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Abstract

A general trend observed in animal skeletomes—the proteins occluded in animal skeletons—is the copresence of taxonomically

widespread and lineage-specific proteins that actively regulate the biomineralization process. Among cnidarians, the skeletomes of

scleractinian corals have been shown to follow this trend. However, distributions and phylogenetic analyses of biomineralization-

related genes are often based on only a few species, with other anthozoan calcifiers such as octocorals (soft corals), not being fully

considered. We de novo assembled the transcriptomes of four soft-coral species characterized by different calcification strategies

(aragonite skeleton vs. calcitic sclerites) and data-mined published nonbilaterian transcriptome resources to construct a taxonom-

ically comprehensive sequence database to map the distribution of scleractinian and octocoral skeletome components. Cnidaria

shared no skeletome proteins with Placozoa or Ctenophora, but did share some skeletome proteins with Porifera, such as galaxin-

relatedproteins.WithinScleractiniaandOctocorallia,weexpandedthedistribution for several taxonomically restrictedgenes suchas

secreted acidic proteins, scleritin, and carbonic anhydrases, and propose an early, single biomineralization-recruitment event for

galaxin sensu stricto. Additionally, we show that the enrichment of acidic residues within skeletogenic proteins did not occur at the

Corallimorpharia–Scleractinia transition, but appears to be associated with protein secretion into the organic matrix. Finally, the

distribution of octocoral calcification-related proteins appears independent of skeleton mineralogy (i.e., aragonite/calcite) with no

differences in the proportion of shared skeletogenic proteins between scleractinians and aragonitic or calcitic octocorals. This points

to skeletome homogeneity within but not between groups of calcifying cnidarians, although some proteins such as galaxins and

SCRiP-3a could represent instances of commonality.
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Introduction

Cnidaria is a monophyletic lineage of marine and freshwater

invertebrates currently comprising�9,000 valid species. Their

synapomorphy is the cnidocyte, a unique cell type used for

locomotion and prey capture (Holstein 1981; Kass-Simon and

Scappaticci 2002). Cnidarians have been important reef-

building organisms throughout Earth history (Wood 1999)

and are the main ecosystem engineers in today’s coral reefs

(Wild et al. 2011). Several taxa produce a rigid mineral skele-

ton made of calcium carbonate (CaCO3) and those are found

in the anthozoan order Scleractinia and the subclass

Octocorallia, as well as in the hydrozoan families of

Milleporidae, Stylasteridae, and Hydractiniidae. Calcification

apparently has evolved multiple times independently within

Cnidaria (i.e., in scleractinians, Romano and Cairns 2000) and

hydractinians (Miglietta et al. 2010), and according to molec-

ular clock estimates the origin of the capacity to calcify arose

prior to the appearance of cnidarian skeletons in the fossil

record (Cartwright and Collins 2007; Erwin et al. 2011; Van

et al. 2016).

A common feature of most calcifying organisms is their

ability to biologically control and regulate the formation of

their skeletons. Although the degree of such control in cni-

darians is still debated and the underlying molecular mecha-

nisms are not entirely understood (Tambutt�e et al. 2011), two

main regulatory mechanisms have been described. The first

concerns the transport, availability, and concentration of re-

quired ions, and involves proteins such as carbonic anhydrases
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(Jackson et al. 2007; Moya et al. 2008; Bertucci et al. 2011; Le

Goff et al. 2016) and bicarbonate transporters (Zoccola et al.

2015), to establish and maintain a chemical (micro)environ-

ment that promotes calcium carbonate precipitation (Sevilgen

et al. 2019). The second putatively involves the skeletal or-

ganic matrix (SOM), an array of proteins (Puverel, Tambutte,

Pereira-Mouriès et al. 2005), polysaccharides (Goldberg 2001;

Naggi et al. 2018), and lipids (Farre et al. 2010; Reggi et al.

