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Abstract: The last decade has seen an exponential increase in the number of studies focused on
novel applications for ionic liquids (ILs). Blends of polymers with ILs have been proposed for use
in fuel cells, batteries, gas separation membranes, packaging, etc., each requiring a set of specific
physico-chemical properties. In this work, blends of four grades of the poly(ether-ester) multiblock
copolymer PolyActive™with different concentrations of the CO2-philic 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] were prepared in the form of dense films by a
solution casting and solvent evaporation method, in view of their potential use as gas separation
membranes for CO2 capture. Depending on the polymer structure, the material properties could
be tailored over a wide range by means of the IL content. All samples were dry-feeling, highly
elastic self-standing dense films. The microstructure of the blends was studied by scanning electron
microscopy with a backscattering detector, able to observe anisotropy in the sample, while a special
topographic analysis mode allowed the visualization of surface roughness. Samples with the longest
poly(ethylene oxide terephthalate) (PEOT) blocks were significantly more anisotropic than those with
shorter blocks, and this heterogeneity increased with increasing IL content. DSC analysis revealed
a significant decrease in the melting enthalpy and melting temperature of the crystalline PEOT
domains with increasing IL content, forming an amorphous phase with Tg ≈ −50 ◦C, whereas the
polybutylene terephthalate (PBT) phase was hardly affected. This indicates better compatibility of
the IL with the polyether phase than the polyester phase. Young’s modulus was highest and most
IL-dependent for the sample with the highest PEOT content and PEOT block length, due to its high
crystallinity. Similarly, the sample with short PEOT blocks and high PBT content also showed a high
modulus and tensile strength, but much lower maximum elongation. This study provides a detailed
discussion on the correlation between the morphological, thermal, and mechanical properties of these
PolyActive™/[BMIM][Tf2N] blends.
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1. Introduction

Polyethene oxide terephthalate-polybutylene terephthalate (PEOT-PBT) multiblock copolymers are
well-known semi-crystalline polymers commercialized under the name PolyActive™. Their application
ranges from pharmaceutics [1,2] and medicine [3,4] to gas separation membranes [5,6]. Poly(ethylene
oxide) (PEO)-based membranes have been recognized as promising materials for CO2 separation [7].
Polar ether oxygen groups in PEO interact favorably with CO2, resulting in its high solubility
selectivity [8,9]. Bondar et al. [10] reported CO2/H2 selectivities of 9.8 and CO2/N2 selectivities of 56,
with CO2 permeability coefficients of approximately 220 Barrer in polyether-b-polyamide segmented
block copolymers. Car et al. [11], for the PEOT-PBT copolymer, reported a CO2 permeability of 115
Barrer and CO2/H2 selectivities of 10.2.

The morphologies of block copolymers are very complex and can contain up to five different
phases depending on the composition, namely crystalline hard and soft segments, amorphous hard
and soft segments, and an interfacial region between the hard and soft segments [12]. Thus, knowledge
of the phase behavior is of crucial importance for the understanding of their mass-transport properties.
Barbi et al. [13] obtained useful information on the structure-property relationships by small-angle
X-ray scattering (SAXS) measurements on five commercial grades of polyether-block-polyamide
copolymers (PEBA) with varying soft block fraction and varying chemical compositions. A more
extensive structure-property study was made with PEO-PBT block copolymers by Metz et al. [14].
The authors addressed the effects of various amounts of hard phase with constant segment length; soft
segment length variation with a constant soft-hard ratio; and effect of the melting temperature and
degree of PEO crystallinity. They concluded that CO2-philic membranes should have a high soft-block
content for higher solubility, and a high length but low crystallinity of the soft segment to elevate
the chain flexibility and permeance. Many modifications and improvements to the PEO-containing
copolymers have been made to achieve this.

The simplest approach to optimize CO2-selective membranes is to blend the copolymers with
low-molecular-weight compounds. Studies on blends of low-molecular-weight poly(ethylene glycol)
(PEG) with Pebax® and PolyActive™ by Car et al. [11,15] reported that the use of PEG as a spacer
decreased crystallinity in the membranes and improved the performance of pure copolymers. However,
PEG only blended with the PEG phase of the copolymer, leaving the hard phase intact and lowering
the number of free ethylene oxide (EO) units, thus giving only a modest increase in permeability.
To overcome these limitations, PEG with different end groups [16] or PEG-functionalized POSS [17,18]
and PDMS [19] were used. Incorporation of the PEG-dibutyl ether (PEG-DBE) into PEO-PBT limited
the hydrogen bonding, and its moderate compatibility with PBT improved the CO2-philic character of
this phase and increased the interchain distance, resulting in a five-fold increased CO2 permeability
of membranes.

