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Helicobacter pylori is an important human pathogen that infects half the human population
and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal
ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several
mechanisms to overcome the innate and adaptive immune systems. H. pylori can
modulate interleukin (IL) secretion and innate immune cell function by the action of
several virulence factors such as VacA, CagA and the type IV secretion system.
Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the
function of these cells, reducing the secretion of immune signaling molecules, and
influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells.
Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase
variation and contains human blood group carbohydrate determinants such as the Lewis
system antigens, which are proposed to be involved in molecular mimicry of the host.
Lastly, the H. pylori group of outer membrane proteins such as BabA play an important
role in attachment and interaction with host Lewis and other carbohydrate antigens. This
review examines the various mechanisms thatH. pylori utilises to evade the innate immune
system as well as discussing how the structure of the H. pylori LPS plays a role in
immune evasion.

Keywords: H. pylori, innate immunity, lipopolysaccharide, dendritic cells, Lewis system antigens, molecular
mimicry, adhesion, inflammation
INTRODUCTION

Helicobacter pylori is a gram-negative, spiral shaped bacterium that infects the stomach of up to half
the world’s population. The prevalence is dependent on country and can vary between 20% to 80%
(1). H. pylori also has a high rate of clinically asymptomatic infection, with some studies reporting a
prevalence as high as 67% in entirely asymptomatic populations (2, 3). However, chronic infection
with H. pylori can result in severe clinical conditions, and colonisation induces chronic
inflammation in all infected individuals (4). These conditions are thought to be caused by
damage to the gastric epithelium and prolonged inflammation associated with chronic infection
and immune action (3).
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Antibiotics are the mainstay of treatment for confirmed
infections, and quadruple antibiotic therapy is currently
recommended (5). H. pylori strains are however increasingly
found to be resistant and treatment failure is not uncommon (6).
The outcome of H. pylori infection is strongly influenced by both
the bacterial genotype as well as host polymorphisms and is
driven by an array of virulence factors possessed by H. pylori (7).
Approximately 15% of cases result in symptomatic gastric
disease including acute gastritis, chronic gastritis, and peptic
ulcer (8). Furthermore, 1-2% of infections result in malignant
neoplastic diseases such as mucosal-associated lymphoid tissue
(MALT) lymphoma and gastric adenocarcinoma (8). As a result
of this H. pylori is classified as a type one carcinogen by the
World Health Organisation (WHO) (9). The severity of H. pylori
disease, and the increasing incidence of antibiotic resistance
means there is an urgent need for new therapies and vaccines.

H. pylori employs several mechanisms to evade innate
immunity allowing the bacterium to establish chronic
infection. Firstly, H. pylori occupies a unique infective niche in
the hostile conditions of the human stomach, using the secretion
of the enzyme urease to survive the natural barrier of the
stomach’s acidity, coupled with the motility via its unipolar
flagella (10). The motility of H. pylori allows it to maintain
position and reside in the gastric mucous gel layer where it
triggers inflammation. The net effect of H. pylori-induced
inflammation is damage to the epithelial barrier, which
presumably releases nutrients to promote bacterial growth.

Despite chronic infection, inflammatory responses to H. pylori
infection remain relatively controlled in most cases due to a series
of mechanisms that manipulate the host response, promoting
persistent infection. H. pylori is able to adhere to mucins such as
MUC5AC (11), as well as interacting with Lewis system antigens
expressed on gastric epithelial cells (12), this allows it to maintain
its position in the mucus gel layer and crypt isthmus and prevent
its removal by the stomachs churning movement (10). Secondly,
H. pylori can interact with and manipulate interleukin (IL)
secretion of local dendritic cells (DC), negatively regulating the
functions of these cells and suppressing cytokine release (13),
influencing the differentiation of CD4+ T helper cells towards Th1
type cells (14). Finally, the lipopolysaccharide (LPS) of H. pylori
displays a high degree of phase variation and contains human
blood group carbohydrate determinants such as the Lewis system
antigens (15–17). This review examines the various mechanisms
H. pylori utilises to evade the innate immune system as well as
discussing how the structure of the H. pylori LPS plays a
prominent role in immune evasion.
OVERVIEW OF INNATE IMMUNITY IN THE
CONTEXT OF BACTERIAL INFECTION

