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INTRODUCTION

Microbes have conquered almost every conceivable space on earth—from high atmospheres to
terrestrial and aquatic ecosystems to extreme places such as geothermal vents in the deep sea, oil
reservoirs, or boiling hot springs. Survival in these varied environments necessitates a breathtaking
span of genetic diversity, enabling the metabolism and synthesis of many different substrates for
both energy creation and biomass buildup and to gain an evolutionary advantage over other life
forms sharing the same ecosystem. Of particular biotechnological interest are molecules referred
to as secondary metabolites that often feature a unique chemical makeup and can encompass
functions such as ion scavenging, quorum sensing, or act as antimicrobials.

With the advent of anthropogenic impacts on our planet, such as the change or creation of
new ecosystems (e.g., waste water treatment plants, large scale commercial fermentation processes)
or the deposition of novel compounds and toxic pollutants into the environment, microbes
have shown remarkable adaptability to utilize these newly introduced materials as novel sources
of energy.

It is this surprisingly vast and adaptable biochemical potential of microbes that we have
come to realize and exploit for specific tasks ranging from fermentation processes modifying
material properties, to the manufacture of high-value stereospecific chemicals and polymers, to
the breakdown of hazardous substances.

The application of microbes to industrial processes is commonly known as Microbiotechology.
Under this umbrella, many different subareas are combined and have been explored over the
last decade in Frontiers in Microbiology specialty section on “Microbiotechnology” (previously
“Microbiotechnology, Ecotoxicology and Bioremediation”).

MOVING RESEARCH OVER A DECADE

Since 2011, Micro Bio Technology (MBT) has been dedicated to offer a platform for high quality
research, investigating the exploitation of microbial genetic diversity toward environmental and
industrial applications. How did research push the boundaries of our knowledge and understanding
of microbial processes in nature and their biotechnological application?

Bioremediation via methanotrophs to effect aerobic degradation of chlorinated hydrocarbons,
was one of the most cited publications in the first year of this specialty (Semrau, 2011). Chlorinated
hydrocarbons are widely used as plastics, solvents, insulators, or pesticides, they are now ubiquitous
in the environment and the ecotoxicity of some of these (e.g., dioxins, DDT) have particular
concerns in environmental health and toxicology. The focus on biodegradation and bioremediation
was further elaborated by a perspective on how to quantify biodegradation of substances from
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a regulatory perspective (Thouand et al., 2011)and the
development of genetic tools to improve biodegradation by
specific microbes (Hickey, 2011). Following this line of research,
publications emerged targeting the biodegradation of many
different chemical classes through classical genomics approaches
and the characterization of microbial communities (Figure 1,
2011–2012). In the following 2 years, a notable shift was observed
toward synthetic biology, microbiotechnology, and metabolic
engineering driven by an increasing genome space (Figure 1,
2013–2014) (De Gannes et al., 2013; Moe-Behrens et al., 2013;
Elena et al., 2014; Rosano and Ceccarelli, 2014).

From 2015 onwards, the progressive drop in DNA sequencing
cost enabled the investigation of microbial communities in
much greater detail and a prominent research area on
microbial communities was established and more recently
consolidated under “metagenomic” research. But not only the
community structure saw a much more in-depth exploration,
the ready availability of draft genome sequences of individual

FIGURE 1 | Weighted keyword clouds of 800 articles published between 2011 and 2019 in MBT. While “bioremediation” and “biodegradation” feature prominently in

all years, a clear trend toward multi-omics technologies can be observed since 2015.

microbes and new gene and genome editing tools enabled
substantial advances in metabolic engineering. In particular the
exploitation of microbial molecule and polymer synthesis such
as exopolysaccharides, pigments, lipids, or biosurfactants has
received much attention (Figure 1, 2015–2018) (Rosano and
Ceccarelli, 2014; Antoniou et al., 2015; Bonugli-Santos et al.,
2015; Giddings et al., 2015; Ishii et al., 2015; Kracke et al., 2015;
Moscovici, 2015; Schmid et al., 2015; Torino et al., 2015; Uzoigwe
et al., 2015; Whitfield et al., 2015; Zeldes et al., 2015; De Almeida
et al., 2016; Ghosal et al., 2016; Gill et al., 2016; Gouda et al., 2016;
Jugder et al., 2016; Liew et al., 2016; Minhas et al., 2016; Santiago
et al., 2016; Shchegolkova et al., 2016; Singh et al., 2016; Thijs
et al., 2016).

