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Abstract: Epitalon, also known as Epithalon or Epithalone, is a tetrapeptide, Ala-Glu-Asp-
Gly (AEDG), which was synthesized based on the amino acids composition of Epithalamin,
a bovine pineal gland extract, prior to its discovery in pineal gland polypeptide complex
solution. During the last 25 years, this compound has been extensively studied using
in vitro, in vivo, and in silico methods. The results of these studies indicate significant
geroprotective and neuroendocrine effects of Epitalone, resulting from its antioxidant,
neuro-protective, and antimutagenic effects, originating from both specific and nonspecific
mechanisms. Although it has been demonstrated that Epitalon exerts, among other effects, a
direct influence on melatonin synthesis, alters the mRNA levels of interleukin-2, modulates
the mitogenic activity of murine thymocytes, and enhances the activity of various enzymes,
including AChE, BuChE, and telomerase, it remains uncertain whether these are the sole
mechanisms of action of this compound. Moreover, despite the considerable volume of
research on the biological and pharmacodynamic characteristics of Epitalon, the quantity of
physico-chemical and structural investigations of this peptide remains quite limited. This
review aims to conclude the most important findings from such studies, thus presenting
the current state of knowledge on Epitalon.
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1. Introduction and Basic Information on Epitalon
Over 50 years ago, in 1973, the term Epithalamin was used for the first time in widely

accessible scientific research. It describes a pineal polypeptide extract from cattle, which has
been found to have unique properties in in vitro and in vivo experiments [1]. The discovery
of the bioactivity of this extract and its first research were mainly led by V.K Khavinson and
V.N Anisimov [2]. Since then, Epithalamin has been widely studied, including in clinical
trials, showing a normalizing effect on the basic functions of the human organism and,
as a result, establishing it as a geroprotective agent [3]. Despite the publication of several
reviews of Epithalamin [4–7], to the best of our knowledge, none specifically concentrate
on Epitalon.

Epitalon, also known as Epithalon or Epithalone, is a tetrapeptide that was developed
on the basis of the amino acids composition of Epithalamin [8]. For many years, the presence
of Epitalon in the human body remained unconfirmed, until 2017, when it was detected
for the first time in physiological pineal gland extract [9]. This explains why Epitalon
has similar properties to Epithalamin, but differs in the intensity of some actions [10,11].
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It should be noted that some authors do not use this common name of Epitalon and
refer only to its primary structure—AEDG. This name highlights the fact that Epitalon
is a tetrapeptide consisting of Ala-Glu-Asp-Gly (AEDG) amino acids bound through α-
peptide bonds (Figure 1a). Interestingly, in one article, where the antioxidant properties of
Epitalon were investigated, the authors presented a different chemical structure of Epitalon,
composed of the same amino acids but bonded in a different way [12]. In this work, the
peptide bond between glutamic acid and aspartic acid was through the δ-carboxylic group
and the peptide bond between aspartic acid and glycine was made by the γ-carboxylic
group (Figure 1b). The authors named this variant of Epitalon Ala—γ Glu—γ Asp—Gly,
which indicates a potential naming mistake. However, this structure of “double-gamma
bonded” Epitalon is rather an exception, as we have not encountered it in any other of the
published works.
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Figure 1. Chemical formula of Epitalon proposed by most authors (a) and rarely mentioned “double-
gamma bonded” structure (b).

Since Epitalon has a natural origin, it is mostly investigated in its free-base form.
However, some authors have specified that Epitalon in the form of salt was used in their
experiments. Most common salts of Epitalon available commercially are in combination
with acetic or trifluoroacetic (TFA) counterions.

Epitalon, owing to its significant bioactivity and peptide composition, has primarily
been studied in vivo through subcutaneous injections. However, some sources assert
that Epitalon is a low-hydrolysable peptide that can be taken orally, exhibiting unique
features [13]. This study intends to perform a critical evaluation of the published data on
Epitalon, encompassing all experimental types—in silico, in vitro, and in vivo. The precise
mechanism of action of this tetrapeptide remains unverified, prompting a diversification of
the research on both the methodologies employed and the criteria examined. Consequently,
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we deemed it essential to consolidate the acquired knowledge on Epitalon, not merely as a
summary, but also to facilitate the planning of future studies on this interesting peptide.

2. Medical, Pharmacological, and Biological Research on Epitalon
Epitalon has been extensively studied in medical, pharmacological, and biological

contexts. Our understanding of this chemical is derived from studies conducted on several
biological models, which have been utilized and developed to accurately epitomize the
results of experiments conducted on humans. To increase the clarity of this review, this
chapter is divided into sections based on the biological models employed.

2.1. Cells

Epitalon is thought to be a tissue-specific peptide affecting subcortical structures [14].
This was partially confirmed in a study by Brodsky et al., where Epitalon showed no
impact on the protein synthesis levels in isolated rat hepatocytes [15]. Also, no signifi-
cant proliferation rate increase after Epitalon administration was observed in an MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay experiment con-
ducted on human periodontal ligament stem cells [16].

Despite this, Epitalon’s influence on the proliferation of pigmented and retinal ep-
ithelial rat cells has been investigated. Epitalon was compared with Retinalamine at the
same concentrations and with the same exposition times. Both compounds induced the
active proliferation of the cultured cells. Epitalon showed the best effects after 28 days
at a concentration of 10 ng/mL, which, surprisingly, was not the highest concentration
used [17]. Following intriguing outcomes from in vivo studies on Epitalon treatment for
retinitis pigmentosa [18–20], the molecular mechanism of Epitalon was further examined.
The expression levels of Pax6, Vsx1, Brn3, Prox 1, and TTR markers were quantitatively as-
sessed and determined to be statistically significantly elevated in isolated cultured chicken
retinal tissue treated with an Epitalon- H-Lys(H-Glu-OH)-OH mixture [21].

Epitalon showed also an interesting result in pinealocyte cultured cells originating
from rats. The cells were treated with Norepinephrine, Epitalon, and Vilon to check their
impacts on melatonin levels. This was achieved by measuring the arylalkyl amine-N-
acetyltransferase (AANAT) and cyclic AMP-responsive element-binding protein (pCREB)
concentrations in medium post-treatment. The results showed statistically important im-
pacts of Vilon and Epitalon on these two parameters, suggesting a direct effect on melatonin
synthesis in pineal cells by these two compounds. The findings of immunohistochemical
studies indicated a significant effect of Epitalon on the expression of the pCREB transcrip-
tion factor and AANAT enzyme in pinealocyte culture. Presumably, Epitalon’s effect on
AANAT and pCREB underlies the peptide regulation of pineal cell activity. It is important
to note that Epitalon showed a more prolonged mechanism of action than Vilon and was
significantly more potent after three hours of the experiment [22]. Djeridane et al. also ex-
amined the effect of Epitalon on melatonin release in isolated perifused pineal glands from
both young and aged rats. Their experiment demonstrated that the specified tetrapeptide
does not influence the melatonin secretion function of the pineal gland. No dependence on
the dosage or age of the rats was seen. Furthermore, it was demonstrated that Epitalon did
not influence pineal melatonin release stimulated by the β-adrenergic agonist, isoproterenol.
The authors proposed that Epitalon did not influence melatonin secretion in vitro [23].

Pineal gland cultures derived from rats have been also used to investigate the effect of
Epitalon on lymphocyte differentiation. The experiment’s results indicated that Epitalon
decreased the quantity of undifferentiated CD5+ cells, increased the expression of the B-cell
marker CD20, and did not influence mature CD4+ and CD8+ T cells. This led Linkova et al.
to hypothesize that Epitalon may only enhance the development of lymphocyte precursors
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into B cells [24]. Another study showed that Epitalon has no impact on the mitotic index of
lymphocytes [25].

An additional in vitro experiment conducted on splenocytes derived from CBA mice
showed a substantial effect of Epitalon on the mRNA levels of interleukin-2 (IL-2). Epitalon
was evaluated against Vilon and Cortagen. The time-dependent efficacy of these peptides
was examined by assessing their impact after 5 and 20 h. Epitalon elicited elevated IL-2
mRNA levels just after 5 h, distinguishing it from Vilon, which also affected the splenocytes
after 20 h [26]. The effect of Epitalon on mRNA expression led to an experiment performed
by L.S Kozina et. al. on human neuroblastoma NB7 cells. The impacts of Epitalon and Vilon
on neprilysin (endopeptidase 24.11) (NEP) and insulin-degrading enzyme (EC. 3.4.24.56)
(IDE) mRNA were investigated. It was shown that, in normoxia, Epitalon increased the
concentrations of IDE and NEP by a statistically insignificant (p < 0.05) amount of 10–15%.
What is more interesting are the results of the same experiment performed in a hypoxia-
culturing environment. In hypoxia, NB7 cells expressed only 70% of IDE and NEP on
average. Epitalon was confirmed to fully stop this decrease in mRNA synthesis. This
facilitated the revelation of Epitalon’s antihypoxic characteristics concerning NEP and IDP
mRNA levels [27].

