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Abstract

Background: Renal impairment is a major risk factor for mortality in various populations. Three formulas are
frequently used to assess both glomerular filtration rate (eGFR) or creatinine clearance (CrCl) and mortality
prediction: body surface area adjusted-Cockcroft–Gault (CG-BSA), Modification of Diet in Renal Disease Study
(MDRD4), and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The CKD-EPI is the most
accurate eGFR estimator as compared to a “gold-standard”; however, which of the latter is the best formula to
assess prognosis remains to be clarified. This study aimed to compare the prognostic value of these formulas in
predicting the risk of cardiovascular mortality (CVM) in population-based, cardiovascular risk, heart failure (HF) and
post-myocardial infarction (MI) cohorts.
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Methods: Two previously published cohorts of pooled patient data derived from the partners involved in the
HOMAGE-consortium and from four clinical trials – CAPRICORN, EPHESUS, OPTIMAAL and VALIANT – the high risk
MI initiative, were used. A total of 54,111 patients were included in the present analysis: 2644 from population-
based cohorts; 20,895 from cardiovascular risk cohorts; 1801 from heart failure cohorts; and 28,771 from post-
myocardial infarction cohorts. Participants were patients enrolled in the respective cohorts and trials. The primary
outcome was CVM.

Results: All formulas were strongly and independently associated with CVM. Lower eGFR/CrCl was associated with
increasing CVM rates for values below 60 mL/min/m2. Categorical renal function stages diverged in a more
pronounced manner with the CG-BSA formula in all populations (higher χ2 values), with lower stages showing
stronger associations. The discriminative improvement driven by the CG-BSA formula was superior to that of
MDRD4 and CKD-EPI, but remained low overall (increase in C-index ranging from 0.5 to 2%) while not statistically
significant in population-based cohorts. The integrated discrimination improvement and net reclassification
improvement were higher (P < 0.05) for the CG-BSA formula compared to MDRD4 and CKD-EPI in CV risk, HF and
post-MI cohorts, but not in population-based cohorts. The CKD-EPI formula was superior overall to MDRD4.

Conclusions: The CG-BSA formula was slightly more accurate in predicting CVM in CV risk, HF, and post-MI cohorts
(but not in population-based cohorts). However, the CG-BSA discriminative improvement was globally low
compared to MDRD4 and especially CKD-EPI, the latter offering the best compromise between renal function
estimation and CVM prediction.

Keywords: Population based, Cardiovascular risk, Heart failure and post-myocardial infarction cohorts, Renal
function, Glomerular filtration rate formulas, Cardiovascular mortality prediction

Background
Renal impairment is a major risk factor for mortality in
various populations [1–3], making it an essential risk
stratification tool. In certain high-risk populations, renal
function is of paramount importance for prognostic pur-
poses in order to establish better and personalized
follow-up programs and prognosis-modifying interven-
tions [4]. Hence, risk prediction properties should be
considered at least as valuable as the accuracy of renal
function quantification per se. Renal function estimation
in daily practice is performed by “indirect” parameters
(as most accurate gold-standard methods are not
practical nor economically suitable for routine use
[5]), incorporating variables such as creatinine, age,
gender, weight and height through a variety of avail-
able formulas. The most commonly used formulas to
estimate glomerular filtration rate (eGFR) include the
Modification of Diet in Renal Disease (MDRD) for-
mula [6] and the simplified MDRD4 formula [7], both
of which have been tested in diverse populations with
reproducible results [8], as well as the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation,
which provides the most accurate GFR estimation
(compared to a renal-clearance “gold standard”) and is the
formula advocated by contemporary consensus [4, 9, 10].
Creatinine clearance (CrCl) estimation can be performed
by the Cockcroft–Gault (CG) formula [11]. It should be
emphasized that CrCl estimation by the CG formula com-
prises glomerular CrCl plus tubular CrCl, and therefore

the overall CrCl may overestimate GFR by up to 40% in
younger individuals without chronic kidney disease
[12, 13]. However, in older individuals, the CG formula
may underestimate GFR [14, 15]. The CG formula has
more recently been modified and validated taking into ac-
count body surface area (BSA) [16]. This BSA-adjusted
CG formula (CG-BSA) is likely to provide a more accurate
estimation of CrCl compared to the original CG formula
(hence the use of the CG-BSA formula in the main ana-
lysis of this manuscript) [5, 10, 16, 17].
The primary goal of a renal function estimation

equation is to estimate GFR (and not tubular clear-
ance). Therefore, for this purpose, the MDRD and
CKD-EPI equations are suitable, whereas the CG/CG-
BSA equations are not. Nonetheless, in addition to
the GFR estimation, prognostic ability is also of
utmost importance. Therefore, the aforementioned
equations have also been compared regarding their
prognostic implications in population-based, cardio-
vascular (CV) risk, heart failure (HF), and myocardial
infarction (MI) populations [3, 18–23]. While exten-
sive information has been provided in these settings
using the MDRD4 and CKD-EPI formulas for prog-
nostic and risk estimation purposes with heteroge-
neous results [19–21], little is known regarding the
use of the CG-BSA formula.
The aim of the present study was to conduct a head-

to-head comparison of the eGFR and CrCl formulas in
terms of prognostic value in four large populations/
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cohorts, namely population-based, CV risk, HF, and
post-MI cohorts.