2016) occluded within the mineral fraction of the skeleton

(Farre et al. 2010). Skeletal organic matrix proteins (SOMPs)

have been suggested to play a role in the promotion or inhi-

bition of crystal growth (Allemand et al. 1998; Clode and

Marshall 2003; Puverel et al. 2005), in the regulation of min-

eral polymorphism (Goffredo et al. 2011) and, more recently,

have been shown to regulate the transition from amorphous

mineral particles to ordered crystal structures (Von Euw et al.

2017). These proteins are collectively referred to as the

“skeletogenic proteins” (Jackson et al. 2007),

“biomineralization toolkits” (Drake et al. 2013), or

“skeletomes” (Goffredo et al. 2011; Ramos-Silva et al.

2013). The characterization of SOMPs and the study of their

evolutionary history is thus essential to unravel the appear-

ance and evolution of biomineralization.

The first protein described and characterized from a coral

skeleton was isolated from the organic matrix of the sclerac-

tinian coral Galaxea fascicularis and thus named galaxin

(Fukuda et al. 2003). Galaxins are ubiquitous among sclerac-

tinians and putative homologs have been identified in several

animal groups, including polychaetes (Sanchez et al. 2007),

molluscs (Heath-Heckman et al. 2014), and sea urchins

(Sodergren et al. 2006). Although structural similarities with

vertebrate usherin (Bhattacharya et al. 2004) led to the prop-

osition of an interaction between galaxin and type IV collagen

(Bhattacharya et al. 2016), the role of galaxin in cnidarian

skeletogenesis remains to be fully resolved (Bhattacharya

et al. 2016). Following the first descriptions of single skeleto-

genic proteins, the advent of tandem mass spectrometry

allowed for the simultaneous characterization of several pro-

teins, offering a general overview of coral skeletal proteomes.

To date, the proteome of three scleractinian corals: the two

acroporids Acropora digitifera (Takeuchi et al. 2016) and

Acropora millepora (Ramos-Silva et al. 2013), and the pocillo-

porid Stylophora pistillata (Drake et al. 2013) have been

characterized.

The most abundant fraction of the coral skeletomes so far

characterized is represented by acidic proteins (Ramos-Silva

et al. 2013; Takeuchi et al. 2016), which supposedly drive

crystal nucleation and growth (Wheeler et al. 1981; Addadi

et al. 1987). Six acidic proteins have been described from the

skeleton of A. millepora and two from S. pistillata. These

include skeletal aspartic acid-rich proteins (SAARPs) (Ramos-

Silva et al. 2013) and secreted acidic proteins (SAPs) (Shinzato

et al. 2011)—both found in Acropora species—and two

S. pistillata coral acid-rich proteins (CARP4 and CARP5)

(Drake et al. 2013). The CARP family (Mass et al. 2013) is of

particular interest as recent research has shown how CARPs

interact with both aragonite fibers and amorphous calcium

carbonate (ACC) during different ontogenetic stages of coral

polyps (Akiva et al. 2018). CARPs also appear to be associated

with intracellular vesicles putatively transporting Ca2þ ions to

the extracellular space (Mass et al. 2017).

The nonacidic regions of these acidic proteins match

sequences found in other nonbiomineralizing cnidarians and

bivalves, making the high occurrence of acidic residues a po-

tential secondary modification linked to biomineralization

(Takeuchi et al. 2016).

Surveys of cnidarian transcriptomes and genomes have in

fact revealed that only a small proportion of SOMPs in A.

millepora appears to be taxonomically restricted genes

(TRGs) in corals (Ramos-Silva et al. 2013), while the majority

of SOMPs (ca. 80% in A. millepora) have putative homologs in

noncalcifying cnidarians, such as sea anemones and/or Hydra

magnipapillata (Ramos-Silva et al. 2013). In addition, a recent

transcriptome survey of corallimorpharians, skeleton-lacking

cnidarians closely related to Scleractinia, has further shown

that only six skeletogenic proteins appear to be taxonomically

restricted to scleractinian corals (Lin et al. 2017).