The innate immune system is the first line of defence against the
many potential pathogens humans are exposed to daily (18).
Epithelial surfaces and mucous membranes provide a physical
barrier between internal organs and the external environment
(19). The innate immune system also employs various
antimicrobial peptides within the mucosal layer which have the
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ability to kill or inhibit microorganisms and viruses in the area
(20). These initial defences are supported by more complex innate
immune mechanisms. For example, pathogen-associated
molecular patterns (PAMP) can be discerned from host
molecular patterns by innate and adaptive immune cells
allowing the triggering of a more extensive immune response
(21). PAMP frequently include molecules such as glycans and
glycoconjugates which may be expressed in structures like the LPS
of a gram-negative bacterium (22). Detection of these structures
are commonly associated with two classes of proteins known as
toll-like receptors (TLR) and nucleotide-binding oligomerization
domain-like receptors (NLR), as well as complement components
circulating in the blood (23). The TLR expressed in humans are
particularly well characterised, with TLR2, TLR4 and TLR5
commonly associated with the detection of lipopolysaccharide
structures such as a bacterial LPS or flagella, whereas TLR3, TLR7,
TLR8 and TLR9 are associated with the detection of foreign
nucleic acids (24). Nod-Like Receptors recognise components of
the bacterial cell wall, their activation triggers the release of pro-
inflammatory cytokines and have synergistic effects with TLR in
immune system signaling pathways (25).

Pathogen recognition triggers several supporting immune
functions such as the activation of proinflammatory effector
molecules. Inflammation is an important part of the immune
response and inflammasomes are a system of innate immune
receptors that activate the cystine protease caspase-1 and induce
inflammation in response to the presence of infectious microbes
(26). Additionally, inflammasomes contribute to the activation of
proinflammatory cytokines IL-1b and IL-18, which induce an influx
of innate immune cells into a potentially infected area, resulting in
the secretion of further inflammatory cytokines, including IL-8, IL-
6, IL-12, IL-17 and TNF-a, allowing for improved clearance of
infection (26–28). Recognition of infectious bacteria often results in
the engulfment of the bacterium by phagocytes including
macrophages and monocytes. Engulfed bacteria are encased in an
intracellular vesicle, the phagosome, where the phagocytic cells
concentrate molecules which are deadly to bacterial cells,
including antimicrobial substances, reactive oxygen species and
reactive nitrogen intermediates. As well as immediate destruction,
the engulfment, or phagocytosis of bacteria can also function as a
form of antigen presentation for the activation of the adaptive
immune system (29). A specialised type of phagocyte known as the
dendritic cell (DC) plays a primary role in the activation of the
adaptive immune system. Once a DC engulfs a bacterium, it
processes the bacterial cell and presents its antigens in complex
with major histocompatibility molecules (MHC) to lymphocytes to
induce T cell and B cell maturation and differentiation, triggering
the adaptive immune response (30).
IMMUNE RESPONSE AGAINST H. PYLORI

Various innate immune mechanisms are activated by the
colonisation of H. pylori. Toll-like receptors (TLR) 2, 4 and 5
can recognise PAMP of H. pylori (31), triggering immune
pathways that activate NF-ĸB and IL-8 inducing a local
proinflammatory response (32). H. pylori are extracellular and
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generally non-invasive, but secretion of urease and the VacA
toxin trigger local inflammatory responses. The most researched
virulence factor is the type IV secretion system (TIVSS) encoded
by the Cag pathogenicity island carried by type I strains (33).
After bacterial adherence the TIVSS delivers the cytotoxin CagA
to the cytoplasm where it initiates intracellular signaling cascades
that activate NF-kB (34), contributing to the local inflammatory
response. The combined effect of this inflammation results in
erosion of the epithelium, releasing nutrients for the bacteria to
grow and colonise (35). Furthermore, intracellular pathogen
recognising molecules such as NOD1 can bind H. pylori
peptidoglycans that are introduced into epithelial cells via the
TIVSS and trigger the release of other anti-microbial proteins in
response, restricting bacterial growth and initiating additional
immune action (36). While additional macrophages may be
stimulated, H. pylori is able to neutralise macrophage nitric
oxide production reducing the immune action of the cell (37).
Once H. pylori has overcome the initial epithelial response,
persistent infection drives an adaptive immune response
triggered by dendritic cells. The local response consists of
humoral and T cell (particularly Th1 and Th17) activation.
Overall there is an influx of plasma cells, lymphocytes,
neutrophils and other immune cells into the gastric mucosa
duringH. pylori infection, however this rarely results in complete
clearance of the bacterium, and over time a significant
population of regulatory T cells become established (38). This
control of inflammation by H. pylori probably explains why
many H. pylori infected individuals remain asymptomatic.