Most recently, the realization that a comprehensive
understanding of biological ecosystems as a whole is key
to more advanced biotechnological approaches has led to
an even stronger integration of ‘omics technologies into
microbial ecology, interrogating bacterial communities for their
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mechanistic function toward bioremediation and biodegradation
(Figure 1, 2019) (Abbas et al., 2019; Carrillo-Barragan et al.,
2019; Chonova et al., 2019; Crouzet et al., 2019; Cycon et al.,
2019; Jacquin et al., 2019; Jaiswal et al., 2019; Kantor et al., 2019;
Li F. et al., 2019; Li J. et al., 2019; Marco and Abram, 2019; Meng
et al., 2019; Miller et al., 2019; Pinnell and Turner, 2019; Ragab
et al., 2019; Rocca et al., 2019; Sengupta et al., 2019; Suri et al.,
2019; Xiao et al., 2019; Xu et al., 2019).

A developing area of microbiotechnology “phytoremediation”
was defined as “the synergistic actions of plants and
microorganisms [. . . ] to clean up soils [and other ecosystems]”
(Thijs et al., 2016). While the independent investigation
of different microbes or plants has been investigated for
bioremediation or the production of compounds, the synergistic
interactions between both agents is key to understand and fully
exploit their potential for both biotechnical applications and
persistence. Therefore, more research into holistic, mechanistic
examinations of entire ecosystems will be required moving into
the future.

MOVING INTO THE FUTURE OF
MICROBIOTECHNOLOGY: GRAND
CHALLENGES

‘OMICs technologies have an ever more prominent presence
in publications in all areas of microbiotechnology and their
impact on accelerating our knowledge framework can
hardly be overstated. ‘OMICS technologies were initially
often thought of as only DNA-based technologies, such
as high-throughput genome sequencing, metagenomics
and to a smaller degree, metatranscriptomics. With the
advent of high-throughput approaches in other disciplines,
‘omics technologies now also include metaproteomics,
metabolomics, epigenetics, and phenomics, alongside other
emerging ‘omics studies. However, the common pitfall of
using these high-throughput technologies is to utilize them
as a mere looking glass. This one-dimensional approach has
led to a large number of descriptive science publications
that, while delivering new insights into microbial community
composition and their changes in response to time or stressors,
lack true mechanistic insights on community and designed
consortia levels.

The functional link between in silico ‘OMICS technologies
and in vitro/in vivo engineering, experiments, validation, and
applications of individual microorganisms and strategically
designed consortia holds many grand challenges, two of
which we envision are a Grand Challenge in (1) Integrative
Molecular Analysis (IMA) and (2) Microbial Community
Mechanisms (MCM).

A first dimension of the IMA Grand Challenge will be to gain
an understanding of how changes in the amounts and types of
cellular molecules (e.g., mRNA, proteins) are inter-related and
how the collective dynamics of these molecules is ultimately
manifested in cellular activities. Achieving this goal would be a
quantum leap in fundamental microbiology and, consequently,
enable attendant advances in applied microbiological fields

ranging from design of biosynthetic pathways to managing
microbes in the environment.

A key hurdle in attaining this goal is the mismatch between
the linear approaches used to study the molecules that mediate
microbial processes and the non-linear mechanisms through
which these molecules mediate cellular behaviors. Currently,
classes of key molecules are studied individually, removed from
the cells and all other molecules with which they would natively
interact to create dynamic systems. For example, detection and
quantification of mRNA (via hybridization array, RNAseq, or
qPCR) is widely used as a proxy for cognate protein levels
(and by extension, an activity/phenotype of interest), yet there is
ample evidence that no such strict correspondence exists between
these molecules. Instead, types and levels of cellular proteins and
metabolites (and hence phenotypes) are the result of numerous
types and levels of control. Furthermore, the importance of any
one of these regulatory controls may vary between organisms
or within an organism depending on the particular protein or
condition of the cell.