The previously established mitogenic activity of Epitalon on murine thymocytes [28]
served as the foundation for a study by E.I. Grigori’ev, which examined the mechanism
of ultra-low doses of this tetrapeptide in aqueous solutions. Epitalon showed the highest
activity at concentrations of 10−17–10−15 M, which are so low that the authors suggested
a “Distant reception” dose–activity dependence for Epitalon [29]. Murine thymocytes
were also used in a study where potential induced thymocyte blast transformation was
investigated. Epitalon did not present such effects in the absence of concavalin A and
recombinant interleukin-1β (rIL-1β). A comitogenic effect of Epitalon was observed when
thymocytes were co-treated with concavalin A or rIL-1β (p < 0.05). Additionally, it was
proven that Epitalon does not activate neutral sphingomyelinase. At low concentrations,
Epitalon did inhibit this enzyme [28]. Another study where isolated thymocytes were
investigated showed that Epitalon has different effects in different stress models [30]. The
thymocyte blast transformation reaction was enhanced in the following two stress models:
rotational (revolving in containers) and combined (cooling and immobilization). However,
proliferation was elevated solely under rotational stress and was inhibited in the combined
model. Subsequent analysis concluded that Epitalon modulates IL-1β signal transduction
through the sphingomyelin route in cerebral cortex neuron membranes, as evidenced by
variations in neutral sphingomyelinase activity in stress models [31].

One experiment revealed a distinctive characteristic of Epitalon, wherein pluripotent
cells of Xenopus laevis were subjected to various doses of Epitalon. Following a 5-day
incubation period, all control cultures (lacking Epitalon therapy) exhibited solely atypical
epidermal cells. In cultures with access to Epitalon, the cells were differentiated into
epidermal and neural tissue. This impact was found solely at concentrations of 10 ng/mL,
50 ng/mL, and 100 ng/mL. This impact was not detected at concentrations of 2 ng/mL,
20 ng/mL, and 200 ng/mL. The authors of this article did not elucidate the possible
rationale for these outcomes [32].

Epitalon also has an effect on telomerase activity. This was confirmed by applying
the telomere repeat amplification (TRAP) protocol [33]. The cell cultures used in this
experiment were telomerase-positive HeLa cultures and human fetal lung fibroblasts
602/17. Telomerase-positive and Epitalon-treated fibroblasts demonstrated high telomere
lengths during the G1 phase of the cell cycle. The authors of this experiment stated that this
activity of Epitalon can explain most of the geroprotective effects of this compound [33].
This suggested a potential anti-aging effect which could help to overcome the division
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limit of human cells in in vitro cultures. This was confirmed by V. K. Khavinson et. al.
for human fetal fibroblasts in May 2004. Control fibroblast culture lost its ability for
mitosis after the 34th passage. Epitalon-treated cells kept dividing even after the 44th
passage, which confirmed the thesis [34]. Another study that used human-originating
cells was performed on PHA-stimulated and non-PHA-stimulated lymphocyte cultures.
Lymphocytes were taken from healthy participants between 75 and 88 years old, and as
a control from donors aged between 25 and 40 years. The first experiment in this study
showed a few parameters of chromatin after peptide treatment. Firstly, the amount of
associating acrocentric chromosomes per cell was twice as high as in the control group.
However, this effect was observed for every peptide treatment in this study and was
not specific for Epitalon. Secondly, the dechromatization of chromosomes 1 and 9 for
Epitalon treatment was observed. Chromosome 16 stayed stable. The dechromatisation
of chromosome 9 only occurred for one other peptide used within this study—Livagen.
Lastly, the deheterochromatization level of facultative heterochromatin was observed to be
lower in the 75–88-year-old control group compared to the 25–40-year-old one, which was
expected. It was experimentally proven that the deheterochromatization level of facultative
heterochromatin changed significantly to values higher than those of both control groups
after peptide treatment. However, Epitalon was not the most potent peptide [35]. These
results were proven again in a similar experiment by Lezhava. et al. in 2023 [36]. A second
study was conducted to further evaluate Epitalon’s effects on lymphocyte chromatin. The
control group consisted of youthful patients, while senior patients ranged from 71 to
86 years of age. Initially, it was demonstrated that Zinc, Cobalt, and Nickel had a mutagenic
effect on chromatin. Subsequently, it was noted that Epitalon exhibits antimutagenic
characteristics when co-administered with Zinc, Cobalt, and Nickel [37]. Also, the telomere
length after Epitalon administration in PHA-stimulated blood human lymphocytes was
investigated. It was found that, in some cases, Epitalon can influence the relative telomere
length in young and middle-aged individuals. During this study, individuals with no
significant changes, an increased telomere length (in one case. p < 0.001 in comparison to
controls), and a decreased telomere length (in one case, p < 0.01 in comparison to controls)
were found. The results of this study indicated that, in human somatic cells, Epitalon can
induce the expression of telomerase enzyme components, telomerase activity, and telomere
elongation (on average by 33.3%) [25].

Epitalon was confirmed to have no stimulating effect and more of a suppressing
effect on argyrophilic protein expression in thymocytes and thymic epithelial cells from
human-aborted embryos cultured simultaneously at all concentrations used within this ex-
periment [38]. Another study conducted in 2020 examined human thymocytes. The impact
of Epitalon on the aging of these cells was assessed. The aging process was characterized
by a drop in MitoTracker Red mitochondrial labeling, accompanied by a compensatory rise
in the synthesis of L7A ribosomal protein. Results were acquired by confocal laser scanning
microscopy. Epitalon was again demonstrated to have no impact on the aging processes of
thymocytes. However, in this work, human pineal cells were also examined in a similar
manner. Epitalon effectively and selectively safeguarded aged human pineal cells from the
aging process. The authors concluded that these results validate Epitalon’s tissue-specific
activity on the pineal gland, Figure 2 [39].
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Figure 2. Area of Mito Tracker Red (MTR) staining in old cells of the human pineal gland, immunoflu-
orescence confocal microscopy, magnification of 400×: (a) control group and (b) AEDG peptide
(cell nuclei stained with DAPI-2-(4-Amidinophenyl)-1H-indole-6-carboxamidine). Reproduced with
permission from Springer Nature [39].

The expression of other proteins was investigated in vitro. Undifferentiated and
neuronic-differentiated human periodontal ligament stem cells were treated with Epi-
talon. The protein expression of Growth Associated Protein 43 (GAP43) and Nestin was
investigated using fluorescent microscopy and Western blotting. Epitalon did increase,
but not statistically significantly, the expression rates of these proteins compared to the
control group [16]. The next study, where the influence of Epitalon treatment on hu-
man gingival mesenchymal stem cells was investigated, was confirmed by RT-PCR, with
p < 0.01 statistical significancy that Epitalon increases Nestin and GAP43 transcription
rates. Additionally, it was found that β-tubulin III and Doublecortin mRNA levels were
also significantly influenced by Epitalon administration [40].

The potential ability of Epitalon to traverse the cell membrane was examined. The
tetrapeptide was conjugated with fluorescein isothiocyanate, facilitating subsequent analy-
sis. Fodoreyeva et al. conducted several tests with labeled Epitalon on HeLa cell cultures.
Initially, the ability of Epitalon to permeate the cell membrane and subsequently enter the
nucleus was demonstrated. This suggests that Epitalon’s activity may be associated with cy-
toplasmic and nuclear components. Further examination concentrated on the interaction of
labeled Epitalon, compared to other peptides, with deoxyribo-oligonucleotides tagged with
5,6-carboxyfluorescein. Epitalon was demonstrated to connect with certain DNA sequences,
particularly with CAG sequences, which are susceptible to DNA cytosine methylation. This
resulted in a hypothesis that Epitalon influences epigenetic cellular activities [41].

Epitalon was observed to enhance the CD4+ population of bone marrow cells, specifi-
cally in tissues derived from aged mice [42,43]. An increase in CD8+ cells was observed
in the spleen. Elevated levels were seen in the spleen tissue of aged mice. Epitalon also
enhances the amounts of thymic serum factor (TSF) in the supernatants of thymic tissue.
However, it was shown that other factors, such as melatonin or Epithalamin (non-synthetic
Epitalon), had a greater influence on this parameter [44].