Methods
Study population: the Heart ‘OMics’ in AGEing (HOMAGE)
initiative and the high-risk myocardial infarction database
initiative
Eligible studies included population studies, patient
cohorts, and randomized controlled trials (RCTs). All
studies had baseline information on demographic,
clinical, and laboratory characteristics and subsequent
follow-up reports (cardiovascular mortality was used
for the present study). The partners involved in the
HOMAGE-consortium contributed data from com-
pleted and ongoing studies. These data have been
previously published [24] and include patient data de-
rived from (1) population-based cohorts (FLEMENGHO
[25] and PREDICTOR [26]); (2) CV risk factor cohorts
(ASCOT [27], PROSPER [28], HVC, DYDA [29] and
BIOMARCOEURS [30]); and (3) HF cohorts (HULL
LIFELAB and TIME-CHF [31]), all of which had base-
line information regarding age, sex, weight, height, and
plasma creatinine [24].
The High-risk MI Initiative consists of a previously

published cohort of pooled patient data derived from
four clinical trials [32]. Briefly, the main objectives of
the project are to provide a comprehensive and statis-
tically robust description of long-term clinical out-
comes in high-risk survivors of MI and to identify the
predictors of these different outcomes. In addition, the
creation of this large pooled dataset provides statistical
power to examine outcomes in important sub-groups of
patients defined by co-morbidity and other baseline vari-
ables. The datasets included in this pooling initiative were
the effect of Carvedilol on Outcome after Myocardial
Infarction in Patients with Left Ventricular Dysfunction
trial (CAPRICORN) [33, 34], the Eplerenone Post-
Acute Myocardial Infarction Heart Failure Efficacy
and Survival Study (EPHESUS) [35, 36], the Optimal
Trial in Myocardial Infarction with Angiotensin II
Antagonist Losartan (OPTIMAAL) [37, 38], and the
Valsartan in Acute Myocardial Infarction trial (VALIANT)
[39, 40]. Full details of total enrolled patients, the inclu-
sion and exclusion criteria for each trial, the endpoints,
and the results have been previously published. Each
trial enrolled patients with left ventricular systolic
dysfunction, HF, or both between 12 h and 21 days
after acute MI.
The respective chairpersons of the Steering Committees

of the four trials initiated the pooling project.
The studies were all conducted in accordance with the

Declaration of Helsinki and approved by site ethics com-
mittees. All participants gave written informed consent
to participate in the studies.

Renal function analyses and estimation of GFR and CrCl
Baseline laboratory measurements were obtained at the
time of inclusion and plasma creatinine concentrations
were recorded in all studies. The eGFR and CrCl were
calculated with the published equations for CKD-EPI
[4], the four-variable MDRD4 [6], and CG-BSA [16].

CKD-EPI

CKD−EPI ¼ 141 � min pCr=k; 1ð Þa � max pCr=k; 1ð Þ−1:209
� 0:993age � 1:018 if femaleð Þ
� 1:159 if blackð Þ

where adjusted serum creatinine was calculated as de-
scribed below, k is 0.7 for females and 0.9 for males,
a is −0.329 for females and −0.411 for males, min in-
dicates the minimum of serum creatinine adjusted/k
or 1, and max indicates the maximum of adjusted
serum creatinine/k or l.

MDRD4

MDRD4 ¼ 186 � pCr−1:154 � age−0:203

� 0:742 if femaleð Þ � 1:210 if blackð Þ

CG-BSA

CG−BSA ¼ 140 – ageð Þ � weight in kg � 0:85 if femaleð Þ½ �
� 72 � pCr in mg=dLð Þ ¼ Cockcroft−Gault

followed by (1.73 m2 × GFR-CG)/BSA of the patient;
where the GFR-CG is in milliliters per minute and the
BSA is calculated in meters squared using the Mosteller
equation [41].
Patients were also classified into eGFR categories 1–5:

Stage 1, eGFR ≥ 90; Stage 2, eGFR ≥ 60 and < 90; Stage 3a,
eGFR ≥ 45 and < 60; Stage 3b, eGFR ≥ 30 and < 45; Stage 4,
eGFR ≥ 15 and < 30; Stage 5, eGFR < 15.

Outcomes
The present study analyzed cardiovascular mortality
(CVM) as the primary outcome. Endpoints were inde-
pendently adjudicated in the respective trials and
cohorts.

Statistical methods
In descriptive analyses, continuous variables are expressed
as mean ± standard deviation (SD) if normally distributed
or as median (percentile25–75) if skewed. Categorical vari-
ables are expressed as frequencies and proportions (%).
The one-way analysis of variance “ANOVA test” was

used to compare the renal function estimates obtained
with the MDRD4, CKD-EPI, and CG-BSA formulas.
Univariable time-to-event comparisons were performed

using the log-rank test and survival was estimated with
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the Kaplan–Meier method. Cox proportional hazard re-
gression models were used to model long-term survival as
a function of the formulas both in univariable and multi-
variable analysis. Cox models assumptions were verified
and GFR/CrCl formulas were converted to restricted
cubic splines to overcome linearity issues. An interaction
term between the variable of interest and time was tested
within the Cox model. In the multivariable models, the
covariates were chosen from demographic (age and sex)
and clinical (smoking, hypertension, diabetes, heart rate,
and systolic blood pressure) parameters that were previ-
ously found to be clinically relevant and previously re-
ported [42]. A significant “interaction” between age and
“renal function” formulas was present in various popula-
tions; thus, these results are presented for age subgroups
for which the “age” variable was not included in the ad-
justment models in order to decrease model instability.
Left ventricular ejection fraction and hemoglobin were
also not included in the “adjusted” models due to a high
(>7 5%) percentage of missing values.
Correlation estimates were verified prior to modeling

and correlation coefficients < 0.6 were considered to rule
out noteworthy multicollinearity within the survival
models [43].
To assess the relative importance and discriminative

value of renal function estimators in terms of outcome,
Harrell’s c-index [44] was evaluated and compared with
the correlated c-indices using the approach proposed by
Kang et al. [45].
Calibration was assessed visually by plotting the mean