The stomach has relatively few polymeric immunoglobulin
receptors (pIgR), the receptor responsible for IgA transportation,
in comparison to the rest of the gastrointestinal tract (39). This is
altered in chronic H. pylori infection with upregulation of the
pIgR caused by raised g-interferon levels associated with
prolonged inflammation (40). Upregulation of pIgR does not
result in a corresponding increase in local secretory IgA levels,
with monomeric non-secretory IgA predominating in the
stomach of those infected with H. pylori (41). In contrast,
secretory IgA is commonly observed in response to intestinal
commensals and pathogens, suggesting a different mode of
action of pIgR in the stomach. Systemic H. pylori specific IgG
is also produced in adults experiencing chronic infection (42).
Role of H. pylori Virulence Factors in
Induction of Innate Immune Responses
and Immune Evasion
The natural immune response against H. pylori does not
effectively clear infection and a combination of immune
evasion techniques and bacterial factors leads to a persistent
infection (Figure 1 and Table 1). Initial Type 1 inflammatory
responses in most infected persons become biased over time
towards Th2 and Treg that acts in a kind of damage control
measure, which does not clear infection but reduces damage to
the host (59–61).

An important feature ofH. pylori is its ability to overcome natural
barriers preventing most microbes from colonising the human
Frontiers in Immunology | www.frontiersin.org 3
stomach (62, 63). Early studies concluded that H. pylori flagellin
evades TLR5 recognition and recombinant H. pylori flagellin was
considerably less stimulatory than Salmonella flagellin for example
(64). Furthermore, a series of residues within the CD0 domain ofH.
pylori flagella protein FlaA has recently been found to enable evasion
of TLR5 (Figure 1), these are speculated to be a result of point
mutations not present in flagella proteins from other bacterium (65).
However, a number of studies have now reported that H. pylori
activates both TLR2 and 5 on epithelial cells, but not TLR4 (66). A
recent report revealed that TLR5 activation is via interaction with the
CagY protein which forms part of the TIVSS (67).

CagA is one of the most studied and most important
virulence factors possessed by H. pylori. Contact and
adherence of H. pylori to host gastric epithelial cells
upregulates the expression of both CagA and VacA, as well as
inducing the synthesis and assembly of the TIVSS (Figure 2)
(71). Both CagA and the TIVSS are encoded by the cag PAI
which is an approximately 40 kb chromosomal DNA region
present in the most virulent strains of H. pylori. The TIVSS is a
pilus-based “molecular syringe” structure that translocates CagA
protein into host epithelial cells. The Type IV pilus binds
epithelial cells via interaction with b1 integrin on the
basolateral side (72). The bacteria gain access to the basolateral
side through secretion of the HtrA enzyme which breaks down
tight junctions (33).

Once in the cytoplasm, translocated CagA associates with Src
and c-Abl family kinases which phosphorylate the CagA
carboxyl-terminal EPIYA motif in the inner host cell
membrane. Phosphorylated CagA then interferes with host cell
signaling pathways, disrupting cell-cell junctions (73). In
addition, CagA targets and causes the ubiquitination of the
upstream kinase TAK1 (74). The downstream effects of CagA
induce signaling cascades that activate NF-kB and downstream
proinflammatory signaling (IL-8 secretion), cytoskeletal
rearrangements, and changes to tight junctions (31, 33, 75)
and inducing apoptosis (70, 76). Higher levels of CagA were
shown to cause nuclear translocation of the AP-1 transcription
factor and nuclear factor of activated T-cells (NFAT) (77).
Furthermore, CagA is directly related to H. pylori
carcinogenesis, enhancing DNA double strand breaks, and
disabling homologous recombination-mediated DNA repair as
well as stimulating Hippo signaling via the inhibition of PAR1b-
mediated BRCA1 phosphorylation (78). Additionally, recent
work has indicated that CagA initiates the oncogenic YAP
pathway, further contributing to the association between CagA
and gastric cancer risk (79, 80).