Additional features of Epitalon were identified in a study involving its application to
SH-SY5Y neuroblastoma cells. The following three criteria were examined: the quantity
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of amyloid precursor protein and the activity levels of acetyl- and butyrylcholinesterase
(AChE and BuChE). Nalieva et al. confirmed an average increase of 10–25% in the activity
of AChE and BuChE in the presence of Epitalon in the medium. The authors suggested
this phenomenon may have resulted from an elevated secretion of these proteins. This
is associated with a reduced activity of AChE and BuChE in the soluble protein fraction
treated with Epitalon. An identical effect was noted in an experiment examining membrane-
bound variants of AChE and BuChE. Epitalon once more demonstrated a diminishing
influence on the activity of these enzymes. The subsequent experiment demonstrated that
Epitalon also affected the secretion levels of the soluble form of amyloid precursor protein
(APP). The secretion level of this protein increased by 20% following incubation with
Epitalon. The authors drew conclusions indicating that Epitalon influences AChE, BuChE,
and APP metabolism, positioning it as a possible candidate for the treatment of cholinergic
deficiency diseases and cognitive disorders associated with amyloid metabolism [45].

In 2022, a particularly instructive work investigating the influence of Epitalon on
human cells was published. This study utilized cell cultures of THP-1 monocytic human
leukemia. It was established that Epitalon promotes signal transducer and activator of
transcription 1 (STAT1) phosphorylation, potentially through a receptor-independent mech-
anism that does not include interactions between IFN-α and IFN-R, as seen by the lack
of effect on IFN-α production. Furthermore, THP-1 cells exposed with bacterial-derived
lipopolysaccharide (LPS) exhibited an additive effect on the tyrosine phosphorylation of
extracellular signal-regulated kinases 1/2 when co-treated with Epitalon. Furthermore,
the incubation of THP-1 macrophages with Epitalon did not induce the phosphoryla-
tion of latent cytoplasmic transducers, as evidenced by the lack of significant increase
in activated molecules detected by anti-phospho STAT3 antibodies. Furthermore, the
Epitalon time-course treatment appeared to further diminish the phosphorylation level
of phospho-STAT3 [46]. In another study, it was shown that Epitalon had an effect on
macrophages depending on the age of mice from which the cells were collected. Three doses
(0.0025 ng/mL, 0.025 ng/mL, and 0.25 ng/mL) were investigated. Macrophages from
young mice decreased the production of lymphocyte-activating factors under the influence
of Epitalon by a statistically important value. Activity in old mice macrophages was not
influenced in a statistically important manner [47,48].

A recent study mentioned an interesting use of Epitalon. Yue et al. connected the
antioxidant [11,49] and protective [50] properties of Epitalon with the possible use of this
compound as an in vitro oocyte-protecting agent. The existence of intracellular reactive
oxygen species (ROS), the frequency of spindle abnormalities, the location of cortical gran-
ules, and mitochondrial activity were examined. The ROS level was examined following
24 h of culture with various doses of Epitalon. Concentrations of 0.05 mM and 0.1 mM
markedly reduced the ROS levels. It is noteworthy that elevated concentrations of Epi-
talon (1 mM and 2 mM) did not substantially reduce ROS levels. Epitalon has also shown
a reduction in oocyte fragmentation. The highest results were again seen at the lowest
concentration of Epitalon—0.1 mM. The localization of cortical granules, mitochondrial
membrane potential, and mtDNA copy number were also influenced by Epitalon. Epitalon
consistently demonstrated activity that can be characterized as geroprotective. The final
criterion examined in this study was DNA damage and apoptosis in oocytes. The fluores-
cence intensity of γH2AX was utilized as an indication of DNA damage. DNA damage
was reduced in comparison to the aged group following the addition of Epitalon during
culture. Epitalon in vitro decreased the incidence of oocyte apoptosis. All data obtained
by the authors indicated that Epitalon is a viable choice for oocyte protection in in vitro
cultures [51]. Identical qualities were determined to be beneficial in the culture of human
gingival mesenchymal and periodontal ligament stem cells. Cells subsequent to the 25th
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passage were administered Epitalon. RT-PCR measurements revealed that the expressions
of the senescence markers p16 and p21 were reduced by 1.56 and 2.22 times, respectively,
compared to the control (p < 0.01) in periodontal ligament stem cells, and by 1.92 and
2.44 times in gingival mesenchymal stem cells [52].

Research conducted on isolated primary rat fibroblasts and organotypic cultures of
rat skin explants has revealed that Epitalon possesses anti-aging activities in skin tissue
as well. Molecular evidence was established by quantifying the expression levels of Ki-67,
CD98hc, caspase-3, and MMP-9 in fibroblasts treated with AEDG [53]. Gutop et al. also
noted increased expressions of genes encoding SOD-1, NQO1, and catalase in human cells
undergoing Epitalon exposure. They also emphasized the potential for Epitalon to directly
attach to the promoters that govern the expression of these enzymes—Keap1/Nrf2 [54].
Experiments conducted on complete organotrophic cultures support this hypothesis [55].

Recently, the neuroprotective effects of Epitalon were examined in vitro. AEDG was
reported to reduce DNA damage in neurons generated from fibroblasts, indicated by a drop
in 8-hydroxydeoxyguanosine levels,. Furthermore, the quantity of primary and terminal
dendrites escalated following Epitalon administration. The total dendritic length and the
quantity of junctions were also augmented. Other peptides examined in the same study
demonstrated marginally superior outcomes [50].

A study published in 2025 by Ullah et al. demonstrated novel features of Epitalon in
relation to telomerase. Epitalon was demonstrated to stimulate telomerase activity in bovine
cumulus cells and cumulus–oocyte complexes. The impact of Epitalon on mitochondrial
health was examined using JC-1 staining. Epitalon enhanced mitochondrial health and
reduced intracellular reactive oxygen levels. Subsequent analysis revealed that the mRNA
expressions of PGC-1α, Sirt-1, tFAM, and BCL2 were markedly elevated following Epitalon
administration. These data were utilized in the assessment of whether Epitalon is an
appropriate supplement for media used in oocyte maturation. The maturation process was
discovered to be accelerated by improving the mitochondrial health of oocytes. Moreover,
Epitalon therapy of post-thawed bovine embryos markedly improved blastocyst expansion
and hatching rates, Table 1.

Table 1. Cell lines and corresponding experiments performed with them mentioning the influence
of Epitalon.

Cell Type/Line Origin Parameter Investigated Reference

Isolated primary retinal cells

Rat Proliferation and growth dynamics [17]Isolated pigmented
epithelial cells

Isolated hepatocytes Rat Protein synthesis [15]

Isolated pinealocytes Rat
Transcription factor and enzyme level [22]

Expression of CD5, CD20, CD4, and CD8 [24]

Perifused pineal gland Rat Melatonin release [23]

Isolated primary fibroblast Rat Expression of Ki-67, CD98hc, caspase-3, and MMP-9 [53]

Organotypic cultures of
isolated skin explants Rat Ratio of the total explant area [55]

Brain cortex tissue

Rat Proliferation [14]
Subcortical (pineal) tissue

Liver tissue

Thymus tissue
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Table 1. Cont.

Cell Type/Line Origin Parameter Investigated Reference

Bone marrow tissue

Mouse

SPC-F and CD4+ cells population [44]

Splenocytes
IL-2 mRNA expression [26]

Contribution of CD8+ cells [44]

Isolated peritoneal
macrophages Mouse Lymphocyte-activating characteristics

of macrophages [47]

HeLa Human

Telomerase subunit expression and
telomere elongation [33]

Membrane penetration [41]

DNA binding [41]

Fetal lung fibroblasts 602/17 Human

Telomerase subunit expression and
telomere elongation [33]

Division limit [34]

Thymocytes

Mouse

Proliferation [28,29,31]

Neutral sphingomyelinase activity [31]

Thymic serum factor presence in
supernatant fraction [44]

Involvement in sphingomyelin pathway [28]

Human
Argyrophyllic proteins expression [38]

Aging, L7A protein expression [39]

Pinealocytes Human Aging, L7A protein expression [39]

Thymic epithelial cells Human Argyrophyllic proteins expression [38]

Isolated lymphocytes Human
Effects on chromatin [35–37]

Telomere length and mitotic index [25]

NB7 neuroblastoma Human NEP and IDE expression [27]

Fission cavity Frog 1 Differentiation [32]

SH-SY5Y neuroblastoma Human
AChE and BuChE activity [45]

Amyloid precursor protein secretion level [45]

THP-1 monocytic leukemia Human Inflammatory pathways [46]

Fibroblasts derived
into neurons Human

DNA damage prevention, mitochondrial and
lysosomal activity, and morphology

post-Epitalon administration
[50]

Periodontal ligament stem cells Human
MTT, GAP43, and Nestin protein expression [16]

p16 and p21 expression [52]

MII oocytes Mice
ROS level, morphology, mitochondrial membrane
potential, mtDNA copy number, apoptosis, and

DNA damage
[51]

Gingival mesenchymal
stem cells

Human

GAP43, Nestin, β-tubulin III, and Doublecortin
mRNA expression [40]

p16 and p21 expression [52]

Retina Chicken Pax6, Vsx1, Brn3, Prox 1, and TTR expression [21]

Isolated skin fibroblasts Human SOD-1, NQO1, and catalase expression [54]
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Table 1. Cont.