So far, however, genomic and transcriptomic surveys have

mainly focused on comparisons between scleractinian corals

and a limited set of noncalcifying cnidarians (e.g., sea ane-

mones, corallimorpharians, and Hydra), systematically over-

looking octocorals and calcifying hydrozoans (but see

Guzman et al. 2018). Thus, very little information is currently

available on the distribution of SOMPs across and within dif-

ferent lineages of calcifying cnidarians and consequently the

evolutionary history of their biomineralization-related genes

remains largely unexplored.

Here, we conducted an analysis of the distribution of pu-

tative coral biomineralization toolkit components across

Anthozoa. Although functional studies represent the gold

standard for the definite identification of genes involved in

different biological processes, phylogenetic methods can pro-

vide valuable information on the evolution of processes like

biomineralization that apparently evolved convergently (Knoll

2003), and help identify candidate proteins for functional

studies. Along these lines, our work here allowed us to trace

the evolution of skeletogenic protein homologs and investi-

gate observed differences between and within the anthozoan

lineages Scleractinia and Octocorallia. In addition, we also

compared biomineralization gene repertoires between and

within 1) calcifying cnidarians and sponges displaying differ-

ent calcification strategies (i.e., aragonite vs. calcite deposi-

tion, exoskeleton vs. endo-sclerites) such as octocorals and

scleractinians or calcareous sponges and the aragonitic demo-

sponge Vaceletia sp. and 2) between them and their non-

calcifying close relatives. For this, we de novo assembled the

transcriptomes of four octocoral species, namely the massive,

aragonitic blue coral Heliopora coerulea, and calcite
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producing species Pinnigorgia flava, Sinularia cf. cruciata, and

Tubipora musica, three sclerites-forming octocorals. These

species cover all calcification strategies within Octocorallia.

Data-mining of newly generated and publicly available se-

quence resources was then used to produce fine-scaled phy-

logenies for selected targets of interest including acidic

proteins (e.g., CARPs, SAARPs), galaxin, and carbonic anhy-

drases. These results contribute to our understanding of the

functional diversity and evolutionary history of coral

skeletomes.

Materials and Methods

Generation of Octocorals Reference Transcriptomes

To obtain reference transcriptomes for our target octocoral

species, samples of H. coerulea, T. musica, Pinnigorgia flava,

and Sinularia cf. cruciata, were mechanically collected from

colonies cultured in the aquarium facilities of the Chair for

Geobiology & Paleontology of the Department of Earth- and

Environmental Sciences at Ludwig-Maximilians-Universit€at

München in Munich (Germany) and kept under control con-

ditions (temperature 25.16 0.5 �C, pH 8.26 0.1) for ca.

1 month before fixation in liquid nitrogen and subsequent

storage at �80 �C.

For RNA extraction the samples were homogenized in 1–

2 ml TriZol (Thermofisher) using a Polytron PT Homogenizer

(Kinematica), and subsequently centrifuged (20 min at

17,000 g and 4 �C) to remove remaining skeletal debris.

A modified TriZol protocol (Chomczynski and Mackey 1995)

was used for RNA purification and the concentration and in-

tegrity of the extracted RNA were assessed on a NanoDrop

2100 spectrophotometer and a Bioanalyzer 2100 (Agilent),

respectively. For each species, RNA samples with a RIN >8.5

were used to prepare strand-specific libraries that were

paired-end sequenced (50 bp reads) on an Illumina HiSeq

2000 sequencer at the EMBL Core Center in Heidelberg

(Germany). For H. coerulea, additional strand-specific libraries

were generated with the SENSE mRNA-Seq Library Prep Kit

V2 for Illumina (Lexogen), and sequenced on an Illumina

NextSeq 500 at the Kinderklinik und Kinderpoliklinik im Dr

von Haunerschen Kinderspital.