Infection with CagA positive H. pylori strains is one of the
strongest risk factors for the development of gastric cancer (75).
In addition, multiple H. pylori outer membrane proteins are
associated with proinflammatory cytokine induction (Figure 2),
these include OipA and BabA, which can induce IL-6, IL-8 and
IL-11 (44, 45, 81). Like many bacteria, H. pylori have also been
shown to release outer membrane vesicles (OMV) which contain
various components, notably including portions of the H. pylori
LPS as well as Hop family proteins including BabA and SabA
along with other major virulence factors such as VacA and CagA
May 2022 | Volume 13 | Article 868225
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(Figure 2) (74, 82). Interestingly, it appears that H. pylori is also
able to regulate cytokine release from host epithelial cells via
small noncoding RNAs that have been detected in OMV. These
OMV have been shown to suppress IL-8 stimulation from AGS
cells in cell culture, presumably by targeting host cell mRNAs,
effectively reducing the overall immunostimulatory response to
H. pylori LPS and outer membrane proteins (83). Consequently,
OMV may play a role in immune modulation and disease
progression. Regulation of cytokine release by H. pylori has
also been investigated in relation to inflammasomes. H. pylori
Frontiers in Immunology | www.frontiersin.org 4
can modulate NLRP3, a regulator important for inflammasome
activation, by inducing secretion of IL-10 in THP-1 monocytic
leukemia cell lines, and through the action of miRNAs such as
has-miR-223-3p (84). Furthermore, H. pylori infection was
reported to suppress the secretion of mature IL-1b from
human THP1 monocytes, in spite of upregulation of pro-IL-1b,
potentially promoting bacterial persistence (85). Interestingly,
cytokine expression has been seen to differ between children and
adults, with Il-1b, IL17A, IL-23, IL2, IL-12p70 and IFN-g
upregulated in adults and downregulated in children, and IL-6,
FIGURE 1 | Strategies used by H. pylori to evade innate immune mechanisms. H. pylori uses a number of mechanisms to evade the innate immune system. Various
components of the innate immune system present barriers to or respond to H. pylori infection (left). H. pylori is able to overcome these by mechanisms described
(right). Created with BioRender.com.
TABLE 1 | Effect of H. pylori virulence factors on the immune response.

Virulence factor Immune evasion mechanisms References

LPS Evasion of pattern recognition receptors (TLR and NLR), inhibition of DC-SIGN. (43)
BabA Influences inflammasome activation. Prevention of removal by peristalsis and gastric shedding. Stimulation of inflammatory

cytokines.
(44–47)

cag pathogenicity island and
CagA

Prevention of phagocytosis and macrophage killing, regulation of DC cytokine production and inhibition of CD4+ T cell
proliferation.

(13, 48, 49)

Flagellin Evasion of TLR, evasion of peristalsis. (50)
Urease Neutralisation of acidity surrounding the bacterium, apoptosis of gastric epithelial cells. (51, 52)
VacA Prevention of phagocytosis and macrophage killing, interference with cytokines, alteration of antigen presentation,

apoptosis of monocytes, inhibition of DC maturation, apoptosis of gastric epithelial cells.
(14, 49,
53–55)

H. pylori Neutrophil-
activating protein (HP-NAP)

Neutrophil activation, increased production of inflammatory cytokines from neutrophils and monocytes and interference
with Th2 responses.

(56, 57)

OipA Induction of inflammatory cytokines. (44, 45)
SabA Nonopsonic activation of neutrophils, upregulation allowing for enhanced adhesion in inflamed gastric environments, down

regulating enabling bacterial escape from strong host immune response.
(12, 58)
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TGF-b1, IL-10, TNF-a and IL-1a downregulated in adults and
upregulated in children. As a result of these differences, children
display a Treg primary response as opposed to the Th1 and Th17
response seen in adults (86–88).

The virulence factor HP-NAP also plays a major role in
inducing and modulating host inflammation, recruiting
neutrophils to the site of infection and causing a large increase
in the neutrophil secretion of reactive nitrogen species, as well as
stimulating the release of IL-12 and IL-23 from both neutrophils
and monocytes (89). In vitro studies using cloned CD4+ T cells
from allergen induced T cell lines have shown HP-NAP acts as a
Th2 agonist, redirecting Th2 responses into Th1 to drive further
inflammation through cytotoxic Th1 responses characterised by
increased TNF-a and interferon-g (Figure 2) (56).

H. pylori is able to adhere to both the secreted gastric mucin
MUC5AC (90) and gastric epithelial cells via several surface
proteins, such as the blood group binding adhesin (BabA) and
the sialic acid binding adhesin (SabA). These surface proteins
interact with carbohydrate determinants such as the host Lewis
system antigens, again providing a mechanism by which H.
pylori prevents its removal by peristalsis as well as gastric
shedding (Figure 2) (46).
Frontiers in Immunology | www.frontiersin.org 5
H. pylori also expresses Lewis system antigens within the LPS,
that is thought to represent a form of molecular mimicry which
subverts the host immune response. Indeed, there is also
evidence suggesting the expression of Lewis determinants is
involved in H. pylori interacting with the DC calcium
dependent (C-type) lectin DC-SIGN (Table 1) (91). Upon
phagocytosis by an innate immune cell, H. pylori can also
avoid destruction by interfering with phagosome maturation
(Figure 2) (92). Another method of immune evasion used by
H. pylori involves the interaction with DC (Figure 1). While H.
pylori inhabits a unique niche in the stomach where few cells
have access, there has been strong evidence of DC interaction,
with DC maturation and function heavily affected in mouse
models (93). Furthermore, there is evidence of H. pylori having
the capability to infect DC in cell culture (48).H. pylori is capable
of modulating IL-12 secretion by DC affecting the maturation
and differentiation of CD4+ T cells and causing Th1 bias in mice
(94). In-vitro studies have supported this, with H. pylori
demonstrating the ability to modulate expression of IL-12 and
TNF-a in cultured DC (95).