of model-predicted survival at 2 years in each decile of
predicted survival against the observed survival esti-
mated by the Kaplan–Meier method. The higher dis-
criminative value associated with the “net reclassification
improvement” (NRI) was assessed at 2 years [46, 47].
This method assesses the ability of a new model to re-
classify subjects with and without a clinical event during
follow-up. The ability of the new model to reclassify is
summarized by the NRI statistic. As previously used by
our team [48], the continuous NRI method developed by
Uno [47] and implemented in the survIDINRI package
of the R software (The R Foundation for Statistical
Computing) was used. The continuous NRI method
does not require a prior definition of strata risk, thus
considering the change in the estimation prediction as a
continuous variable. The integrated discrimination im-
provement (IDI) for each eGFR and CrCl estimator was
also calculated. The IDI evaluates the difference between
the integrated sensitivity gain and the integrated specifi-
city loss due to the addition of the eGFR and CrCl esti-
mator to the prognostic model.
Statistical analyses were performed using SPSS 23

software (IBM Corp. Released 2013. IBM SPSS Statistics
for Windows, Version 23.0. Armonk, NY: IBM Corp.)

and the R software (The R Foundation for Statistical
Computing).
A P value of less than 0.05 was considered statistically

significant.

Results
Population characteristics and renal function stage
classification
A total of 2644 patients were analyzed in population-
based cohorts, 20,895 in CV risk cohorts, 1801 in HF
populations, and 28,771 in post-MI cohorts.
The mean ± SD age was 66.4 ± 11.5, 66.7 ± 9.4, 73.7 ±

10.4, and 65 ± 11.5 years in the population-based, CV
risk, HF, and post-MI populations, respectively. As ex-
pected, population-based cohorts had higher eGFR/CrCl
while HF populations had lower eGFR/CrCl (as calcu-
lated by all formulas). Concordantly, the proportion of
CVM was also lower in population-based cohorts while
increasing progressively in CV risk, post-MI populations,
and HF cohorts (2.0% vs. 3.8% vs. 15.3% vs. 15.7%, re-
spectively; P < 0.001). The baseline characteristics of all
populations are summarized in Table 1.
The CG-BSA formula reclassified a higher propor-

tion of patients as having worse renal function
(“stages ≥ 3”) in all populations. On the other hand,
the proportion of CVM events (relative to the num-
ber of patients) was higher overall using the MDRD4
formula. For example, in population-based cohorts,
patients reclassified into worse renal function stages
experienced 6.9% of events according to the CG-BSA
formula, 6.5% of events with CKD-EPI, and 7.2% of
events with MDRD4 (similar observations were found
in the other cohorts) (Table 2).

Mortality prediction and accuracy
The three formulas were effective with regard to CVM
prediction. However, important differences were notably
observed between populations and formulas.
Associations between the various “renal function” for-

mulas and CVM within the studied populations are
demonstrated in Table 3 for categorical variables and in
Fig. 1 for “cubic spline transformed” continuous
variables (linearity tests are shown in Additional file 1:
Table S1). As continuous variables, all formulas showed
to be independently associated with CVM in the various
cohorts. An eGFR/CrCl lower than 60 mL/min/1.73 m2

was associated with an increase in event rate in all
cohorts; however, the less accurate (wide confidence
intervals) associations in population-based cohorts re-
flect the low CVM event rate in this setting (Fig. 1 and
Additional file 1: Figure S1 for “log-transformed” hazard
ratios). In population-based cohorts, the “categorical”
MDRD4 formula lost its predictive value after adjust-
ment for clinically relevant confounders (sex, smoking,
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hypertension, diabetes, systolic blood pressure, and heart
rate), whereas the “categorical” CKD-EPI and CG-BSA
formulas remained significant for the lower renal func-
tion stages as compared to stage 1 (reference category)
[HR for CKD-EPI stages 3b/4/5 = 6.43 (95% CI, 1.61–
25.65), P = 0.008 and HR for CG-BSA stages 3b/4/5 =
5.35 (95% CI, 1.66–17.17), P = 0.005]. In CV risk, HF,
and post-MI populations, all “categorical” formulas were
found to be independently associated with CVM for the
lower “renal function” stages with intersecting confi-
dence intervals (Table 3).
The associations of GFR/CrCl formulas with cardio-

vascular mortality are mostly non-linear. In concord-
ance, these results are presented as restricted cubic
splines in Fig. 1. Interactions, linearity and colinearity
were verified and excluded at each model step.
Long-term survival Kaplan–Meier curves are shown in

Fig. 2. All formulas showed highly significant predictive
prognostic values (log-rank test, P < 0.001). However,
eGFR/CrCl stages diverged in a more pronounced

manner with the CG-BSA formula in all populations
(higher χ2 values) (Fig. 2).
Significant “interactions” were frequently observed be-

tween age and the eGFR/CrCl formulas, suggesting that
renal function is a more relevant prognosticator in youn-
ger populations (Additional file 1: Table S2).

Discrimination, calibration, and reclassification
improvement analysis
In the CV risk, HF, and post-MI cohorts, the CG-BSA
formula demonstrated statistically superior discrimina-
tive capacity (c-statistics) when added on top of a prog-
nostic model (including gender, smoking, hypertension,
diabetes status, heart rate and systolic blood pressure) as
well as when compared to the GFR formulas (on top of
the same model). Despite being statistical significant, the
discriminative improvement driven by the CG-BSA for-
mula was globally low (vs. eGFR formulas) ranging from
0.5 to 2% (Table 4). In population-based cohorts, the
discriminative capacity improvement was not statistically

Table 1 Baseline characteristics of the different cohorts

Variables Population-based Cardiovascular risk Heart failure Post-myocardial infarction P value