A PEBAX®1657 blend membrane containing 50 wt.% of a PDMS–PEG additive exhibited an
increase in CO2 permeability from∼100 to∼530 Barrer. A 30 wt.% PEG-POSS-containing nanocomposite
showed an improvement in gas permeability without any significant change in selectivity. However,
blends of low-molecular-weight compounds and polymers have the limitation of being unstable in
time, undergoing thermal transitions, and being subject to leaching-out of low-molecular-weight
compounds [20].

Another concept to simultaneously improve the permeability and selectivity of the CO2 separation
membranes is that of mixed matrix membranes (MMMs) [21,22]. Sabetghadam et al. [23] fabricated
thin MMMs based on nanosheets of the Cu-BDC and PolyActive™ polymer, improving the CO2/N2

selectivity of the thin membranes up to 77 and the CO2 permeance to 40 GPU (1 GPU = 1.0 × 10−6 cm3

(STP) cm−2 s−1 cmHg−1). Liu et al. [24] reported on a thin-film composite membrane (TFCM) fabricated
by spin-coating of the ultrathin metal-organic framework (MOF) gutter layer with PolyActiveTM

exhibiting a CO2 permeance of ∼2100 GPU with a CO2/N2 ideal selectivity ∼30.
Another class of tailorable materials is formed by ionic liquid membranes, usually offering a

combination of high diffusivity and good selectivity. Dai et al. [25] prepared TFCM with Pebax® and
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a task-specific ionic liquid (TSIL) blend selective layer and reported on a significant increase in CO2

permeance and CO2/N2 selectivity by incorporation of TSIL. The use of ionic liquids (ILs) to enhance
polymer properties is a very promising and fast-growing research topic [26]. Mass transfer in ILs is faster
than in polymeric membranes [27], their separation properties can be adjusted for specific applications
by proper selection of the anion and cation, and they exhibit high solubility of CO2 compared to other
gases [28]. Addition of 20 to 80 wt.% of 1-butyl-3-methylimidazolium trifluoromethane sulfonate,
[BMIM][CF3SO3], to Pebax®1657 was reported to give a fourfold increase in CO2 permeability
with a modest decrease in CO2/N2 selectivity from 60 to 40 [29]. Estahbanati et al. [30], for a
blend of Pebax®1657 with 50 wt.% of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]),
reported an increase in CO2 permeability from 110 to 190 Barrer and CO2/N2 selectivities from 78.6 to
105.6. Jansen et al. [31] prepared ionic liquid polymeric gel membranes containing 20 to 80 wt.% of
the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) in
poly(vinylidene fluoride-co-hexafluoropropylene) (p(VDF-HFP)). Increasing IL concentration resulted
in the rise in gas permeability and CO2/H2 selectivity and data exceeding the general trend in the
Robeson diagram of the CO2/H2 selectivity against the CO2 permeability. Such promising results show
that ILs present a very perspective additive for copolymers to create a CO2-selective membrane with
improved properties.

In this work, we prepared four series of blend membranes with 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) IL and PolyActive™, a block copolymer with
interesting perspectives for CO2 separation (Figure 1). Thorough structural and morphological studies
of the blend membranes were made by SEM observations, tensile tests, and DSC analysis. The effect of
the IL content on the properties was examined for six membranes with different IL concentrations,
while the effect of the PolyActive™ structure (with a different soft–hard segment ratio and different Mw

of the soft segment) was evaluated by selecting four different grades of PolyActive™. The study aimed
to determine structure-property relationships as a future guide for practical applications of the films
in, for instance, membranes for gas or vapor separation. The main aim of this work was to identify
and understand the relationships between the structure and properties of these polymeric materials,
as a future guide for its wider material applications. Indeed, thorough knowledge of the properties
of polymer films will allow the design and preparation of membranes with tailored properties, for
example, for efficient separation of gases or gas/vapor mixtures.
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Figure 1. Molecular structure of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[BMIM][Tf2N] and generalized structure of PolyActiveTM.