Cell Type/Line Origin Parameter Investigated Reference

Cumulus cells

Bovine

Telomerase activity, mitochondrial health, and
mRNA expression

[56]Oocytes Telomerase activity, TERT protein localization, and
mitochondrial health

Post-thawed embryos Development, re-expansion, implantation potential,
mitochondrial health, and trophectoderm integrity

1 Xenopus laevis.

2.2. Drosophila melanogaster

D. melanogaster has been identified as a valuable model for assessing lipid peroxidation
levels. Highly inbred strains were selected by the reduced mating potential of males.
Epitalon was added into the nutritional medium at the larval stage at a concentration of
0.00001% (w/w). The results indicated that adult flies had reduced amounts of conjugated
hydroperoxides following Epitalon treatment during the larval stage. An identical outcome
was also seen for the concentrations of Schiff’s bases. The results varied by gender, although
in both instances, the observed alterations following Epitalon administration indicated
reduced concentrations. These results demonstrate that Epitalon undoubtedly possesses
antioxidant properties. Furthermore, the authors indicated that, upon comparison with
the literature, the effective concentration was sufficiently low to suggest a signaling role
for Epitalon in the cascades of the cellular antioxidant system [57]. The second article by
the same authors from the same year additionally investigated catalase activity. Again,
Epitalon had antioxidating effects. Additionally, Epitalon was compared with its natural
occurring progenitor, Epithalamin. The results of the comparative analysis in this study
revealed that Epitalon is a better antioxidant than Epithalamin. It is important to note that
Epithalamin was administered at 1000-fold higher doses [58]. A similar experiment focused
on measures of reactive oxygen levels in flies. Epitalon was compared with Vilon. Both
peptides inhibited reactive oxygen formation in mitochondria and cytosol [59].

Epitalon has an influence on the lifespan of D. Melanogaster. A wild strain, Cantos-S.,
of D. Melanogaster was used as a model in an experiment, where early developmental stages
were treated with Epitalon at different concentrations. Overall, Epitalon increased the
lifespan of imago D. Melanogaster by up to 16%. This effect was observed for both genders.
Survival curves additionally confirmed that Epitalon mainly influenced mature and old
imago flies. Khavinson et al. stated that these results confirmed the lack of genotoxic
effects potentially conducted by Epitalon [60]. What was special about Epitalon were
the doses which induced the effect. To achieve comparable results for a medium life
span extension for D. Melanogaster, melatonin has to be implemented at 16,000-fold higher
concentrations [61].

2.3. Mice

One of the main biological models in Epitalon research is mice. The influence of
Epitalon on the occurrence of chromosomal abnormalities was examined in comparison to
another epiphyseal hormone, Melatonin. The study included the following three strains of
mice: SAMP-1, SAMR-1, and SHR. Chromosomal abnormalities were quantified in bone
marrow following 10 months of treatment with Epitalon or Melatonin (only SHR). SAMP-1
mice exhibited a greater frequency of chromosomal abnormalities in bone marrow cells
relative to normally aging SAMR-1 mice and long-lived SHR mice of an equivalent age. In
all instances, the administration of Epitalon reduced this parameter. The impact of Epitalon
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was greater than that of melatonin treatment in SHR mice [62]. SHR mice were used as a
model in a study that examined biomarkers of aging. Epitalon was found to have no effect
on food intake, body weight, or average lifespan in this specific strain of mice. Nonetheless,
similarly to the previously referenced article, bone marrow chromosomal aberrations were
diminished by 17.1% (p < 0.05). This study found no effect of Epitalon on overall tumor
incidence [63].

Epitalon decreases chromosomal instability [64]. Chromosomal aberrations are directly
connected to DNA defects, which are often responsible for carcinogenesis. This parameter
was investigated in a long-term study where Epitalon was administered to CBA mice
in 10-fold lower doses (0.1 µg/mouse). Epitalon reduced the incidence of overall tumor
formation (p < 0.05) and their multiplicity [65]. Reduced carcinogenesis was also confirmed
in FVB/N female mice transfected with the HER-2/neu breast cancer gene. The total
number of breast adenocarcinomas was found to be lower in comparison to a control group
(p < 0.05) [66,67]. Further investigation during following studies confirmed a 3.7-fold lower
HER-2/neu mRNA expression in FVB/N female mice compared to controls [68]. Epitalon
decreased tumor size in specific tissues [69,70]. It was confirmed that FVB/N HER-2/neu
mice treated with Epitalon had mammary tumors of a smaller size [67]. These results
are in line with Kossoy’s et al. experiment, which was performed on another mice strain,
C3H/He. Again, the antitumor effect of Epitalon was confirmed in a 6.5-month-long study
by comparing the tumor incidence, localization, and type compared to a control group
treated with saline subcutaneously [71].

Semenchenko et al. proposed a semi-parametric model of heterogeneous mortality
(frailty model) for the analysis of experimental data. In their experiment on HER-2/neu
transgenic mice, many factors were investigated, and one of them was Epitalon admin-
istered in two treatment schemes. Depending on the dosage, Epitalon was observed to
either reduce the maximum lifespan of mice—due to debilitation and the aggregation of
frail individuals in the population—or significantly enhance survival rates in transgenic
mice—attributable to adaptability, increased average robustness, and heterogeneity [72].

The antimutagenic effects of Epitalon were also examined in relation to the hair color
of the mice in the study. Mylnikov et al. employed albino and grey mice to examine the
potential color dependence of results in the following two assays assessing antimutagenic
activity: the incidence of abnormalities in sperm heads and the occurrence of micronuclei in
peripheral blood erythrocytes. Epitalon demonstrated significant antimutagenic action in
both experiments using gray mice, and in both tests with albino mice, it exhibited enhanced
antimutagenic activity. Due to the atypical nature of these data, the authors offered various
complementary explanations. Furthermore, they emphasized the possible intricacy of this
issue [73].

The specific effects of Epitalon on gene expression in the heart were studied in vivo [74].
Overall, 15,247 genes were investigated. Epitalon activated the expressions of 194 genes
up to 6.61 times in some cases. Inhibition occurred on the expression of 48 genes by up
to 2.71 times in the most inhibited case. The authors provided specific information about
the genes affected. These data showed consistency with the previously stated biological
properties of Epitalon, where this compound was found to inhibit the development of
spontaneous tumors [74]. Next, 16,897 transcripts were studied in mice brains after Epitalon
administration. Mice were treated with 10 times lower doses compared to the experiment
examining the heart. The effects on 53 gene expressions were presented. This study
revealed major differences in mice brain gene expression after Epitalon treatment compared
to Melatonin treatment. The effects of Epitalon were mostly connected with genes which are
responsible for nucleic acid transport and synthesis, apoptosis, and cell cycle regulation [75].
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The influence of Epitalon on mice body weight dynamics and many other parameters
was investigated in a long-term study on the CBA mice strain by V.N. Anisimov et al.
Epitalon did not significantly increase or decrease body weight in the 21-month period of
the study, compared to controls. Also, no significant changes in food consumption during
the study were reported. Within the same study, physical activity was also investigated.
It was shown that, at the start of the study (the first 3 months of Epitalon administration),
the physical activity of mice decreased significantly (p < 0.001). However, this parameter
changed later in time and did not vary significantly from the control group at the end.
Muscular strength and physical fatigability were not affected by Epitalon throughout the
study period. Also, no statistically significant changes were reported in age-related estrus
functionality after long-term Epitalon administration. One of the most interesting results
within this study was in line with the thesis that Epitalon shows geroprotective activity. It
was shown (p < 0.01) that the number of mice treated with Epitalon that reached the age
of 23 months surpassed the control group 4.0-fold. The oldest mice in the saline control
group died at 24 months old and the oldest mice in the Epitalon treated group lived for
34 months [65]. This aligns with findings from studies examining the lifespans of a different
strains of mice [76], for example, FVB/N female mice transfected with HER-2/neu, which
likewise validated the extended lifespan of Epitalon-treated mice (p < 0.05) [66], or the
study in which it was found that Epitalon administration extended the lifespan of the
last 10% of survivors of SHR mice by 13.3% [63]. At the end of this investigation, therapy
with Epitalon significantly suppressed the generation of free radicals in brain tissue. This
peptide formulation also significantly prevented lipid peroxidation in the brains and livers
of CBA mice, Table 2 [65].