Number of patients 2644 20,895 1801 28,771 <0.001

Demographic

Age, years 66.4 ± 14.1 66.7 ± 9.4 73.7 ± 10.4 65 ± 11.5 <0.001

Male sex, n (%) 1359 (51.4) 14,083 (67.4) 1093 (60.7) 20,189 (70.2) <0.001

Smokers, n (%) 400 (15.1) 5994 (28.8) 185 (10.7) 18,235 (63.4) <0.001

Clinical and echocardiographic

Hypertension, n (%) 1397 (53.1) 17,892 (85.6) 861 (47.8) 15,570 (54.1) <0.001

Diabetes, n (%) 334 (12.7) 5164 (24.7) 541 (30.1) 7386 (25.7) <0.001

SBP, mmHg 136 ± 18 159 ± 21 133 ± 24 122 ± 17 <0.001

Heart rate, bpm 67 ± 12 71 ± 13 75 ± 15 76 ± 13 <0.001

LVEF, %a 67 ± 8 56 ± 13 41 ± 15 34 ± 9 <0.001

Height, m 1.67 ± 8.9 1.69 ± 9.5 1.66 ± 9.7 1.69 ± 9.4 <0.001

Weight, kg 73.8 ± 13.9 80.7 ± 15.8 76.4 ± 18.2 79.1 ± 15.5 <0.001

Laboratory

Hemoglobin, g/dLa 13.9 ± 1.3 13.4 ± 1.9 13.2 ± 1.8 13.3 ± 1.7 <0.001

Creatinine, mg/dL 0.96 ± 0.24 1.12 ± 0.25 1.24 ± 0.53 1.12 ± 0.32 <0.001

MDRD4, mL/min/1.73 m2 77.1 ± 18.2 66.8 ± 15.3 63.3 ± 24.4 71.05 ± 39.61 <0.001

CKD-EPI, mL/min/1.73 m2 74.6 ± 17.0 65.2 ± 15.4 59.3 ± 21.9 67.93 ± 20.75 <0.001

CG-BSA, mL/min/1.73 m2 71.1 ± 20.6 64.6 ± 17.8 57.2 ± 25.5 68.32 ± 32.89 <0.001

Follow-up and events

Follow-up, years 4.2 (3.6–4.9) 5.0 (3.3–5.9) 2.6 (1.2–3.5) 1.0 (0.2–1.9) <0.001

CVM, n (%) 52 (2.0) 785 (3.8) 283 (15.7) 4400 (15.3) <0.001

N number, MI myocardial infarction, MV missing values, SBP systolic blood pressure, LVEF left ventricular ejection fraction, CVM cardiovascular mortality, CG-BSA
Cockcroft–Gault formula adjusted for body surface area, MDRD4 modification of diet in renal disease-4 formula, CKDEPI Chronic Kidney Disease Epidemiology
Collaboration equation
Normally distributed variables are presented as mean ± standard deviation; skewed variables are presented as median (percentile 25–75); proportions are
presented as absolute numbers (n) and proportions (%). P values for “between group differences” were determined by one-way analysis of variance (ANOVA) tests
aThese variables present > 75% missing values in all populations, therefore they are not included in the adjusted models
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significant, nor superior to the eGFR formulas (P ≥ 0.05
for all comparisons). The discriminative capacity of the
CKD-EPI formula was superior to that of the MDRD4
formula in CV risk, HF, and post-MI cohorts, but not in
population-based cohorts (Table 4).
The prognostic models were well calibrated, with inter-

secting predicted risks and confidence intervals of ob-
served risks in all populations and formulas (Additional
file 1: Figure S2). The IDI and NRI were higher (P < 0.05)
for the CG-BSA formula as compared to MDRD4 and
CKD-EPI in CV risk, HF, and post-MI cohorts. In the
population-based cohorts, CG-BSA was not superior to
the other formulas. The CKD-EPI formula was globally
superior to MDRD4 (Table 4).

Discussion
General interpretation
The present study showed that CG-BSA was slightly
more precise and accurate in terms of CVM prediction
in CV risk, HF, and post-MI cohorts, but not in
population-based cohorts, followed by the CKD-EPI for-
mula. The CG-BSA formula estimates CrCl (and not the

GFR contrary to the MDRD4 and CKD-EPI formulas)
and requires individual height and weight for its compu-
tation. Therefore, CKD-EPI offers the best compromise
between renal function estimation and CVM prediction.

Development and validation of GFR and CrCl formulas
Estimation of GFR (and CrCl in the case of CG/CG-
BSA formulas) is an inexpensive, practical, and fairly
reliable means to assess renal function in clinical
practice [5]. However, certain drawbacks need to be con-
sidered since creatinine-based eGFR/CrCl is dependent
on multiple factors including age, sex, race, diet, muscle
mass, tubular secretion, unstable renal function, and BSA
[16]. Hence, the varying performance of the equations is
likely to rely on their “core formula” development and
validation.
The equation proposed by Cockcroft and Gault in

1976 was developed in a Caucasian male population of
236 patients aged 18–92 years in order to predict CrCl
(and not GFR) in situations in which renal function was
only slightly impaired [11]. This original CG formula
was found to be inaccurate for GFR prediction. The CG

Table 2 Proportion of patients within “renal function” categories according to the different formulas

Formula MDRD4 CKD-EPI CG-BSA P value

RF stage Patients, n (%) Events, n (%) Patients, n (%) Events, n (%) Patients, n (%) Events, n (%)

Population-based

Stage 1: ≥ 90 521 (19.7) 9 (1.7) 425 (16.1) 3 (0.7) 429 (16.2) 4 (0.9) <0.001

Stage 2: 60–89 1688 (63.8) 26 (1.5) 1701 (64.3) 29 (1.7) 1410 (53.3) 17 (1.2) <0.001

Stage 3a: 45–59 353 (13.3) 11 (3.1) 395 (14.9) 12 (3.0) 602 (22.8) 17 (2.8) <0.001