2. Materials and Methods

Chloroform (99%) was purchased from Penta Chemicals (Prague, Czech Republic) and VWR
(Milan, Italy) and was used as the solvent for membrane preparation. All gases for the permeation
tests were supplied by Sapio (Monza, Italy) at a minimum purity of 99.9995+%. The ionic
liquid used in this study was 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
(abbreviation [BMIM][Tf2N], ≥98%), and was purchased from Sigma-Aldrich (Prague, Czech Republic).
Two grades (1500PEOT77PBT23 and 4000PEOT77PBT23) of the thermoplastic elastomer PolyActiveTM,
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a polyethylene oxide terephthalate-polybutylene terephthalate (PEOT-PBT) multiblock copolymer,
were purchased from PolyVation B.V., Groningen, The Netherlands, who supplied two other grades,
1000PEOT55PBT45 and 4000PEOT50PBT50, as a free sample. The first number in the code stands for the
molecular weight of the PEO block, and the second and third numbers indicate the fractions (in wt.%)
of the PEOT and the PBT blocks, respectively (Table 1). The generalized structure of PolyActiveTM

PEOT-PBT copolymers and the chemical structure of [BMIM][Tf2N] are given in Figure 1.

Table 1. Membrane compositions and macroscopic properties.

Polymer a [BMIM][Tf2N] Membrane

Sample Code MPEO
(g mol−1)

WPEOT
(wt.%)

WPBT
(wt.%)

Concentration
wt.% d

Thickness
(µm) e Appearance

1000PEOT55PBT45 1000 55 45 0 103 Shiny
(P1) b 4.8 182 Shiny

9.1 121 Shiny
16.7 115 Shiny
23.1 127 Shiny
28.6 192 Matt

4000PEOT50PBT50 4000 50 50 0 81.5 Shiny
(P2) c 4.8 95.3 Shiny

9.1 129 Shiny
16.7 105 Shiny
23.1 95 Shiny
28.6 109 Shiny

1500PEOT77PBT23 1500 77 23 0 121 Matt
(P3) b 4.8 107 Transparent

9.1 100 Matt
16.7 142 Matt
23.1 134 Matt
28.6 164 Matt

4000PEOT77PBT23 4000 77 23 0 108 Matt
(P4) b 4.8 106 Matt

9.1 130 Matt
16.7 139 Matt
23.1 160 Matt
28.6 161 Matt

a MPEO = molar mass of the PEO block, WPEOT = weight fraction of PEOT blocks, WPBT = weight fraction of PBT
blocks. b Prepared from a 5 wt.% solution in chloroform at 25 ◦C, unless specified otherwise. c Prepared from a
3 wt.% solution under reflux (ca. 60 ◦C). d IL concentration based on the final sample weight, assuming complete
evaporation of the solvent. e Sample thickness determined with a Mitutoyo digital micrometer as an average of
10 spots.

2.1. Membrane Preparation

Polymer solutions of 5 wt.% of P1, P3, and P4 grades of PolyActiveTM in chloroform were prepared
at room temperature under stirring for 2 h. Different amounts of the ionic liquid [BMIM] [Tf2N] were
added to the polymer solutions and stirred for another 2 h at room temperature. PolyActiveTM grade
P2 was dissolved at 3 wt.% in chloroform, by stirring for 2 h close to the boiling temperature (ca. 60 ◦C),
yielding a slightly hazy solution. After adding the required amounts of ionic liquid, the solution was
stirred for another 2 h at 60 ◦C. The final polymer/IL/chloroform solutions were poured into Teflon
Petri dishes. The Petri dishes were partially covered to ensure slow evaporation of the solvent and to
avoid contamination by dust particles. The solvent was evaporated at 35 ◦C for at least 24 h until the
film was formed. P2 samples showed shrinkage upon solvent evaporation. The films were then easily
removed from the Petri dishes. Table 1 gives an overview of the sample characteristics.