In addition to manipulating DC responses, other virulence
factors including VacA (96) along with g-glutamyltranspeptidase
FIGURE 2 | Role of H. pylori virulence factors in innate immune evasion. H. pylori utilises a number of virulence factors to enable immune evasion. H. pylori
possesses a less immunogenic LPS in comparison to other gram-negative microbes and both the LPS and several H. pylori virulence proteins such as SabA and
OipA demonstrate variable expression patterns affecting the immune response (68, 69). Additionally, H. pylori expresses proteins such as HP-NAP, VacA and CagA
that actively modulate cytokine and inflammatory signaling, as well as DC and macrophage function (56, 70). H. pylori flagella protein FlaA also evades detection by
TLR5 via a series of complex point mutations (65). Created with BioRender.com.
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(GGT) (97) and CagA (98) have been reported to interfere with
the T cell response to H. pylori, causing a characteristic
hyposensitivity of CD4+ T cells and suppressing mucosal effector
T cells (99). Notably, VacA has been found to have an influence on
both DC cytokine expression and T cell differentiation, with VacA
positive H. pylori strains showing the ability to supress IL-23
secretion by DC resulting in increased proliferation of Th17 cells.
VacA plays additional roles in immune mediation including
showing the ability to impair lysosomes and autophagosomes, a
function with which VacA shares a synergistic effect with CagA,
impairing the abilityofbothmacrophages andgastric epithelial cells
to remove internalised or invading bacteria. Specifically,H. pylori is
able to inhibit the functionsof lysosomal enzymesacidphosphatase,
N-acetyl-b-d-glucosaminidase, and cathepsin D, prevent
autolysosomal acidification, interfere with retrograde trafficking
of mannose-6-phosphate receptors and inhibit autophagosome
formation to promote intracellular survival of the bacterium (100).

It is likely H. pylori is highly resistant to destruction by
phagocytes, although this has only been seen in-vitro (101).
Even though H. pylori is frequently engulfed by phagocytes in
vitro, it is proficient at neutralising and resisting the reactive
oxygen and nitrate species released by monocytes and
macrophages. This allows the bacteria to continue to replicate
inside the phagosome, eventually inducing apoptosis of the host
cell (49, 101). H. pylori possessing the cag pathogenicity island
(cagPI) are even more resistant to phagocytosis than other strains
(102), with isogenic mutants of H. pylori lacking cagPI far more
readily taken up by phagocytes (49). The mechanism for this
appears to be the ability of H. pylori to activate the reverse
transsulfuration pathway to induce cystathionine g-lyase (CTH)
in host macrophages, promoting bacterial growth and enhancing
bacterial survival in macrophages. H. pylori does this via the
CagA-dependant induction of the PI3K/AKT1 pathway, the
CagA-independent induction of the MTOR pathway and
activation of SP1, increasing macrophage production of CTH
(103) Furthermore, it has been shown that H. pylori is able to
upregulate the metabolism of macrophage-associated
polyamines, impairing M1 macrophage function (104).
Antibody Activity and Humoral Immune
Evasion by H. pylori
The mechanisms of humoral immune evasion by H. pylori are
somewhat less clear. Most immunocompetent individuals who
are infected with H. pylori develop a specific IgG and IgA
response, in many cases high antibody titres to the pathogen,
however, this often is not enough to clear infection (53, 105).
Furthermore, it has been reported that the type of antibody
produced correlates with the outcome of infection, with patients
experiencing gastritis and duodenal ulcers having greater titres of
IgG, and patients suffering from gastric cancers often having
greater titres of IgA (106). Other studies have suggested that a
weaker overall antibody response is linked to the development of
gastric cancers, and patients who had a weak but still detectable
antibody response to H. pylori had a higher rate of gastric cancer
than those with a stronger antibody response (107–109).
Frontiers in Immunology | www.frontiersin.org 6
H. PYLORI LPS AND LEWIS ANTIGENS