Stage 3b/4/5: < 45 83 (3.1) 6 (7.2) 123 (4.7) 8 (6.5) 203 (7.7) 14 (6.9) <0.001

Cardiovascular risk

Stage 1: ≥ 90 1223 (5.9) 27 (2.2) 1165 (5.6) 20 (1.7) 1727 (8.3) 28 (1.6) <0.001

Stage 2: 60–89 12,992 (62.2) 388 (3.0) 11,956 (57.2) 335 (2.8) 10,284 (49.2) 253 (2.4) <0.001

Stage 3a: 45–59 5325 (25.5) 242 (4.5) 5845 (28.0) 261 (4.5) 6277 (30.0) 293 (4.7) <0.001

Stage 3b/4/5: < 45 1355 (6.5) 128 (9.4) 1929 (9.2) 169 (8.8) 2607 (12.5) 211 (8.1) <0.001

Heart failure

Stage 1: ≥ 90 229 (12.7) 18 (7.8) 165 (9.2) 7 (4.2) 179 (9.9) 4 (2.2) <0.001

Stage 2: 60–89 738 (41.0) 77 (10.4) 685 (38.0) 70 (10.2) 533 (29.6) 45 (8.4) <0.001

Stage 3a: 45–59 405 (22.5) 71 (17.5) 428 (23.8) 63 (14.7) 443 (24.6) 62 (14.0) <0.001

Stage 3b/4/5: < 45 429 (23.8) 117 (27.3) 523 (29.0) 143 (27.3) 646 (35.9) 172 (26.6) <0.001

Post-myocardial infarction

Stage 1: ≥ 90 4277 (15.3) 405 (9.5) 4210 (15.1) 351 (8.3) 4315 (15.8) 337 (7.8) <0.001

Stage 2: 60–89 14,328 (51.4) 1670 (11.7) 13,400 (48.1) 1515 (11.3) 11,746 (43.1) 1197 (10.2) <0.001

Stage 3a: 45–59 6261 (22.5) 1247 (19.9) 6453 (23.1) 1228 (19.0) 6746 (24.8) 1219 (18.1) <0.001

Stage 3b: 30–45 2622 (9.4) 793 (30.2) 3174 (11.4) 924 (29.1) 3744 (13.7) 1090 (29.1) <0.001

Stage 4/5: < 30 388 (1.5) 162 (41.8) 639 (2.4) 259 (40.5) 682 (2.6) 280 (41.1) <0.001

RF renal function, CG-BSA Cockcroft-Gault formula adjusted for body surface area, MDRD4 modification of diet in renal disease-4 formula, CKD-EPI Chronic Kidney
Disease Epidemiology Collaboration equation
Events refer to cardiovascular mortality
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Table 3 Cox-regression models for cardiovascular mortality according to the different formulas and cohorts

Variables Univariable: HR (95% CI) P value Adjusted: HR (95% CI) P value

Population-based

MDRD4

Categorical 0.001 0.046

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 0.818 (0.382–1.751) 0.605 0.799 (0.370–1.726) 0.568

Stage 3a: 45–59 1.908 (0.790–4.609) 0.151 1.423 (0.563–3.597) 0.456

Stage 3b/4/5: < 45 4.624 (1.644–13.008) 0.004 3.004 (0.976–9.247) 0.055

CKD-EPI

Categorical <0.001 0.019

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 2.471 (0.752–8.117) 0.136 2.007 (0.607–6.640) 0.254

Stage 3a: 45–59 4.968 (1.400–17.635) 0.013 3.122 (0.851–11.456) 0.086

Stage 3b/4/5: < 45 11.207 (2.967–42.335) <0.001 6.426 (1.610–25.652) 0.008

CG-BSA

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.367 (0.459–4.070) 0.574 1.078 (0.360–3.230) 0.894

Stage 3a: 45–59 3.658 (1.226–10.915) 0.020 2.393 (0.787–7.275) 0.124

Stage 3b/4/5: < 45 9.562 (3.131–29.199) <0.001 5.347 (1.665–17.170) 0.005

Cardiovascular risk

MDRD4

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.008 (0.682–1.489) 0.969 1.096 (0.740–1.624) 0.647

Stage 3a: 45–59 1.682 (1.130–2.504) 0.010 1.924 (1.285–2.881) 0.001

Stage 3b/4/5: < 45 4.308 (2.844–6.526) <0.001 5.138 (3.361–7.857) <0.001

CKD-EPI

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.292 (0.823–2.029) 0.266 1.391 (0.884–2.190) 0.154

Stage 3a: 45–59 2.263 (1.436–3.566) <0.001 2.543 (1.605–4.029) <0.001

Stage 3b/4/5: < 45 5.397 (3.393–8.583) <0.001 6.292 (3.923–10.091) <0.001

CG-BSA

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.347 (0.911–1.990) 0.135 1.504 (1.009–2.241) 0.045

Stage 3a: 45–59 2.927 (1.986–4.315) <0.001 3.416 (2.290–5.094) <0.001

Stage 3b/4/5: < 45 6.277 (4.227–9.322) <0.001 7.520 (4.981–11.353) <0.001

Heart failure

MDRD4

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.076 (0.643–1.800) 0.781 1.016 (0.605–1.706) 0.952

Stage 3a: 45–59 1.791 (1.066–3.007) 0.028 1.517 (0.896–2.569) 0.121

Stage 3b/4/5: < 45 3.298 (2.007–5.420) <0.001 2.824 (1.704–4.680) <0.001

Ferreira et al. BMC Medicine  (2016) 14:181 Page 7 of 14



formula incorporates glomerular CrCl plus tubular CrCl,
resulting in an overestimation of GFR in younger healthy
populations [12, 13], whereas in older populations, it
may underestimate GFR due to its formula computation,
i.e., the numerator includes “140-age”; thus, for the same
weight and creatinine, a very old patient will have a dis-
proportionate underestimation of their GFR [14, 15].
Despite the fact that CG adjusted for BSA may improve
its accuracy [16, 49, 50], it should be emphasized that

neither the original CG nor the BSA-adjusted formula
should be used for GFR estimation and that these
formulas are not recommended by updated guidelines.
Still, many clinicians and laboratories continue to use
the latter on a daily basis [10]. In the late nineties, the
MDRD group developed models that improved the
prediction of eGFR from plasma creatinine concentra-
tion [6], providing more reliable estimations of kidney
function than the CG-BSA formula [51]. Finally, the