2.2. Characterization

2.2.1. DSC

DSC analysis was carried out using a Pyris Diamond Differential Scanning Calorimeter
(Perkin Elmer, USA) equipped with an intracooler refrigeration system. Samples of 15–30 mg
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were packed in small baskets of household aluminum foil (6.8 mg). First, the samples were heated
from room temperature to +250 ◦C and kept at this temperature for 1 min; then, the samples were
cooled down to −75 ◦C where they were kept for 5 min and lastly heated up again to +250 ◦C. The DSC
runs were performed at a scan rate of 15 ◦C min−1. Before the measurements, the samples were kept at
50 ◦C under vacuum for one night to remove adsorbed moisture. The pure ionic liquid was analyzed
as a reference in the range from −100 to +200 ◦C, with fast cooling or annealing below the melting
point to suppress or to enhance crystallization.

2.2.2. SEM

The morphology of the membranes was studied using scanning electron microscopy (SEM,
Phenom ProX Desktop model), applying an acceleration voltage of the primary electron beam of
5 kV. SEM images were acquired in backscatter electron imaging mode and topographic mode at a
magnification of 1000× and 5000×without sputter coating with gold.

2.2.3. Mechanical Tests

Tensile tests were carried out at room temperature on a Zwick/Roell single-column Universal
Testing Machine, model Z2.5, equipped with a 50 N load cell and pneumatic clamps. The surface of
one flat clamp was covered with adhesive rubber to avoid slipping or damage of the samples, while
the second clamp had a rounded surface to avoid extraction of the sample. The average value and
the standard deviation of Young’s modulus, the break strength, and the maximum deformation were
determined on a series of at least three samples. The sample width was 5 mm, and the grip-to-grip
distance was 40 mm. The deformation rate was 80 mm min−1 (200% min−1).

3. Results and Discussion

3.1. Membrane Morphology and Microstructure

Defect-free membranes were obtained as flexible mechanically stable dense films, having a slightly
hazy bulk and a shiny or matt surface (Table 1). Only P3 with 4.8% IL was fully transparent. No IL
exudate was found on the sample surface after the film formation and drying. The haze was caused by
the phase separation of the polymer in micrometer-sized crystalline PBT domains and amorphous
or semi-crystalline PEOT domains. Anisotropy in the sample was captured by the backscattering
detector of the SEM as differences in back-scattered light intensity, where the presence of crystalline
structures leads to a higher brightness (Figure 2). Some films had a matt surface due to the formation of
micrometer-sized crystals just below the surface, appearing in the SEM analysis as features with a more
intense back-scattering, and showing increased surface roughness in the topographic analysis mode
(Supplementary Information, Figure S1). Comparing the membranes on the basis of their composition,
the neat polymers P1 and P2 have a finer microstructure than polymers P3 and P4, which have a
much larger PEOT phase than the PBT phase. With increasing ionic liquid content, all samples show
increased anisotropy, but this effect is stronger for P2 and P4 with their longer PEOT block lengths.
Similar observations were made by Yave et al. [16] for the PEO-PBT/PEG-DBE membranes where
the PEG-DBE separated phase was seen as brighter areas of islands or hills. Addition of the ionic
liquid affects the compatibility of the two block-copolymer phases and, thus, the domain structure
development, which is a complex process depending on the relative concentration of all components,
on the lengths of the individual blocks, on the solvents used, on the film formation conditions, and
other factors [32].
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3.2. Thermal Properties

All grades of PolyActiveTM exhibit microphase separation in a PEOT-rich phase and a PBT-rich
phase. A typical example of the DSC curves is shown in Figure 3 for sample P4 and its blends with ionic
liquid at different concentrations. The strong endothermal peak in the range of 30–40 ◦C and the much
smaller peak around 180 ◦C correspond to the PEOT and the PBT phase, respectively. The endothermal
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nature in the peaks in the heating run and the exothermal nature in the cooling run, with significant
undercooling, confirm that both phases are semi-crystalline. All other grades of PolyActiveTM also
showed two peaks, corresponding to the PEOT-rich and PBT-rich phase, respectively. The melting
enthalpy of PEO and PBT were reported to be 196.8 [33] and 144.5 J/g [34]. The intensity of the peaks
was strongly dependent on the molecular weight of the PEOT block, and on the copolymer composition.
As the PEOT and the PBT blocks are poorly compatible, the microphase separation of the two phases
always occurs, but this phenomenon is strongest for the samples with the highest block length.
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Figure 3. Example of DSC curves of sample P4 as a function of the ionic liquid (IL) content (in wt.%) at
a heating and cooling rate of 15 ◦C min−1. (A) First heating run, (B) cooling run, (C) second heating
run. (D) DSC curves of the pure ionic liquid [BMIM][Tf2N] obtained after different cooling procedures.
The curves are shifted vertically for clarity and the Tg is indicated with a red arrow. Program of the
analysis of the pure ionic liquid: First heating after normal cooling to −100 ◦C, second heating after
cooling to −40 ◦C and annealing for 20 min; and third heating after normal cooling to −100◦C, heating
to −10 ◦C, annealing for 10 min, followed by a second cooling to −100 ◦C (see the full temperature
program of the IL in Table S1).