Table 2. Mice strains and corresponding experiments performed with them mentioning the influence
of Epitalon.

Strain Route of
Administration Dose Period of

Administration Parameter Investigated Reference

SAMP-1 Subcutaneous injection 1 µg/mouse,
5 times a week 10 months Incidence of

chromosome aberrations [62]

SAMR-1 Subcutaneous injection 1 µg/mouse,
5 times a week 10 months Incidence of

chromosome aberrations [62]

SHR Subcutaneous injection 1 µg/mouse,
5 times a week

10 months Incidence of
chromosome aberrations [62]

9 months Incidence of chromosome
aberrations in bone marrow [63]

Until natural death
Body temperature, life span,
food consumption, estrous

function, and weight
[63]

CBA Subcutaneous injection

0.1 µg/mouse,
5 times a week

Until natural death

Body weight and food
consumption dynamics, physical

activity, age-related estrus
functionality, body temperature,
muscular strength and physical

fatigability, longevity,
and carcinogenesis

[65]

1 day Free radical processes [65]

1 µg/mouse,
everyday 5 days Gene expression in heart [74]
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Table 2. Cont.

Strain Route of
Administration Dose Period of

Administration Parameter Investigated Reference

0.1 µg/mouse,
everyday

5 days Gene expression in brain [75]

5 days Antioxidant properties,
superoxide dismutase activity [11]

HER-2/neu Subcutaneous injection

1 µg/mouse, 5
times a week

Until natural death

Longevity of mice and incidence
and count of new breast tumors [66,68,72]

Tumor parameters, HER-2/neu
mRNA expression [67,68]

B-actin expression in
mammary tumors [67]

Stressor influence [72]

1 µg/mouse,
5 consecutive

days ev-
ery month

Life span, stressor influence,
longevity of mice, incidence, and

count of new breast tumors
[72]

C3H/He Subcutaneous injection 0.1 µg/mouse,
5 times a week 6.5 months Incidence, localization,

and type of tumors [71]

No data/
no strain Subcutaneous injection 5 µg/kg Single dose

Anomalies in sperm heads,
presence of micronuclei in

erythrocytes of peripheral blood,
and hair color dependence

[73]

2.4. Rats

The majority of articles mentioning Epitalon use rats as model animals for in vivo
experiments. Similarly to experiments performed on mice, many strains were used and
widely investigated.

Epitalon was found to be a gastric endocrine cell behavior-modifying agent [77,78].
In a study performed on Wistar rats, before Epitalon subcutaneous injection, rats were
pinealectomized. Epitalon was administered for 30 or 42 days. Serotonin-producing
enterochromaffin cells, gastrin-producing cells, and somatostatin-producing cells were
counted. The number of above-mentioned cells in pinealectomized rats without Epitalon
administration did vary significantly compared to controls. Epitalon did, to a certain
degree, decrease the effect of pinealectomy on gastric cells. For example, the ratio between
gastrin- and somatostatin-producing cells stayed at the same level as those in the control
group after 30 days of Epitalon administration. Forty-two days of subcutaneous Epitalon
administration fully recovered the pinealectomy-induced changes in gastric endocrine cells
to the levels of the control group. This experiment led V.K. Khavinson et al. to the conclusion
that Epitalon has a direct impact on gastric endocrine cells [78]. Another study examined the
characteristics of the rat duodenum following γ-irradiation. Intraperitoneally administered
Epitalon inhibited proliferation and exhibited no additional post-γ-irradiation activity. The
authors stated that such activity of Epitalon could be beneficial in antitumor treatments [79].
This statement stays in line with the results obtained by V.N. Anisimov et al., where
Epitenon significantly decreased the amount of cancer incidence in a 1,2-dimethylhydrazine-
induced colon carcinogenesis model [80]. In 2003, the anti-cancer activity of Epitalon was
confirmed in different developmental stages of colon cancer. Epitalon is especially effective
when applied before, during, and after cancer occurrence [81].

Epitalon also exerted a regulatory influence on pepsin activity during aging in unfa-
vorable light conditions of the Karelia Republic. Nevertheless, it was demonstrated that
Epitalon did not significantly affect overall proteolytic activity. Research demonstrated
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that pepsin activity and overall proteolytic activity remained unchanged by Epitalon under
12 h light/dark cycles or constant light [82].

The impact of pinealectomy on the spleen was similarly examined. Subcutaneous
injections of Epitalon or Epithalamin were administered to pinealectomized rats. Similar to
the previous experiment involving intestinal cells, Epitalon and Epithalamin only partially
mitigated the impact of pinealectomy on spleen cells. It was confirmed that Epitalon
and Epithalamin significantly affect splenic functionality and morphology. The results
for groups administered with Epitalon and Epithalamin exhibited statistically significant
differences compared to the control group and rats without splenic activity adjustment [10].

As previously mentioned, Epitalon shows geroprotective activity [83]. This activity
is usually connected with antitumor activity. This was also confirmed in an experiment
performed on male LIO rats, where tumor incidence depending on Epitalon administration
and light exposure was investigated. Epitalon did significantly lower tumor incidence in
all three light exposure schemes (p < 0.02). However, Epitalon did not prolong the mean
lifespan in all groups [84]. Tumor incidence dependence on Epitalon administration and
light exposure was also investigated in female LIO rats. In this experiment, rats exposed to
light natural for northwestern Russia and constant light showed a prolongation of their
maximum life span. The results also presented that spontaneous tumor incidence for female
rats was lowered only in natural northwestern Russia light conditions [85].

Another anti-aging characteristic of Epitalon, previously emphasized, is anti-free-
radical oxidation inhibition. Based on the lipid peroxidation rates in the brain and serum
of Wistar rats, this property of AEDG was confirmed in vivo in rats by L.S. Kozina [1].
The next anti-aging related property of Epitalon is the inhibition of apoptosis. To validate
this property in rats, Wistar rats were subjected to γ-irradiation, and the apoptosis rate of
their splenic lymphocytes was assessed. On day 2 post-irritation, Epitalon was delivered
intraperitoneally with physiological saline to one group for the subsequent 5 days. Epitalon
reduced the apoptosis of splenic cells by 2.12-fold (p < 0.05) compared to the control group
that received only saline injections [86]. A separate investigation utilizing γ-irradiation to
examine the protective qualities of Epitalon in rats yielded noteworthy results. Microscopic
examination revealed that Epitalon partially preserved the pineal gland from structural
changes and facilitated its recovery, particularly through the partial restoration of the
mitochondrial ultrastructure. This occurrence might be seen as an additional instance of
the tropic activity of Epitalon on the pineal gland [87].

The activity of the pineal gland is influenced by Epitalon. In a study examining
stress-exposed rats, the tetrapeptide was administered intranasally. The occurrence of
C-Fos protein, which is a neuron activation marker [88], was measured. Epitalon slightly,
although statistically significantly, elevated the levels of C-Fos protein in the pineal gland,
exclusively in rats subjected to stress [89]. An elevated expression of C-Fos protein was
also seen in all hypothalamic regions in both stress-adapted and stressed rats [90].