Table 3 Cox-regression models for cardiovascular mortality according to the different formulas and cohorts (Continued)

CKD-EPI

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 2.194 (1.008–4.774) 0.048 2.248 (1.030–4.906) 0.042

Stage 3a: 45–59 2.997 (1.372–6.549) 0.006 2.871 (1.306–6.310) 0.009

Stage 3b/4/5: < 45 6.557 (3.070–14.006) <0.001 5.784 (2.692–12.430) <0.001

CG-BSA

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 3.243 (1.164–9.031) 0.024 3.457 (1.240–9.642) 0.018

Stage 3a: 45–59 5.266 (1.915–14.485) 0.001 5.078 (1.838–14.024) 0.002

Stage 3b/4/5: < 45 12.388 (4.595–33.398) <0.001 11.006 (4.066–29.793) <0.001

Post-myocardial infarction

MDRD4

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.243 (1.115–1.385) <0.001 1.296 (1.162–1.446) <0.001

Stage 3a: 45–59 2.253 (2.014–2.521) <0.001 2.251 (2.009–2.523) <0.001

Stage 3b: 30–45 3.692 (3.276–4.162) <0.001 3.509 (3.104–3.967) <0.001

Stage 4/5: < 30 5.509 (4.591–6.610) <0.001 5.076 (4.208–6.123) <0.001

CKD-EPI

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.363 (1.214–1.531) <0.001 1.427 (1.269–1.603) <0.001

Stage 3a: 45–59 2.430 (2.158–2.736) <0.001 2.442 (2.165–2.754) <0.001

Stage 3b: 30–45 3.976 (3.516–4.497) <0.001 3.852 (3.396–4.368) <0.001

Stage 4/5: < 30 6.098 (5.193–7.160) <0.001 5.765 (4.887–6.800) <0.001

CG-BSA

Categorical <0.001 <0.001

Stage 1: ≥ 90 Reference Reference

Stage 2: 60–89 1.302 (1.154–1.470) <0.001 1.369 (1.213–1.546) <0.001

Stage 3a: 45–59 2.447 (2.169–2.761) <0.001 2.523 (2,234–2.849) <0.001

Stage 3b: 30–45 4.230 (3.744–4.780) <0.001 4.239 (3.745–4.799) <0.001

Stage 4/5: < 30 6.536 (5.578–7.659) <0.001 6.639 (5.649–7.802) <0.001

Adjusted model for sex, smoking status, history of hypertension, diagnosis of diabetes, heart rate, and systolic blood pressure (not adjusted for hemoglobin or left
ventricular ejection fraction due to > 75% of missing values in all datasets)
CG-BSA Cockcroft–Gault formula adjusted for body surface area, MDRD4 Modification of Diet in Renal Disease-4 formula, CKD-EPI Chronic Kidney Disease Epidemiology
Collaboration equation
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CKD-EPI equation was developed from a population of
more than 16,000 participants. This formula was vali-
dated and found to be more accurate than the MDRD4
formula (compared to a renal-clearance “gold standard”),
and thus proposed as a first choice to estimate GFR in
routine clinical practice [4, 9].

It should also be noted that the MDRD and CKD-
EPI equations allow GFR estimation without the need
of available “individualized” weight or height (as most
laboratories do not assess these data), this informa-
tion being standardized in the formulas’ “intrinsic de-
sign” [52].

Fig. 1 Association between “renal function” formulas and cardiovascular mortality in each population setting using restricted cubic splines. CG-
BSA, Cockcroft–Gault formula adjusted for body surface area; MDRD4, Modification of Diet in Renal Disease-4 Formula; CKD-EPI, Chronic Kidney
Disease Epidemiology Collaboration equation. Models adjusted for sex, smoking status, hypertension history, diagnosis of diabetes, heart rate, and
systolic blood pressure
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Comparing eGFR/CrCl formulas to a renal-clearance
“gold-standard” in large populations clearly underscores
the lack of precision of all these formulas [51, 52].
Additionally, the eGFR/CrCl formulas are prone to high
misclassification rates (≥30%) of patients according

to the Kidney Disease Outcomes Quality Initiative
Chronic Kidney Disease (K/DOQI-CKD) classification
stages [51–53].
Still, the CKD-EPI formula outperforms the MDRD4

and CG/CG-BSA in terms of eGFR precision and

Fig. 2 Kaplan–Meier curves for cardiovascular mortality according to the different formulas and populations. CG-BSA, Cockcroft–Gault formula
adjusted for body surface area; MDRD4, Modification of Diet in Renal Disease-4 formula; CKD-EPI, Chronic Kidney Disease Epidemiology
Collaboration equation
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classification in several populations (compared to a “gold
standard”) [52], although this is not necessarily the case
for outcomes prediction as discussed below.