The DSC curve of pure sample P4, containing a high PEOT weight fraction, shows a strong
melting peak around room temperature (Figure 3). Instead, the melting peak of the hard PBT segment
in P4 is very small, and as it is also very broad, it is barely detectable. The butylene terephthalate
units are unable to crystalize efficiently, as they are present in low concentrations [34]. Both phases
appear as an exothermal peak in the cooling runs with approximately 20 ◦C undercooling of the
PEOT phase and 30 ◦C undercooling of the PBT phase, before crystallization takes place. In the
second heating run, a weak glass transition of the polymer appears at approximately −50 ◦C. The glass
transition becomes more evident at high IL content because the IL reduces crystallinity and increases
the amount of amorphous phase. The glass transition temperature of the blend decreases as a function
of the IL content, suggesting plasticization of the polymer chains in the presence of the ionic liquid.
With a dedicated temperature program, it was possible to suppress the crystallization of the ionic
liquid, and it was found that the IL also exhibits a glass transition. Three successive DSC runs were
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performed on the pure IL (Figure 3D). The first heating curve, after normal cooling at 15 ◦C min−1 to
−100 ◦C, shows a Tg at around −86 ◦C, crystallization during heating (around −20 ◦C), and subsequent
melting (around 1 ◦C). The second heating run, after cooling from 250 ◦C to −40 ◦C and subsequent
conditioning of the sample at −40 ◦C for 20 min, shows no phase transitions. Thus, a lower temperature
is needed for crystallization. Indeed, conditioning of the sample at −10 ◦C for 10 min, after it has
previously been cooled to −100◦C, yields a clear, sharp melting peak in the third heating curve, proving
that for nucleation to start, the IL needs to reach a sufficiently low temperature for nucleation to
occur and then needs to be kept for a longer time just below the melting temperature. The observed
supercooling of the pure IL during the normal heat–cool cycles is generally an indication of its high
purity [35], but the complete suppression of crystallization in the polymer is an indication of good
molecular-level dispersion.

The simplest model to predict the glass transition temperature of polymer blends or polymers
with additives, Tg, blend, based on the individual components is the well-known Fox equation:

1
Tg,blend

=
wpol

Tg,pol
+

wIL

Tg,IL
, (1)

where wpol and wIL are the weight fractions and Tg,pol and Tg,IL are the glass transition temperatures
of the pure polymer and pure ionic liquid, respectively. More complex models may be needed for
block copolymers with different solubilities of the IL in the two phases, but as the Tg of the ionic
liquid is lower than that of the neat polymer, the Fox equation correctly describes the qualitative trend
of decreasing Tg,blend with increasing IL concentration. The ionic liquid itself has a melting point of
ca. 1 ◦C, but none of the blends shows signs of crystallization of the IL. Indeed, even in the pure IL,
the crystallization can easily be suppressed, and crystallization is expected to be even more difficult in
the case of relatively low concentrations of IL in the blend.