Based on the similarities of Epitalon to Retinalamine [8], an interesting branch of stud-
ies performed on rats emerged. Campbell rats were injected parabulbarly with Epitalon for
72 days starting at birth. Retina tissue was morphologically investigated. On day 41, the
complete destruction of all retinal layers was found in rats which had not been treated with
Epitalon, while in the experimental group, all retinal layers were preserved. Electroretino-
gram measurements indicated that Epitalon prolonged the functional activity of the retina
by 43.9% [18]. Superior outcomes (two-fold extension of functional activity) were achieved
when female Campbell rats received intraperitoneal injections of Epitalon commencing
three weeks prior to gestation. The results confirmed that parabulbar injections are unnec-
essary for the desired effect and that Epitalon is more effective when administered during
pregnancy and throughout life [19]. Considering these results, the authors attested that
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Epitalon is highly efficient in some forms of retinal degeneration [18]. Another study where
five times lower doses were used also showed significant improvement in the course of
Retinitis pigmentosa, Figure 3 [20].
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It was also shown that Epitalon has an effect when administered orally. In total,
100 µg of Epitalon was given orally to rats for 1 month. Epitalon increased passive glucose
transport in the medial and distal segments of the small intestine 2.2-fold (p < 0.05) and by
40%, respectively. Active glucose transport was also highly affected by Epitalon, increasing
its value in the proximal and medial regions by 6- and 8-fold, respectively [13]. Epitalon has
been found to affect enzymatic functions [91], including those of the digestive system [92,93].
One experiment confirmed that this activity is age-related, as higher results were observed
in older Wistar rats (11 months old) compared to younger ones (3 months old). Epitalon
significantly (p < 0.05) enhanced invertase (EC 3.2.1.48), maltase (EC 3.2.1.20), and glycyl
L-leucine dipeptidase (EC 3.4.13.2) activities in a regioselective manner [92].

Epitalon demonstrates central effects and functions as an immunomodulator [94,95].
This was demonstrated using intramuscular and intranasal injections of Epitalon. Research
demonstrated that, after 24 h for intramuscular administration and 1.5 h for nasal appli-
cation, Epitalon enhanced IL-2 mRNA synthesis rates in the lateral hypothalamus area,
anterior hypothalamic fields, dorsomedial, ventromedial, and paraventricular hypothala-
mic nuclei [96]. In a similarly conducted experiment on Wistar rats, which additionally
involved mild stress and utilized smaller doses of Epitalon, the quantity of IL-2-positive
cells was examined. IL-2 positive cells in the anterior hypothalamic nucleus, paraven-
tricular nucleus, and supraoptic nucleus diminished at 24 h following the intramuscular
administration of Epitalon under mild stress conditions. Intranasal treatment resulted in a
reduced quantity of IL-2 positive cells in the lateral hypothalamic area, while the anterior
hypothalamic nucleus remained unaffected [97]. A regioselective IL-2 expression decrease
was also confirmed when Epitalon was administered intranasally [90].

Epitalon also influences age-related alterations in the estrous cycle. The administration
of Epitalon significantly prolonged the cycle’s duration, particularly in 17-month-old female
rats. The study demonstrated that Epitalon was effective in an experimental model of
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premature reproductive aging induced by 1,2-dimethylhydrazine administration. This
drug reinstated the normal daily dynamics of neurotransmitters in hypothalamic regions
important for the production and release of gonadotropin-releasing hormone. It was
suggested that Epitalon is particularly effective in mitigating adverse ecological impacts
on the reproductive functions of young, adult, and aging female creatures when provided
alongside another chemical derived from the pineal gland—Melatonin [98]. This activity of
Epitalon could be connected with the ability of Epitalon to regulate the dopamine level in
arcuate nuclei post-1,2-dimethylhydrazine injection [99].

The intranasal administration of Epitalon can influence the central nervous system.
Experimental evidence has demonstrated that spontaneous neuronal activity in the parietal
and frontal neocortex regions of Wistar rats was enhanced, as shown by an increased
absolute neuronal discharge frequency. No substantial increase in neuronal activity was
observed during the first three minutes after administration. The most substantial rise was
observed between 5 and 7 min following Epitalon injection. A microinjection of Epitalon
into the intracellular medium of the neocortex demonstrated a similar increase in activity,
with the maximum activity peaks recorded from 10 to 20 s post-injection. The mechanism
of this phenomena remains undisclosed [100].

Epitalon is not nephrotoxic for rats [101]. Due to Epitalon’s structural similarity to
other synthetic bioactive kidney peptides, T-35 (Glu-Asp-Leu) and T-31 (Ala-Glu-Asp), it
was investigated as a potential treatment in rhabdomyolysis. In a glycerol intramuscularly
injected model of acute kidney failure, Epitalon, with statistical significance compared to
rats with acute kidney failure, increased diuresis (mL) and decreased protein excretion
(mg/h). Additionally, Epitalon increased the activity of catalase and glutathione peroxidase.
These results led I.I. Zamorskii et al. to a statement that Epitalon can be beneficial in
rhabdomyolytic kidney failure treatments [102]. The same author demonstrated a year later
in another article that Epitalon injections mitigate the adverse effects of acute kidney failure
generated by cisplatin on renal functioning [103]. Epitalon’s nephroprotective properties
were also proven in old rats without induced nephropathologies, Table 3 [101].

Table 3. Rat strains and corresponding experiments performed with them mentioning the influence
of Epitalon.

Strain Route of Administration Dose Period of
Administration Parameter Investigated Reference

Wistar

Subcutaneous injection
0.5 µg/rat

30 days and 42 days Three gastric endocrine
occurrence after pinealectomy [78]

10 days

Functional spleen morphology
of post pinealectomy rats [10]

5 µg/rat Pineal gland morphology after
γ-irritation [87]

Intraperitoneal injection

0.5 µg/rat

5 days

Splenic lymphocytes apoptosis
after γ-irritation [86]

5 µg/kg

Post γ-irritation morphology,
proliferative activity, and

immunohistochemical
investigation of spleen, thymus,

and duodenum

[79]

2.5 µg/kg Lipid peroxidation in brain
and serum [1]

4 µg/kg 4 days Noradrenaline and dopamine
in proestrus regulation [99]
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Table 3. Cont.

Strain Route of Administration Dose Period of
Administration Parameter Investigated Reference

Intramuscular injection 2 µg/rat
Single dose

Number and optical density of
IL-2-positive cells in

hypothalamic structures

[97]

Intranasal

2 µg/rat

0.5 µg/rat Every 12 h (2 days) C-Fos protein content in pineal
gland [89]

20 ng/rat Single dose

Cortical neuron activity [100]

C-Fos and IL-2 content in
hypothalamic structures [90]

Orally

100 mg/rat 14 days
Body weight and activities of
membrane-bound digestive

enzymes
[92]

100 µg/rat 1 month
Body weight and activities of

subepithelial membrane-bound
digestive enzymes

[93]

Microinjection into the
intercellular medium

of neocortex

0.5 µL
of 10−11 M Single dose Cortical neuron activity [100]

No data 2 µg/kg 4 days Influence on premature aging of
reproductive functions [98]

LIO Subcutaneous injection

0.1 µg/rat;
5 times a week Until natural death

Influence on tumor occurrence
and lifespan in different light

exposure schemes
[84,85]

1 µg/rat
(0.1 mL)

5 days a week, until
natural death

Age-related changes in the
estrous cycle

in different lighting conditions
[98]

5 days a week,
6 months

Colon cancer treatment and
apoptosis index [81]

Chemically induced colon
carcinogenesis incidence [80]

Campbell

Parabulbar injection (both eyes)

1 µg/rat
(0.2 mL) 72 days

(starting from birth)
Retina morphology and

electroretinogram
measurements

[18]

0.2 µg/rat
(0.2 mL) [20]

Intraperitoneal injection (1, 3) 1 µg/rat
(2) 0.5 µg/rat

(1) 3 weeks before
mating and during

pregnancy;
(2) days 5–35 of life;
and (3) day 35–81

of life

Retina morphology and
electroretinogram

measurements
[19]

Sprauge Dawley
Intramuscular injection 10 µg/kg

Single dose IL-2 mRNA gene expression in
hypothalamus

[96]
Intranasal 1.5 or 10 µL of

10 ng/µl

No data/no
strain/albino

Orally 100 µg/rat 1 month
Body weight, length of small

intestine, and passive and active
glucose and glycine transport

[13]

Intraperitoneal injection 7 µg/rat 10 days Morphology and functionality
of kidneys

Subcutaneous injection 0.1 µg/rat; 5
times a week 2, 8, or 14 months Pepsin activity and total

proteolytic activity [82]

Intramuscular injection 7 µg/kg 7 days Kidney enzyme activity [102]

Intraperitoneal injection 7 µg/kg 7 days
Kidney functionality after

cis-platin-induced
kidney failure

[103]

2.5. Rhesus Monkey

Multiple studies on Rhesus monkeys (Macaca mulatta), researching the effect of Epi-
talon administration, have been conducted. In the first experiment, N.D. Goncharova et al.
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measured the cortisol and melatonin levels in old monkeys (average age 22.8 ± 1 years)
after an intramuscular injection of Epitalon. Epitalon showed differences depending on the
time of the experiment and the age of the monkeys (as a control group, young monkeys were
used). Epitalon mostly influenced old monkeys by stimulating melatonin synthesis and
normalizing cortisol blood concentrations depending on the time of day, Figure 4 [104,105].
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Figure 4. Impact of Epitalon on melatonin production (21:00, a) and cortisol levels (09:00 and
21:00, b) in monkeys of differing ages. (a) Light bars: control (placebo); dark bars: Epitalon.
Ages: 6–8 years (1) and 20–26 years (2). * p < 0.01 in comparison to control young subjects; + p < 0.001 in
comparison to control old subjects. (b) Light bars: 9.00; dark bars: 21.00. Ages: 6–8 years (1 and 2) and
20–26 years (3 and 4). Control (1 and 3) and Epitalon (2 and 4). * p < 0.05 compared to control group
of older animals at 21:00. Reproduced with permission from Springer Nature [104].