Estimation of GFR and CrCl versus mortality prediction
GFR estimation serves not only to estimate renal func-
tion (for which purpose the CKD-EPI formula is the
most accurate to date), but also to estimate the risk of
major outcomes, such as cardiovascular mortality, since
renal function is the strongest mortality predictor in
many populations [2, 3, 5]. In this regard, the CKD-EPI
formula was also found to be superior to MDRD4 for
mortality prediction in large general population cohorts,
high vascular risk cohorts, and chronic kidney disease
cohorts [3]. Specifically, a meta-analysis by Matsushita et
al. [3] evaluated the risk implications of the CKD-EPI
formula as compared to the MDRD equation in

populations comprising 1,130,472 adults from 25 general
populations, 7 high-risk (of vascular disease), and 13
CKD cohorts. In this latter study, the CKD-EPI equation
reclassified fewer individuals as CKD and more accur-
ately categorized the risk for mortality and ESRD than
did the MDRD equation. Nonetheless, the CG-BSA for-
mula has not been consistently used for risk prediction
purposes in these population settings, since it does not
estimate GFR [3, 22, 23, 54], with the exception of a re-
cent study comparing CG-BSA, CKD-EPI, and MDRD4
in 925 ambulatory HF patients where the CG-BSA for-
mula also showed superiority for mortality risk predic-
tion [19]. Our study distinguishes from previous reports
by using the CG formula adjusted for BSA, and reveals a
slight superiority of CG-BSA over CKD-EPI and
MDRD4 formulas in predicting cardiovascular mortality
in the studied CV risk, HF, and post-MI cohorts, but not

Table 4 C-statistics, integrated discrimination improvement, and net reclassification improvement of restricted cubic spline “renal
function” formulas for cardiovascular mortality discrimination and reclassification in the studied cohorts

Cohorts Model comparison
(A vs. B)

C-index A% C-index B% ΔC-index% P value IDI% (95% CI) P value NRI% (95% CI) P value

Population Model vs. MDRD4 72.8 75.7 2.9 (−0.3 to 6.1) 0.072 0.5 (−0.1 to 4.3) 0.16 16.7 (−2.0 to 44.1) 0.072

Model vs. CKD-EPI 72.8 75.2 2.4 (−1.6 to 6.4) 0.23 0.6 (0.1 to 4.8) 0.016 23.4 (−0.9 to 44.4) 0.054

Model vs. CG-BSA 72.8 77.3 4.5 (−0.7 to 9.7) 0.087 1.0 (0.2 to 5.7) 0.020 39.1 (4.6 to 51.2) 0.020

MDRD4 vs. CKD-EPI 75.7 75.2 0.5 (−2.4 to 3.4) 0.74 0.2 (0.0 to 0.8) 0.026 23.2 (−10.7 to 36.8) 0.20

MDRD4 vs. CG-BSA 75.7 77.3 1.6 (−2.8 to 6.1) 0.48 0.5 (0.0 to 2.1) 0.045 27.4 (−6.8 to 47.9) 0.13

CKD-EPI vs. CG-BSA 75.2 77.3 2.1 (−0.1 to 4.4) 0.067 0.4 (−0.2 to 1.6) 0.14 31.3 (−13.9 to 48.1) 0.17

CV risk Model vs. MDRD4 58.9 66.2 7.3 (5.2 to 9.5) <0.001 0.9 (0.6 to 1.6) <0.001 18.5 (13.0 to 24.3) <0.001

Model vs. CKD-EPI 58.9 67.5 8.6 (6.4 to 10.9) <0.001 1.1 (0.7 to 1.7) <0.001 20.3 (15.3 to 25.8) <0.001

Model vs. CG-BSA 58.9 70.2 11.3 (8.9 to 13.7) <0.001 1.5 (1.0 to 2.4) <0.001 27.3 (21.4 to 32.6) <0.001

MDRD4 vs. CKD-EPI 66.2 67.5 1.3 (0.8 to 1.8) <0.001 0.1 (0.1 to 0.2) 0.006 23.0 (16.7 to 29.5) <0.001

MDRD4 vs. CG-BSA 66.2 70.2 4.0 (2.7 to 5.3) <0.001 0.6 (0.3 to 0.9) <0.001 22.8 (16.8 to 29.1) <0.001

CKD-EPI vs. CG-BSA 67.5 70.2 2.7 (1.7 to 3.7) <0.001 0.4 (0.2 to 0.7) <0.001 21.1 (14.6 to 27.6) <0.001

Heart failure Model vs. MDRD4 70.7 75.0 4.2 (1.9 to 6.5) <0.001 2.7 (1.2 to 4.8) <0.001 24.6 (15.9 to 34.1) <0.001

Model vs. CKD-EPI 70.7 75.5 4.7 (2.3 to 7.1) <0.001 3.0 (1.5 to 5.2) <0.001 25.5 (15.5 to 34.1) <0.001

Model vs. CG-BSA 70.7 77.0 6.3 (3.6 to 8.9) <0.001 4.4 (2.6 to 7.2) <0.001 29.6 (20.1 to 39.9) <0.001

MDRD4 vs. CKD-EPI 75.0 75.5 0.5 (0.2 to 0.8) 0.003 0.3 (0.1 to 0.5) 0.006 12.7 (1.6 to 23.8) 0.024

MDRD4 vs. CG-BSA 75.0 77.0 2.1 (1.1 to 3.0) <0.001 1.7 (0.8 to 2.7) <0.001 24.9 (14.7 to 34.7) <0.001

CKD-EPI vs. CG-BSA 75.5 77.0 1.6 (0.8 to 2.4) <0.001 1.4 (0.6 to 2.3) <0.001 26.5 (14.4 to 34.5) <0.001

Post-MI Model vs. MDRD4 61.7 66.5 4.9 (4.2 to 5.6) <0.001 3.4 (2.9 to 3.9) <0.001 21.1 (19.4 to 22.8) <0.001

Model vs. CKD-EPI 61.7 67.3 5.6 (4.9 to 6.4) <0.001 3.8 (3.4 to 4.4) <0.001 22.4 (20.6 to 24.0) <0.001

Model vs. CG-BSA 61.7 68.8 7.1 (6.3 to 7.9) <0.001 4.9 (4.3 to 5.6) <0.001 24.9 (23.0 to 26.5) <0.001