In the samples with a higher amount of the hard PBT phase, the PBT melting peak becomes more
pronounced and sharper (see Figure S4, sample P2 with 50% PBT). The PBT peak shows double maxima,
which is ascribed to the existence of crystals altering in regularity and size [34]. At the same time, the
PEOT peak also remains strong in P2 because the relatively long PEOT block (Mw = 4000 g mol−1)
causes efficient microphase separation and allows a higher degree of crystallinity. The Tg of the PBT
phase was not detected in any of the samples, although available literature data report it in the range
between 50 and 60 ◦C [34,36]. The Tg of the soft PEOT phase was visible in samples with lower Mw

of the PEOT phase, due to the less efficient crystallization of the shorter PEOT segments. Further
examples of the DSC curves of the blends are shown in Figures S3–S5. An overview of all quantitative
data is plotted in Figure 4. There is a significant decrease in the peak area and a slight shift in the PEOT
peak position with increasing IL content, but no significant changes in the PBT peak positions. This
suggests that IL mixes only with the PEOT phase, but is incompatible with the PBT phase and does
not affect it [37]. The numerical values of the thermal analysis are given in Tables S2–S5. The melting
enthalpy (∆Hm) of the PBT phase for P1, P2, and P3 seems to decrease with increasing IL content, but
is constant when normalized for the amount of polymer (Figure S2C). This supports the hypothesis
of the complete non-compatibility of the IL and PBT and is visualized by constant peaks of the PBT
phase in the DSC curves. The only exception is sample P4, where ∆Hm of PBT is increasing with the IL
concentration. The explanation of this counterintuitive trend is that the relatively small PBT phase is
partially immobilized by the highly rigid crystalline PEOT phase (see mechanical properties below),
thus partially suppressing its freedom to crystallize (Figure 4B). However, an increasing amount of IL
plasticizes the PEOT phase (Figure 4B) and gives more freedom for the PBT phase to crystalize. ∆Hm

of the PEOT phase (Figure 4E) decreases for all samples, and completely disappears for P1, meaning
that the PEOT phase becomes fully amorphous.
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Qiu et al. [38] reported on the thermal properties of Pebax®1657/[BMIM][Tf2N] blend membranes
with analogous behavior. Herein, the PEO melting peak became smaller and shifted upon addition
of the IL, and with a maximum load of 40 wt.% of IL, the PEO peak was no longer detectable by
DSC. Additionally, the IL showed good compatibility with the hard PA phase as well, decreasing its
crystallinity and enthalpy of fusion. In a study on Pebax®1657 and Pebax®2533 copolymers doped
with [BMIM][CF3SO3] [29], the IL shows good compatibility with both phases and acts as a plasticizer
from the mechanical point of view. However, in Pebax®2533, the (normalized) melting enthalpy of
both the polyether crystal phase and the polyamide crystal phase remained unchanged even up to
80 wt.% of IL. Figure 4A shows an increasingly evident Tg of the PEOT phase with the addition of IL.
The IL mixes with the PEOT phase and decreases its crystallinity, but it evidently does not significantly
affect the Tg of the polymer, which could suggest strong interactions between IL and the polymer, and
explain the limited validity of the Fox equation (Equation (1)). The melting temperature (Tm) of PBT is
the highest for sample P2 with the highest PBT content, embedded in PEOT with long-chain segments,
and smallest for sample P3 with the lowest content of PBT and also low Mw of PEOT. The Tm of PEOT
follows the same trend. A high fraction of the PEOT phase in sample P4 and its high Mw (4000 g mol−1)
results in the highest Tm, opposite to sample P1 with a small fraction and low Mw of the PEOT phase.
Addition of IL results in a decrease in Tm of the PEOT phase for all samples apparently because of the
higher interaction of the IL with the PEOT phase. Thus, the PBT melting temperature increases both
with increasing PBT content and with increasing PEOT block length, but it is remarkably independent
of the IL concentration. This indicates that a higher PEOT block length favors more efficient microphase
separation into PEOT and PBT domains and that the IL does not affect the PBT phase.
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3.3. Mechanical Properties