H. pylori both interacts with host Lewis system antigens and
displays Lewis antigens in its LPS. The expression of Lewis
antigens by H. pylori is associated with immune evasion and a
reduced immunogenicity of its LPS when compared to other
bacteria (110, 111). The reduced immunogenicity of H. pylori
LPS is related to its structure, much like that of other gram-
negative bacterium, the H. pylori LPS contains 3 domains: a
hydrophobic lipid A domain on the outer bacterial membrane, a
core oligosaccharide and a repetitive oligosaccharide termed the
O chain (111). The O chain of the H. pylori LPS is the main
location where Lewis system antigens are displayed by the
organism (112). The H. pylori O antigen is typically composed
of a Gal-GlcNAc backbone chain which is divided into two types
based on its linkage (Figure 3). Type 1 chains are composed of
Galb1-3GlcNAc, which forms the core saccharide for Lea, sialyl-
Lea and Leb. Type 2 chains are composed of Galb1-4GlcNAc or
LacNAc, which forms the core saccharide for Lex, sialyl-Lex and
Ley (63). In humans, Lewis system antigens like ABO blood
group antigens are expressed in fluids and tissue including the
gastric mucosa and endothelium. Lea and Leb are commonly
expressed on various cell types from red blood cells to gastric
epithelial cells, with Leb in particular associated with various
pathologies (113). In the human stomach, Lea and Leb are
predominantly expressed on the surface and foveolar epithelia,
whereas Lex and Ley are predominantly expressed in the mucus
as well as the chief and parietal cells of the gastric glands. More
specifically, non-secretory cells in the surface and foveolar
epithelia express Lea while Leb and Ley are expressed in
secretory cells (114). Clinical isolates of H. pylori typically have
a poly-LacNAc with several a-L-fucose residues forming internal
Lex determinants with terminal Lex and Ley determinants, while
other strains have been described as displaying Lea, Leb and
sialyl-Lex as well as group A, B and H-1 determinants (111). As
many as 90% of clinical isolates of H. pylori contain Lewis
antigens in the O antigen portion of the LPS. This expression
has been found to be relatively stable after subculturing using
methods such as immunoblot. However, it is possible for
cultured H. pylori strains to lose Lewis antigen expression over
time (68, 115).
H. pylori LPS Structure, Phase Variation,
and Diversity
As described above, the O antigen portion of the H. pylori LPS is
associated with the expression of various Lewis antigens in
addition to playing a role in the adhesion and immune evasion
of the bacterium (116). The O antigen chain is comprised of a
glucan group (saccharide composed of glucose), a D-glycerol-D-
manno-heptan (DD-heptan) group and a highly conserved
trisaccharide (trio) (115). Variability in the O antigen is
derived from phase variation, whereby H. pylori uses an on/
off system to regulate its biosynthetic genes, including the
fucosyltransferase genes FutA, FutB, and FutC (117), allowing
the bacterium to adjust the carbohydrate expression of the O
May 2022 | Volume 13 | Article 868225
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antigen with the changing environment of the stomach and
gastric mucosa (16). Additionally, phase variation of the H.
pylori LPS allows for a greater range of phenotypes and gives H.
pylori the ability to modify the expression of Lewis system
antigens in its LPS. Additionally, it has been indicated that the
H. pylori LPS induces lower biological responses when
compared to other gram-negative organisms such as E. coli
and Salmonella spp., with in vivo mouse and rabbit studies
showing 500 to 1000 fold lower mitogenic and pyrogenic
responses (118).

The genes encoding the glycotransferases responsible for the
construction of this LPS vary between different regional strains,
with the common European strain of H. pylori G27 possessing
the trisaccharide fucosyltransferase (HP0102), heptan transferase
(HP1283) and GlcNAc transferase (HP1578), the last of which is
responsible for initiating synthesis of Lewis system antigens onto
a heptan motif (111). In addition to this, a comparison between
the European model strain G27 and East Asian strains found that
the East Asian strains lacked the genes encoding for heptan
transferase and GlcNAc transferase (119). Furthermore, East
Asian strains instead express additional copies of other genes,
HP1105 and JHP0562, which may act as GlcNAc transferases as
well as Gal transferase in place of HP1578 (119). This was
identified as an area of interest due to the higher rates of
gastric cancer in East Asia and the potential to further
characterise the role of the H. pylori LPS heptan in
pathogenesis (119). Figure 3 illustrates an abbreviated version
of the established structure of the O antigen structure from the
mouse-adapted H. pylori SS1 strain including the trio,
attachment site and the Lewis antigenic determinants.
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H. pylori LPS Structural Diversity in
Infection and Immune Evasion
The H. pylori LPS is generally considered less immunogenic in
comparison to enterobacterial LPS, with early studies showing
significant reductions in pyrogenicity, mitogenicity and toxicity,
as well as a reduced cytokine and chemokine response (118, 120,
121). Previous studies have shown that synthesised partial H.
pylori LPS structures, specifically lipid A compounds and Kdo-
lipid A compounds, can modulate cytokine production by host
cells. All lipid A and Kdo-lipid A H. pylori LPS structures
synthesised either failed to induce, or induced very low levels
of IL-1b, IL-6 and IL-8, and conversely stimulated high levels of
cytokines IL-12 and IL-18 in heparinised human peripheral
whole blood (122, 123). IL-12 induction by H. pylori is
generally linked to MyD88 expression in macrophages (124).
Furthermore, H. pylorimodifies the lipid A portion of the LPS by
via dephosphorylation of the 1- and 4-’positions of the lipid A
backbone. Mutations to the lpxE/F machinery required for this
modification have shown an increased susceptibility of H. pylori
to the antimicrobial peptide polymyxin B, as well as reducing the
ability of H. pylori to colonise mice (125). Knockout studies on
H. pylori genes HP0044 and HP1275 demonstrated the
production of a truncated H. pylori LPS missing fucose
residues found in both the trio and Lewis antigen portions of
the H. pylori LPS O antigen, resulting in the loss of a significant
portion of the H. pylori LPS. This in turn affected the growth of
the bacterium, increased its susceptibility to both the detergent
SDS, promoted bacterial autoaggregation, increased surface
hydrophobicity and affected bacterial virulence and OMV
protein sorting (126). Notably, phase variation of H. pylori
A B

