BCR-ABL1 repression in mice [94]
Disappearance of DNA methylation

abnormalities at remission after TKI treatment
in patients with CP-CML [92]

Impact of BCR-ABL on DNA methylation of
the CML clone

Inter-individual variability DNA methylation variation profile in different
samples at diagnosis [34,44,77]

Inter-patient variability of DNA methylation
suggesting BCR-ABL- independent

mechanisms

Influence of cell origin at BC transformation Myeloid and lymphoid blast phase cells have
similar methylation profiles [34]

DNA methylation modification is more
dependent on LSCs than cell lineage

commitment

Mutations in DNA methylation regulators 5% in CP-CML [32,62,76,84–87]
16% of AP/BC-CML [51]

Mutations in DNA methylation regulators are
found in a minority of patients and in a

fraction of the CML clone

Differentiated vs immature CML cells DNA methylation alterations specific of
immature and mature cells [34,77]

Intra-clonal heterogeneity of DNA methylation
Possible influence of stem cell status on DNA

methylation

Polycomb complex (EZH2) Implication in transformation to the blast
phase through DNA hypermethylation [34]

EZH2 is involved in CML aggressiveness
through DNA methylation

5. Perspectives
5.1. DNA Methylation, Biological Age, and CML Predisposition

The presence of DNA methylation abnormalities at CP-CML diagnosis raises questions
about their potential role in the disease emergence and development (Figure 3).
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cell (HSC), clonal amplification and diagnosis in the chronic phase, TKI treatment, and blast transformation (now a rare
event). A distinction is made between immature cells (SC subset) and mature cells (differentiated cell subset). The most
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accompanies disease progression. The number of the bibliographic references appears in square brackets.

In subjects exposed to ionizing radiation [99,100], CML will develop 5 to 10 years
after irradiation. The genetic and epigenetic events involved in CML emergence during
these long years are unknown. This long interval between irradiation and CML could have
many reasons, for instance: (i) the slow HSC division rate in vivo, because CML emergence
requires the appearance of the translocation (9;22) in one HSC [101]; (ii) the immune system
efficiency; (iii) the patient’s sex and age. Specifically, CML incidence is higher in men
and increases with age [100]. As epigenetic regulatory mechanisms are involved in cell
stemness, immune system and cell ageing, they might also have a significant role in the
early stages of leukemogenesis.

As mentioned above, CML is a particularly attractive model to study the relationship
between epigenetics and leukemogenesis outside CHIP. One of the major current research
axes is the close relationship between DNA methylation, and chronological age, and age-
associated pathologies [102,103]. This should provide a more powerful tool for assessing
cell ageing than transcriptomic, proteomic or telomere length-based approaches. The
first methylation clocks were described by S. Horvath [104] (a multi-tissue profile) and
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Hannum et al. [105] (blood cell profile). Based on these studies, several algorithms have
been developed, some of which take into account factors that influence the biological
age [106–108].

Consequently, the question of the involvement of biological age (aging) in CML emer-
gence and development appears relevant. Indeed, a disturbance of the biological age has
been reported in many cancers [109], but no data are available for CML. Using algorithms
to calculate the DNA methylation age, we analyzed again the HM450K microarray data
of CP-CML cells and of cells from healthy donors [77] that contain the sites identified by
Horvath et al. and Hannum et al.. Overall, we found a correlation between biological and
chronological age in control cells. Conversely, we found differences between chronologi-
cal and biological age in CD34+ CD15- and CD34- CD15+ CP-CML cells (Figure 4; four
CP-CML samples paired, two impaired). Aging was accelerated in cells from the youngest
patients, but not in cells from the oldest patients. As a result, all patients’ samples showed a
similar biological age that roughly corresponded to the median age of disease onset. These
results suggest the existence of age-related DNA methylation abnormalities common to
all patients, regardless of age. This could be linked to the emergence and amplification of
the CML clone and possibly to an individual predisposition. There are discrete differences
between CD34+ CD15- and CD34- CD15+ cells that may reflect intra-clonal heterogeneity,
but no data has been reported on methylation clock differences within the hemopoietic cell
hierarchy or within the same malignant clone. These interesting preliminary results raise
the question of the impact of altered cell aging, but they need to be confirmed in a larger
patient population and if possible by including also pediatric samples despite the rarity of
CML in children (around 10 new cases per year in France).