All the prepared membranes have typical rubbery behavior, characterized by low modulus and
high elongation (Figure 5). The neat P4 polymer has the highest Young’s modulus, which drastically
decreases with increasing IL concentration, showing that this IL acts as a strong plasticizer for this
grade of PolyActiveTM having the lowest amount of hard PBT blocks and the highest PEOT block
length. The drastic decrease in Young’s modulus and break strength with increasing IL content in
P4 is mostly a result of the decrease in the crystallinity of the PEOT phase, as was confirmed by
DSC analysis (Figure 4E). In addition, the P2 series, which has a similar Mw of PEOT but a higher
fraction of PBT, shows a significant decline in the elastic modulus as a function of the IL content.
Therefore, it can be concluded that a higher Mw of soft phase will enable more efficient crystallization,
which will give better mechanical properties to the membrane, in accordance with previously reported
work [36]. At the same time, these polymers will be affected most by the presence of the IL. P1 and P3
are less affected by the presence of the IL due to the low Mw of their PEOT domains. Sample P1 has a
higher modulus and break strength than sample P2, with similar content of the PBT hard segments,
but with higher Mw of the PEOT blocks and higher ∆Hm of both phases. Apparently, the stronger
microphase separation in P2 leads to relatively poor mechanical properties. For entropic reasons,
low-molecular-weight compounds mix better with each other and, similarly, polymers with shorter
block lengths tend to be more compatible and the phase separation between the soft and hard segment
will decrease with the lower Mw of the PEOT phase [36,39], where inter-chain interactions become
more important than intra-chain interactions. As inter-chain interactions are relevant for network
formation, this will result in increased mechanical strength and elasticity of the sample [29]. Maximum
deformation is higher in the more flexible P4 grade (high Mw of PEOT and high fraction), and then
follows the trend P3 (low Mw of PEOT but high fraction) > P2 (high Mw of PEOT but low fraction) >

P1 (low Mw of PEOT and low fraction) over the entire composition range, and it decreases with IL
content for all four grades of PolyActiveTM.
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4. Conclusions

The correlation between the amount of the ionic liquid [BMIM][Tf2N] and the morphological,
thermal, and mechanical properties of four different grades of PolyActive™ poly(ether-ester) multiblock
copolymer was studied. The IL was found to dissolve mainly into the PEOT phase, reducing the
crystallinity of the PEOT segments and inducing the appearance of an amorphous phase with the
corresponding glass transition. Without any exception, the ionic liquid caused a gradual decrease in the
mechanical properties in terms of Young’s modulus, the tensile strength, and maximum elongation in
all samples. It also causes increased anisotropy in the films, up to the formation of droplet-like domains
in the PBT-rich samples. The negative effect on Young’s modulus was strongest for the samples
with long PEOT blocks due to the relatively strong reduction in the crystallinity of the PEOT phase
in these samples. The mechanical properties are consistent with the results of the thermal analysis,
giving a complete picture of how the properties of the PolyActive™-based blends can be tailored by
the characteristics of the PolyActive™ grade itself, and the amount of ionic liquid dispersed therein.
The PBT melting temperature increases both with increasing PBT content and with increasing PEOT
block length in the copolymer, but it is remarkably independent of the IL concentration. This indicates
that a higher PEOT block length favors a more efficient microphase separation into PEOT- and PBT-rich
domains and that the IL does not affect the PBT phase. The IL therefore affects mostly the PEOT phase.
All films appear dry on the surface and are mechanically stable, suggesting potential use as packaging
films, gas separation membranes, or as ion-conducting layers in batteries. Further studies on the
potential application of the films as gas separation membranes will be the subject of our future work.
We expect that the gained knowledge on material behavior and properties will lead to the fabrication
of efficient PolyActive™/ [BMIM][Tf2N] blend membranes for effective CO2 separation from hydrogen,
methane, or other gas mixtures. This work is in progress and will be the subject of a future publication.
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Comprehensive file containing Figure S1: Example of SEM images of sample P2 and sample P4 with 20 wt.% IL,
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of the PolyActive™ P1/[BMIM][Tf2N] blend membranes, Table S3: Thermal properties of the PolyActive™
P2/[BMIM][Tf2N] blend membranes, Table S4: Thermal properties of the PolyActive™ P3/[BMIM][Tf2N] blend
membranes, Table S5: Thermal properties of the PolyActive™ P4/[BMIM][Tf2N] blend membranes, Figure S2:
A) Normalized change in specific heat, B) normalized melting enthalpy of the PEOT phase, and C) normalized
melting enthalpy of the PBT phase, Figure S3: DSC curves of sample P1 as a function of the IL content, Figure S4:
DSC curves of sample P2 as a function of the IL content, Figure S5: DSC curves of sample P3 as a function of the
IL content, Figure S6: Example of the tensile curves of sample P4.
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