Three years later, in 2004, other results of experiments involving Macaca mulatta
were published. This time, the impact of Epitalon on plasma glucose concentration was
investigated. Young and old monkeys were treated with Epitalon intramuscularly, and their
blood glucose concentrations were measured. Before treatment with Epitalon, old monkeys
had a glucose response area with significantly higher values compared to young monkeys
(479.6 ± 38.0 mM/min and 294.9 ± 9.3 mM/min, respectively). Epitalon administration
lowered the glucose response area value in old monkeys to 388.9 ± 43.6 mM/min and
increased the value for young monkeys to 343.3 ± 48.2 mM/min. After one month without
Epitalon administration, these values returned to closer to their initial values. The authors
of this study stated that this effect could be correlated with Epitalon’s ability to increase
melatonin levels, which is thought to influence the glucose sensitivity of cells of Langerhans
islets [106]. A separate study conducted similarly confirmed that melatonin levels are
correlated with an improved glucose tolerance with prolonged dosing (10 days). These
results were observed exclusively in aged monkeys (20–27 years). Young monkeys remained
largely unimpacted [107].

2.6. Clinical Trials

Previous promising results on Campbell rats, where Epitalon was found to be a
suitable drug for Retinitis pigmentosa [18–20], led to a clinical trial. The trial was performed
at the St. Petersburg Institute of Bioregulation and Gerontology. Overall, 162 patients
with Retinitis pigmentosa, aged from 18 to 72 years, were examined. Each patient received
5.0 µg of Epitalon per eye, injected parabulbarly for 10 consecutive days. The control
group was treated with conventional methods for 2002 (antisclerotic agents, vasodilators,
and angioprotectors). None of the Epitalon-treated patients reported side effects. The
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amplitude activity of both the first and second neurons rose significantly. The visual acuity
of treated patients increased by 0.15–0.20 on average. The peripheral borders of the visual
field were extended in all patients. A total of 64.8% of patients had their total visual field
border broadened by 90–120 degrees. Absolute scotomas reduced in size and some of them
even disappeared. These results evidence that Epitalon treatment is suitable for Retinitis
pigmentosa treatment [20].

A separate study conducted on 75 women examined the ability of Epitalon to regulate
and preserve the circadian rhythm. Epitalon was delivered sublingually for a duration of
20 days at a dose of 0.5 mg/day. The production of melatonin in the epiphysis and the
expression of human circadian genes were examined. The research comprised placebo
and control cohorts. Melatonin synthesis in the epiphysis was assessed by quantifying
the excretion of 6-sulfatoxymelatonin in urine. Epitalon was observed to enhance this
parameter by 1.6 times relative to the placebo group. The circadian genes examined were
the Clock and Cry2 genes in leukocytes and the Csnk1e gene in lymphocytes. Clock gene
expression was reduced by a factor of 1.8 relative to the placebo. Following the adminis-
tration of Epitalon, the Cry2 expression in leukocytes was doubled (p < 0.05) compared
to pre-treatment levels, while the Csnk1e expression in blood cells decreased by 2.1 times
(p < 0.05). The scientists concluded that Epitalon’s geroprotective activity is attributed to
its capacity to restore epiphyseal melatonin production through the modulation of human
clock gene expression [108].

2.7. Other Biological Models and Experiments

Epitalon was also administered to Chinchilla rabbits. The objective of the study
was to examine Epitalon binding in maternal and fetal tissues in both healthy conditions
and instances of placental insufficiency by quantifying the fluorescence of dansyl-labeled
Epitalon. Epitalon was administered subcutaneously one hour prior to sacrifice via air
embolism. The experiments revealed the swift integration of Epitalon into metabolic
processes across nearly all maternal and fetal tissues during normal pregnancy and in cases
complicated by placental insufficiency [109].

Epitalon’s inhibitory effect on human enkephalinase was observed. Inhibition was
dose-dependent. The IC50 for Epitalon was 500 µM, and was not the lowest value within
the study. The reliability of these results was confirmed by the implementation of known
enkephalinase inhibitors in the experiment, which gave the above results. Additionally,
Epitalon did not affect the binding of a tritium-labeled synthetic analog of an endogenous
opioid peptide to the rat brain membranes, indicating that these peptides did not interact
with µ- or δ opioid receptors [110].

A novel approach to studying Epitalon is to look into its impact on plants. In a specific
investigation, Epitalon was delivered to Nicotiana tabacum L. by culturing its calluses on
agar media infused with Epitalon. The initial results indicated a volumetric increase
in callus tissue mass cultivated in media containing Epitalon. However, concentrations
exceeding 10−6 M inhibited the growth rate. Secondly, the expression levels of CLE (CLE1–
CLE6), plant growth regulatory factors (GRF1–GRF4), and KNOX (KNAT1-KNAT3, KNAT6,
LET6, and LET12) groups were quantified using real-time PCR. This study was the first
to demonstrate that Epitalon influences the expression levels of several genes within this
category. However, this topic remains mostly unexamined, Figure 5 [111].
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Figure 5. Influence of Epitalon at concentration of 10−8 M on growth of tobacco callus cultures.
Control (a) and Epitalon-treated culture (b). Reproduced with permission from Springer Nature [111].

Nicotiana tabacum L. also serves as a valuable model in the examination of the epigenetic
effects of Epitalon. Epitalon, as previously noted, enhanced the proliferation of calluses at
low doses (10−7 M). Subsequent analysis verified that Epitalon exhibits epigenetic action
by specifically binding to the CAG region of DNA, which serves as a methylation target for
plant cytosine methyltransferases. Such activity of this tetrapeptide may activate or silence
the expressions of certain genes [112].

3. Knowledge About Epitalon Based on Physico-Chemical Studies
Apart from in vitro and in vivo experiments, Epitalon has also been studied using

in silico approaches. Epitalon’s molecular properties in aqueous solution were calcu-
lated at the molecular mechanics level [29,113]. Molecular dynamics simulations of
Epitalon in zwitter-ionic form were conducted using an AMBER force field, with a
37.5 Å × 22.5 Å × 13.5 Å rectangular box containing 347 solvent molecules. A TIP3P model
was used to represent water molecules during calculations. The simulation lasted 1500 ps
and the temperature of the calculated system was set to 300 K. The conformer structure
with the lowest energy and 120 other conformers were obtained. It was found that Epitalon
forms two intramolecular salt bridges which stabilize its structure. Both of these salt bridges
are formed between the nitrogen atom of alanine and non-peptide-bond-forming carboxylic
groups of glutamic acid and aspartic acid. Additionally, an intramolecular hydrogen bond
was recognized. Rogachevskii et al. stated that these intramolecular bonds highly decrease
the conformational freedom of Epitalon [114].

Epitalon was also studied in silico in 2003 by investigating its interactions with DNA
fragments. Epitalon was found to “unbound” to a β-like structure and interact with a
specific ATTTG DNA sequence by hydrophobic interactions and hydrogen bonds. Hy-
drophobic forces were observed between the side chains of the peptide and the methyl
groups of thymine. However, this article provided no precise data about the structure of
such a complex [113]. The topic of DNA binding was further discussed in 2004. Again,
Epitalon was found to interact with a specific DNA sequence—this time, ATTTC. A 3D
model of this complex was not provided by the authors, but a more specific “interactions
graph” was presented (Figure 6). The exact consequence of the binding of this molecule to
this particular base sequence is not known, however, Khavinson V.K. et al. correlated this
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characteristic of Epitalon with its specific biological action, especially because this specific
sequence is present multiple times in the promoter part of the telomerase gene [115].
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Investigations into the thermodynamics of DNA have demonstrated that incremental
temperature elevations lead to a phase shift in the “helix–coil”, also known as DNA
melting [116]. This phase transition causes the double helix to dissociate into two single
strands, manifesting as random coils. A comparable reversible helix–coil transformation
transpires at ambient temperature, without thermal application, when DNA is subjected
to acidic and alkaline solutions. This random coil transition is associated with an increase
in absorbance at 260 nm, referred to as the hyperchromic effect [117]. A. Solovyev et al.
discovered that the presence of Epitalon reduced the melting temperature of double-
stranded DNA by as much as 41 ◦C at an ionic strength equivalent to a 0.1 M NaCl
concentration [118].