Obtaining a more rigorous understanding of the cellular
processes that control microbial life will require a dramatic
revolution in the technologies and approaches applied in
molecular studies. Advanced technologies are needed that enable
multiple molecule types to be queried simultaneously, ideally
within cells. This grand challenge in technological development
lies at the nexus of microbiology with many other fields including
chemistry, biochemistry and biophysics, and will be a truly
interdisciplinary effort.

Meeting the IMA Grand Challenge will require a second
dimension by advancing technologies and methodologies
for deciphering gene function. This is a multifaceted issue
and encompasses investigation of gene function in cultured
organisms as well as functions for those that exist only in silico
and originate in genome sequence derived from environmental
DNA extracts. For cultured organisms, genetic manipulations
that are essential to decipher, or alter, functions of gene products
have not advanced at the same rapid pace as other nucleic acid
technologies and represent a key bottleneck in efforts to deepen
insights into microbial biology.

Some relatively recent developments in genetic engineering,
such as recombineering and CRISPR-based approaches,
circumvent some of the limitations of conventional methods.
But, as with the conventional approaches, their application
to any given organism typically requires resolution of many
issues through empirical testing, which effectively restricts the
development and application to a relatively small number of
laboratories. Thus, achievement of this Grand Challenge would
be facilitated by the development of centralized efforts within
government institutions that focus on the development and
dissemination of technologies in partnerships with academia.

A third dimension to the IMAGrand Challenge is deciphering
biological roles for the large and ever-expanding database
of genes with unknown function. These efforts rely heavily
on computational approaches for function prediction, and
improvements in computation will be essential to advance this
field. Specifically, to discover truly novel functions, a revolution
in computational methods is needed that would allow de novo
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assignment of function with little, or no, reference to information
in existing databases. Computational methods are also needed
that include molecular interactions in function prediction, since
the activities of the majority of proteins likely arise from such
processes. Advancements have already been made in predicting
protein-protein interactions, and these need to be improved and
expanded to include the diversity of molecules that exist within
the cell. Beyond the computational challenges in identifying
putatively novel functions, there are also advancements needed
in genetic systems (see above) that would be needed to prove
function and provide a means for translating the potential of
novel genes into products or functions.

The MCM Grand Challenge centers on obtaining
comprehensive mechanistic understanding on how microbial
communities interact with each other, with potential hosts and
with the environment. It is clear that microbes in isolation only
display a fraction of their genetic potential and gains achieved
by understanding and exploiting synergistic interactions
could revolutionize microbiotechnolgy in all its aspects. Such
understanding can only be achieved by utilizing and further
developing gene and genome engineering tools alongside the
plethora of ‘omics technologies. Similar to the synergistic play of
multiple microbes together, we must develop new systems and
technological infrastructure to successfully mature, combine,
interrogate and visualize the high-dimensional ‘OMICS data
so that they can inform mathematical models and aid in
strategically select gene candidates for functional investigation
and the deliberate assembly of microbial consortia to achieve a

biotechnological goal. The MCM Grand Challenge will not be
able to be achieved through the scope of Microbiotechnology
alone—it will require a truly inter-disciplinary collaboration
across many science disciplines.

The extent to which research in microbiotechnology can
be translated into novel societal uses will be dependent upon
the depth to which these microbial systems are understood.
Thus, revolutionary advancements in how, or what, microbial
processes are employed to achieve some goal must be preceded
by advancements in fundamental science such as those presented
above. These advancements would move biosciences well beyond
the current age of ‘OMICs, technologies, which have been
essential in the evolution of biosciences, but which lack the
multidimensionality that will be needed in the next generation
of analytical tools to gain deeper insights into cellular functions
and, consequently, develop new ways in which the potential of
microbial systems is captured.
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