FIGURE 3 | Lewis antigen expression on H. pylori lipopolysaccharide (LPS) O antigen. (A) A representative linear glycan chain of the H. pylori SS1 strain O antigen
with the Leb in comparison to (B) a representative linear glycan chain of H. pylori 26695 and G27 O antigen with the Ley antigen attached. Adapted from the
established structure in Li et al., 2018. Note that the exact structure and the Lewis determinate expressed is variable and dependant on isolate (115). Created with
BioRender.com.
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fucosyltransferases, and consequently the glycosylation pattern
of the LPS has previously been identified to occur in high
frequencies, with in-vitro studies demonstrating the expression
of Lex can vary at a frequency of 0.2-0.5% resulting in differing
LPS variants in the same population. Variation of Lewis antigen
expression, particularly between Lex and Ley has been suggested
to be influenced by relative pH in liquid medium. The function
for this has not been fully identified, but is hypothesised to aid in
bacterial persistence (127). On a molecular level the variation in
H. pylori fucosylation has previously been attributed to slipped-
strand mispairing as a result of differing numbers of polyC
repeats in fucosyltransferase genes futA, futB and futC.
However, a recent study has described a role for small RNAs
(sRNA) in the regulation of the H. pylori LPS biosynthesis. The
sRNA RepG modulate HP0102 and TlpB, providing post-
transcriptional regulation to LPS biosynthesis potentially
indicating further means by which H. pylori is able to adapt to
host immune response (128).
ROLE OF H. PYLORI ADHESINS IN
IMMUNE EVASION

In addition to H. pylori commonly expressing Lewis
determinants in its LPS, H. pylori also binds to host Lewis
determinants, assisting in the attachment of the bacterium to
the gastric epithelium (129, 130). Binding is facilitated by a group
of outer membrane proteins, including BabA and SabA.

BabA
H. pylori binds to the various Lewis system antigens expressed on
the surface of gastric epithelial cells, including Leb and sialyl-Lex

(131). Chronic inflammation also leads to upregulation of Lex

and Ley in the host, further enhancing bacterial colonisation
(131). Furthermore, H. pylori has a range of adhesive proteins
that have been identified and examined. The first identified was
BabA, a protein that commonly binds the Leb determinant as
well as mucin proteins and the H1 blood group antigen (132).
Specifically, BabA binds the lacto series of glycans containing a
terminal fucose molecule with an a1,2 linkage attached to a
Galb1-3GlcNAc core (133). This includes H1 blood group
antigen as well as other H neoglycoconjugates and Leb.
However, BabA binds to Leb with as much as a two-fold
increase in affinity in comparison to H neoglycoconjugates
(134). The BabA encoding gene(s) can be found in three
separate loci on the H. pylori genome with the binding pattern
of the protein differing based on the specific loci expressed (135).
For example, strains containing locus A BabA (BabA2) bind the
classically associated Leb whereas strains with locus B BabA
(BabA1) do not bind to Leb (136). Furthermore, some strains
may contain more than one BabA encoding gene allowing
expression of proteins with varying binding characteristics
(137). BabA in general is a highly polymorphic protein with
variable expression, which may be lost during laboratory
cultivation. Additionally about one quarter of strains isolated
from chronically infected hosts tend to lose BabA expression (69,
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138). This suggests that BabA is a specific adhesin that is
advantageous in the colonisation of a human host that is
unnecessary on solid media (137). There has been evidence of
numerous binding molecules for BabA in addition to the Leb