MDRD4 vs. CKD-EPI 66.5 67.3 0.8 (0.6 to 0.9) <0.001 0.5 (0.4 to 0.6) <0.001 16.4 (13.6 to 20.0) <0.001

MDRD4 vs. CG-BSA 66.6 68.8 2.3 (1.9 to 2.6) <0.001 1.6 (1.3 to 1.9) <0.001 20.9 (18.9 to 23.1) <0.001

CKD-EPI vs. CG-BSA 67.3 68.8 1.5 (1.3 to 1.8) <0.001 1.1 (0.9 to 1.4) <0.001 16.6 (13.8 to 20.4) <0.001

CG-BSA Cockcroft-Gault formula adjusted for body surface area, MDRD4 modification of diet in renal disease-4 formula, CKD-EPI Chronic Kidney Disease Epidemiology
Collaboration equation, CV cardiovascular, MI myocardial infarction, IDI integrated discrimination improvement, NRI net reclassification improvement, Δ delta (change)
All models adjusted for gender, smoking status, history of hypertension, diagnosis of diabetes, heart rate and systolic blood pressure (not adjusted for
hemoglobin or left ventricular ejection fraction due to > 75% of missing values in all datasets)
All “renal function” formulas are analyzed using restricted cubic splines
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in population-based cohorts. The CKD-EPI formula also
showed good accuracy for CVM prediction and was glo-
bally superior to the MDRD4 formula. A possible ex-
planation for the mild improvement in predictive value
of the CG-BSA formula, as compared to the MDRD4
and CKD-EPI formulas, is the use of “individually ob-
served” BSA in the CG-BSA formula computation versus
“intrinsic design” BSA in the MDRD4 and CKD-EPI for-
mulas, as “individual” BSA carries important prognostic
information per se [55]. While the addition of BSA on
top of CG-BSA did not improve reclassification indices
in an exploratory analysis, these indices were nonethe-
less improved when BSA was added to MDRD4 and
CKD-EPI, supporting that the “individual” BSA can pro-
vide prognostic information on top of the “intrinsic de-
sign” BSA of MDRD and CKD-EPI (Additional file 1:
Table S3) [52, 55]. Another potential explanation is that
all of the studied cohorts herein consisted of elderly
populations, in which both the CG and CG-BSA are
likely to underestimate renal function, as previously
highlighted, thereby “reclassifying” more patients into
worse renal function categories (as demonstrated in
Table 2). However, the CKD-EPI formula provides more
accurate renal function estimations (as also discussed
above) as well as good CVM prediction. Moreover, it
does not require individual height or weight, making this
formula easy to implement and favoring its widespread
use. Despite the statistically superior discriminative cap-
acity of CG-BSA (as compared to the other formulas) in
CV risk, HF, and post-MI cohorts, it is unlikely to be
clinically relevant, with CKD-EPI offering the best com-
promise between renal function estimation and CVM
prediction/risk assessment.

Innovation and clinical and research implications
Globally, the greater accuracy of the CG-BSA equa-
tion for CVM prediction has the potential to slightly
improve prognostic information in CV risk, HF, and
post-MI populations [4]. However, the CG-BSA does
not accurately estimate renal function and is only
slightly superior statistically (and clinically irrelevant)
comparatively to CKD-EPI, which remains the best
formula overall.

Limitations
Several limitations of this study should be acknowledged.
First, eGFR/CrCl was tested for cardiovascular mortality
prediction and not for GFR accuracy, and therefore the
best formula to estimate “actual” GFR cannot be derived
from this study. Second, data regarding cystatin-C or
microalbuminuria levels were unavailable; these data
would have likely enhanced risk prediction models since
non-GFR mechanisms (such as microalbuminuria) are
also associated with prognosis and models incorporating

both GFR and microalbuminuria perform more accurately
in prognosis prediction [56]. Third, in a small number of
patients, the fact that the reference weight at admission
used for the CG formula may not have been the true dry
weight and thus potentially overestimated cannot be disre-
garded. Fourth, creatinine was measured at baseline,
whereas the study did not account for “time-dependent”
variations that could also have major prognostic im-
plications. Fifth, creatinine measurements were not
“standardized” between different populations and co-
horts; however, this potential heterogeneity in creatin-
ine values was not systematic, reinforcing the strength
of our results. Sixth, in the computation of CG-BSA,
height and weight were added in an individual basis,
it is thus necessary for these data to be available
(limiting a wider applicability of this formula). Finally,
the populations included in the studied cohorts all
had a mean age above 65 years such that the CG for-
mula (independently of BSA adjustment) is likely to
underestimate renal function (as described in the dis-
cussion section) and thus reclassify a higher propor-
tion of patients into lower renal function stages;
consequently, these data may not be replicable in
younger populations.

Conclusion
The CG-BSA formula was the most accurate in predict-
ing CVM in CV risk, HF, and post-MI cohorts, but not
in population-based cohorts. However, the CG-BSA dis-
criminative improvement was globally low compared to
MDRD4 and especially CKD-EPI formulas. In addition,
CG-BSA is inaccurate for renal function estimation and
has limited generalizability due to the need for individual
height and weight values. Therefore, the CKD-EPI for-
mula offers the best “global package” of renal function
estimation and CVM prediction.

Additional file

Additional file 1: Supplemental Material. Table S1. Linearity tests for
each formula using restricted cubic splines with 3 knots. Table S2.
Cox-regression models according to the different formulas (categorized
for “renal function” stages) and age subgroups. Table S3. Improvement
indices for glomerular filtration rate estimation formulas in comparison to
body surface area. Figure S1. Association between “renal function”
formulas and cardiovascular mortality in each population setting using
restricted cubic splines with y-axis in log scale. Figure S2. Calibration
assessment for “renal function” formulas within each population.
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