The molecular docking of Epitalon to other molecular targets was also performed. In
2013, Fedoreyeva et al., based on an experiment that revealed interactions between Epitalon
molecules and labeled histones, proposed that the epigenetic effect of this molecule is
not only related to interactions with DNA [119]. Seven years later, these results led to
an Epitalon/histone complex Molecular Dynamics (MD) analysis, based on Molecular
Mechanics (MMs), using an Amber12EHT force field. Overall, 50 docking results with
6 different histone proteins were investigated. The core histones H2b, H3, and H4 did not
reveal any binding sites suitable for Epitalon. It was found that Epitalon most likely forms
complexes with histones H1/6 (binding energy: −64.51 kcal/mol) and H1/3 (binding
energy: −56.49 kcal/mol). This is especially important, because these proteins interact
with DNA helixes through these sites. This is consistent with the thesis stated before [40].
A subsequent molecular docking experiment was conducted by docking Epitalon to the
transporter proteins LAT1, LAT2, PEPT1, and PEPT2. Values for the scoring functions of
Epitalon indicating strong binding, represented by the ICM-Score, were acquired (Table 4).
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Table 4. Epitalon docked to amino acid transporter protein ICM-Score obtained by molecular
modeling.

Receptor Protein PDB ID ICM-Score

LAT1-4F2hc 6IRT −32.93

LAT2-4F2hc 7CMH −23.62

Apo HsPepT1 (PEPT1) 7PN1 −18.00

Epitalon has a binding strength comparable to that of established PEPT1 inhibitors.
The authors of this work indicated that the anti-cancer capabilities of Epitalon, previously
demonstrated in in vitro and in vivo experiments, may be associated with the blockage of
the amino acid transporters LAT1, LAT2, and PEPT1 [120].

The possibility of Epitalon forming complexes with lysine dendrimers was also in-
vestigated in silico using MD. The time taken for the evolution of a system containing
16 molecules of Epitalon with second- and third-generation lysine dendrimers in a water
environment was investigated. Simulations lasting 160 ns showed the complete absorption
of all peptide molecules on the dendrimer. Complexes between 16 Epitalon molecules and
second-generation dendrimers were formed after 20 ns. The radial distribution functions
of atoms were computed. The results indicated that dendrimer atoms mainly resided
within the complex, whereas the majority of peptide atoms were located on its surface.
The primary interactions between Epitalon molecules and dendrimers transpired between
the positively charged NH3

+ groups of the dendrimer and the negatively charged COO−

groups of glutamic acid and asparagine in Epitalon peptides. Consequently, the findings
indicated that the binding strength between these two molecules can be altered through
pH manipulation, which is, indeed, accurate. The authors of this paper asserted that such
complexes may prove beneficial in future oral methods of administration for Epitalon [121].
The latest work on this subject further examined the complex formation between Epitalon
and lysine dendrigrafts, as well as K2R dendrimers. Complexes were produced rapidly
(within 10 ns). The Epitalon–dendrimer complex was determined to possess a minimum
atomic density. These macromolecular complexes represent a possible solution for modern
medication delivery methods [122].

Epitalon was briefly mentioned in an article that focused on potential Staphylococcus
aureus shikimate dehydrogenase (SaSDH) inhibitors. Epitalon, in the form of trifluoroac-
etate salt, and 11 other compounds were selected from the MCE Bioactive Compound
Library and implemented in molecular docking calculations using the Glide module in
Schrödinger Maestro 11.4 to assess SaSDH. Epitalon showed no major inhibitory effect on
SaSDH. Its Docking Score was −10.154, its IC50 (µM) was 1097.1, and its minimal inhibitory
concentration was found to be above 100 µg/mL. No further investigation into Epitalon
was performed within that study [123].

Its influence on oxidation reactions was also confirmed. Epitalon was tested in an ex-
periment were methyl oleate Fe2+-induced oxidation rate was measured. Epitalon showed
no major difference in oxidation inhibition depending on the applied concentration [12].

An analytical approach to Epitalon was presented by Vanhee et al., where prod-
ucts available on the market, labeled as Epitalon-containing, were investigated. Liquid
chromatography–tandem mass spectrometry (LC-MS/MS) was used to investigate the
reference sample and the suspected pharmaceuticals. Full MS spectra of Epitalon were
recorded. During the investigation, the risk of counterfeit by the Glu-Ala-Asp-Gly (EADG)
tetrapeptide was considered. Absolute distinction was obtained by heat treatment of the
suspected peptide [124] The fact that N-terminal glutamic acid can cyclize to form pyrog-
lutamate [125] and lower the mass as a result was used by the authors. This confirmed



Int. J. Mol. Sci. 2025, 26, 2691 23 of 30

the presence of Epitalon in products available on the market. To sum up, it was con-
firmed that LC-MS/MS is an appropriate method for Epitalon detection in pharmaceutical
products [124].

Two years later, in 2017, Epitalon’s presence was, for the first time, reported directly in
pineal gland polypeptide complex solution. LC-MS was, again, crucial for obtaining these
results [9].

4. Design of the Study
Two independent evaluators (S.A. and Ł.S.) were appointed to select the articles for

this review. The examiners conducted an extensive literature review on Epitalon in the
Scopus and PubChem databases. The following keywords were incorporated among the
search terms: “Epitalon”, “Epithtalone”, “Epithalon”, “Epitalone”, “AEDG”, “Ala-Glu-
Asp-Gly”. This review sought to compile and examine the studies on Epitalon, regardless
of the method and type of study. Consequently, the inclusion criteria for this review were
either the application of Epitalon or studies devoted to the analysis of the physico-chemical
properties of this peptide. The exclusion criteria for this study encompassed the exclusive
use of other peptides or the sole application of the mixture of amino acids that Epitalon is
composed of. Upon completing the inclusion and exclusion procedures, any disputes were
resolved through consensus among the reviewers. A comprehensive examination of the
included papers was undertaken to ascertain any other pertinent research that could be
incorporated into the evaluation (Figure 7).
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5. Future Perspectives
As shown in this review, Epitalon exhibits significant and multidirectional pharmaco-

logical activity. However, in the analyzed works, information regarding critical issues about
this peptide’s safety is missing. Before Epitalon’s approval as a new API, additional studies
on its potential short- and long-term toxicity are essential [56]. These future studies should
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also include aspects such as genotoxic activity, carcinogenic potential, and food–drug and
drug–drug interactions.

Furthermore, short peptides such as Epitalon are typically unstable and degrade
rapidly in vivo. Chemical modifications like acetylation and amidation can sometimes be
employed to enhance the stability of such peptides. However, to the best of our knowledge,
in the case of Epitalon, this idea has not been evaluated yet.

Also, due to the presence of three asymmetric centers, Epitalon exists in the form of
eight stereoisomers. While the naturally occurring tetrapeptide consists solely of L-amino
acids, a good research direction would be to evaluate the pharmacological properties of the
other seven stereoisomers in a comparative study.

6. Conclusions
In June 2025, it will have been 25 years since the synthesis of Epitalon was patented.

During this quarter-century, multiple in vitro, in vivo, and in silico studies, as well as clini-
cal trials on this tetrapeptide, have been conducted. However, despite the fact that many
experiments have shown statistically significant geroprotective and neuroendocrine effects
of Epitalon, resulting from its antioxidant, neuroprotective, and antimutagenic effects, its
mechanism of action remains unclear. While it has been proven that Epitalon exhibits
inter alia direct effects on melatonin synthesis, affects the mRNA levels of interleukin-
2, modulates the mitogenic activity of murine thymocytes, and increases the activity of
multiple enzymes such as AChE, BuChE, and telomerase, it is currently not known if
these are the only routes of action of this compound. In addition, despite the relatively
large number of studies on the biological and pharmacodynamic properties of Epitalon,
the number of physico-chemical and structural works on this peptide are very limited.
Since the presence of this compound has been recently confirmed in pineal gland polypep-
tide complex solution, this additionally justifies the necessity of further studies on this
unusual tetrapeptide.
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