molecules expressed by gastric epithelia. Several salivary proteins
have also been identified to interact with BabA, such as the
mucin MUC5B, the agglutinin glycoprotein-340 and the proline-
rich glycoprotein containing the Fuca1-2Galbmotif. In addition
to this, fucose-containing oligosaccharides present in secretory
IgA also play a role in binding BabA, however this is not
universal to all secretory IgA (132). It has been observed that
BabA presence in a H. pylori strain is associated with expression
of VacA, CagA and OipA among other common but variable
virulence factors, particularly in the outcome of gastric
metaplasia. An in-vitro study found that Leb-positive AGS cells
expressed increased levels of mRNA for the cytokines CCL5 and
IL-8 as well as precancer related factors CDX2 and MUC2 in the
presence of wild type H. pylori, however this was not the case for
H. pylorimutants with either BabA genes or TIVSS deleted (139).

SabA
SabA is an additional adhesionmolecule associated with the binding
of Lewis system determinants by H. pylori. More specifically, SabA
binds sialylated molecules such as sialyl-Lex and some gangliosides
characterised by Neu5Aca3-neolactohexaosylceramide and
Neu5Aca3-neolactooctaosylceramide molecules (58). The gastric
inflammation caused by H. pylori infection is essential for changes
in glycosylation patterns within the gastric mucosa, promoting the
expression of sialyl-Lex as well as sialyl-Lea, which in turn increases
the adhesive properties of SabA (140). Similar to BabA, the
expression of SabA is highly variable and is often subject to phase
variation. It has been suggested that H. pylori may have multiple
means of modulating the expression of SabA, with one suchmethod
being an acid-responsive ArsRS two-component signal transduction
system, and an alternative involving the slipped-strand mispairing
of SabA alleles during chromosomal replication in various H. pylori
subpopulations (141). Additionally, SabA is commonly subject to
homologous recombination and gene conversion due to changing
environmental pressures (142). Deactivation of the SabA encoding
gene may further assist in bacterial escape as cytotoxic activity by
neutrophils is in part triggered by SabA binding to gangliosides.
Neutrophil action has been shown to be defective against SabA
deleted H. pylori cells (58).

OipA
OipA is also a member of the Hop family of outer membrane
proteins possessed by H. pylori. There is currently no available
crystal structure for OipA, limiting detailed studies of its binding
(143). OipA is known to be closely associated with the cag PAI
and CagA, with the oipA locus approximately 100 kb from the
cag PAI. OipA is regulated by slipped-strand mispairing and
displays on/off states which are closely associated with the
expression of CagA. Alleles of oipA have been demonstrated in
up to 96% of cag PAI positive H. pylori strains, solidifying the
relationship of the two virulence factors (144). With the
exception of CagA, OipA is typically independent of other H.
pylori virulence factors. OipA is associated with the induction of
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IL-8 from host epithelial cells, inhibition of apoptosis and
enhanced adhesion to gastric cells in vitro (144). Induction of
IL-8 and its subsequent role in inducing gastritis has been
associated with a synergistic effect from H. pylori strains
possessing both the cag PAI and a functional oipA gene (145).
In contrast oipA “off” strains can down-regulate anti-apoptotic
processes in AGS cells, more regularly inducing apoptosis on
infection than oipA “on” strains in-vitro (146).
CONCLUSIONS

H. pylori is a very successful global pathogen and has adopted a
range of adaptions to evade the innate immune system. These
mechanisms include both active systems, such as the
neutralisation of reactive oxygen and nitrogen species released
by macrophages, the modulation of cytokine secretion and the
maturation of dendritic cells, and more passive systems such as
the variability and the uniquely low immunogenicity of its LPS
(15, 53). In addition, the expression of Lewis antigens in the LPS
ofH. pylori gives the bacterium the ability to mimic host antigens
and thereby hide from the immune system (147). Notably,
several of the immune evasion mechanisms H. pylori employs
are yet to be fully explained. For example, knowledge of H. pylori
activation and modulation of innate immunity outside of
interactions with dendritic cells and DC-SIGN is surprisingly
limited. It is also known that outer membrane proteins such as
Frontiers in Immunology | www.frontiersin.org 9
BabA, SabA and OipA play a role in the induction of
inflammatory cytokines, although the molecular mechanism is
still unclear (44, 144). Further study into ways to circumvent the
methods H. pylori uses for immune evasion could allow for
improved treatment and vaccination options. Additionally,
blocking the activity of H. pylori adhesins to prevent
attachment in the gastric mucosal gel layer and to epithelial
cells has potential for new treatment options in an environment
of increased antibiotic resistance.
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