5.2. DNA Methylation as a Therapeutic Target

DNA methylation changes might influence the characteristics of the CML clone by
altering the expression of some genes, albeit to a limited extent [34,77,110], or indirectly by
affecting genetic instability and promoting the appearance of gene mutations [111]. In addi-
tion, DNA methylation changes are increased in patients showing imatinib resistance and
during disease progression [36,38,63,80]. Therefore, DNA methylation changes might rep-
resent interesting therapeutic targets. DNMT inhibitors and particularly hypomethylating
agents, such as azacytidine and decitabine, have a biological impact (viability, proliferation)
on K562 and KCL22 myelogenous cells and primary CD34+ BC-CML cells [34,44,112],
unpublished personal data]. Moreover, Amabile et al. [94] showed that 5-azacytidine sig-
nificantly decreases the malignant potential of BCR-ABL+ cells in a mouse model of CML.
This indicates that DNA methylation alterations participate in the leukemic phenotype
induced by the BCR-ABL transcript.
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CP-CML samples, particularly in CD34+CD15- cells, showing accelerated cell aging in the youngest patients and a slower
cell aging in older patients. Statistical test: Pearson correlation test.

These observations are consistent with the results of clinical studies. Decitabine
(hypomethylating agent) is effective in 30%–40% of patients with BC-CML [16,113–116].
The combination of decitabine and the TKI dasatinib in the blast phase induces better
therapeutic responses than TKI alone [117]. The response rate in CP-CML is higher,
although transient. This effect in the early stages of the disease is consistent with the
existence of altered DNA methylation patterns already at diagnosis [77]. Furthermore, the
intra-clonal heterogeneity of DNA methylation and the existence of a specific methylation
profile of CD34+ cells containing TKI-resistant LSCs suggest that the combination of
hypomethylating agents with TKIs in the early stages of the disease might be an interesting
strategy to target TKI-resistant LSCs. However, the myelosuppression induced by these
drugs and the constraints related to injectable forms remain an ethical obstacle to the
implementation of a clinical research protocol in patients with CP-CML because of the
benefit/risk balance and the difficulty to formally identify patients with CML that will be
resistant or less sensitive to TKIs. New drugs or dosage forms, especially oral ones, which
have already proven their efficacy in AML and myelodysplastic syndromes [118–120] could
be an interesting alternative.
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5.3. DNA Methylation as a Biomarker of TKI Resistance and Intra-Clonal Heterogeneity

The DNA methylation profile of cancer or leukemia cells can be correlated with
prognosis. For instance, in chronic lymphocytic leukemia, three prognostic subgroups,
identified on the basis of DNA methylation data, globally correlate with other prognos-
tic factors [121–125]. In CML, several studies have identified DNA methylation changes
in the promoter of some genes in the advanced phases of the disease, for instance hy-
permethylation of the ABL1 [80], cell cycle-regulating genes [43], CEBPA [81], PU-1 [79],
CALCA [82], HOXA4 or HOXA5 [63] gene promoters. Moreover, global DNA methyla-
tion studies have found a clear increase in DNA methylation alterations in BC cells. As
advanced CML phases are more resistant to TKIs, some DNA methylation abnormalities
could be correlated with therapeutic resistance. Moreover, it has been reported that some
DNA methylation changes correlate with imatinib resistance, such as hypermethylation
of HOXA4 [63], BIM [83], OSCP1 or NPM2 [38]. These observations suggest that some
DNA methylation marks may be related to TKI susceptibility and/or resistance. Subclonal
evolution may emerge under treatment, but only four genes have been related to treatment
resistance thus far. More studies are needed to identify other DNA methylation marks.

Nevertheless, this intra-clonal heterogeneity might be a less important factor of resis-
tance in some patients. Indeed, 10%–15% of patients can be considered cured in the long
term, i.e., with undetectable disease after stopping treatment. This implies that in patients
in long-term treatment-free remission, all cells were at some point sensitive to TKIs. It
also suggests that intra-clonal heterogeneity and treatment response show inter-individual
variability. However, this only concerns a minority of patients. All these observations
suggest that DNA methylation alterations and intra-clonal heterogeneity could represent
biomarkers of TKI resistance in the early phase of CML. More studies are required to
identify the methylation marks associated with TKI-resistant cells in vivo.

6. Conclusions

CML is a particularly interesting model to discover new mechanisms of resistance to
targeted therapies and biomarkers of predisposition to the development of acute leukemia,
besides CHIP and gene mutations. Epigenetic regulatory perturbations are emerging as
novel candidate mechanisms, including DNA methylation.

Studies in CML cells show that the presence of the t(9;22) translocation is accompanied
by disturbances in the DNA methylation pattern that are clearly amplified during disease
progression. More recently, intra-clonal differences in DNA methylation have been detected
already at diagnosis and several observations indicate that some DNA methylation alter-
ations are probably BCR-ABL-independent. These findings open complementary research
perspectives to (1) better understand the pathophysiological mechanisms of the establish-
ment of these abnormalities throughout the disease course, (2) identify the methylation
abnormalities correlated with resistance to TKIs or disease progression and (3) evaluate the
interest of epigenetic drugs in CP-CML.

These different research avenues will ultimately allow for optimizing the management
of each patient to increase the number of patients who can be cured and to find therapeutic
solutions for CML progression.
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