Quality control of assembled reads was done with FastQC

(www.bioinformatics.babraham.ac.uk) and low-quality reads

(Q< 28) were removed with the Filter Illumina program from

the Agalma-Biolite transcriptome package (Dunn et al. 2013).

In addition, reads were mapped against a set of microbial

genomes with Bowtie 2 with default parameters (Langmead

and Salzberg 2012) and mapping reads were discarded.

Transcriptome assembly was performed with Trinity v.2.5.1

(Grabherr et al. 2011). Contigs with a length <300 bp were

discarded. Transcriptome completeness was assessed with

BUSCO 3.0.2 (Sim~ao et al. 2015) using the Metazoa odb9

data set and protein sequences were predicted with

TransDecoder v.3.0.1. Summary statistics for each assembly

are provided in table 1. The bioinformatic workflow used is

available at https://galaxy.palmuc.org. Reads were deposited

at the European Nucleotide Archive (https://www.ebi.ac.uk/

ena) under Bioproject number PRJEB30452. Assemblies,

untrimmed/trimmed alignments, and output tree files from

the various analyses are available at https://gitlab.lrz.de/pal-

muc/concietal_octoskeletomes.

Database Construction and Homologs Search/Analysis

To construct the homolog database (supplementary material

1, Supplementary Material online) of calcification-related pro-

teins, newly assembled transcriptomes were added to a se-

quence database of representatives of the nonbilaterian

metazoan phyla Cnidaria, Porifera, Placozoa, and

Ctenophora. To construct the database, publicly available

resources for target organisms (excluding tissue-specific tran-

scriptomes) were uploaded on our local Galaxy server (https://

galaxy.palmuc.org). Source details for each data set is pro-

vided in supplementary material 2, Supplementary Material

online. When protein sequences were available, these were

directly converted to a protein BLAST database (makeblastdb).

Nucleotide sequences were first translated with TransDecoder

Galaxy Version 3.0.1 (Haas et al. 2013). For cnidarians, BLAST

databases were individually searched (BLASTp, e-value cutoff

<1e�09) to retrieve putative homologs of coral calcification-

related sequences. For the Porifera, Ctenophora, and

Placozoa, databases provided in Eitel et al. (2018) were

searched using the same criteria listed above. Search queries

(supplementary material 3, Supplementary Material online)

included scleractinian skeletogenic proteins from A. millepora

(Ramos-Silva et al. 2013) and S. pistillata (Drake et al. 2013),

and small cysteine-rich proteins (SCRiPs) from Orbicella faveo-

lata (Sunagawa et al. 2009). From S. pistillata, two additional

SAARP-like acidic proteins that were included in the phyloge-

netic analysis in Bhattacharya et al. (2016) were additionally

used as search queries. Octocoral queries comprised carbonic

anhydrases from both Corallium rubrum (Debreuil et al. 2012)

and Lobophytum crassum (Rahman et al. 2006) and scleritin

(Debreuil et al. 2012). Features including sequence length and

amino acid composition of identified homologs were deter-

mined with ProtParam (Gasteiger et al. 2005). To predict the

presence of signal peptides, transmembrane regions, and

Table 1

Summary Statistics for the Assembled Meta-Transcriptomes

Species Contigs N50/Mean Length BUSCO (C–F–M)

Heliopora coerulea 125,310 1,347/967 90.3–7.2–2.5

Pinnigorgia flava 84,267 1,125/874 89.4–7.6–3.0

Sinularia cf. cruciate 69,180 857/721 75.5–18–6.5

Tubipora musica 67,632 935/764 86.3–9.7–4.0

NOTE.—For BUSCO analysis, percentages of complete (C), fragmented (F), and
missing (M) orthologs are provided.
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protein domains, SignalP 4.1 (Petersen et al. 2011), TMHMM

2.0 (Sonnhammer et al. 1998), and InteProScan (Jones et al.

2014) were used, respectively.

Analysis and In Silico Discovery of Acidic Proteins

Amino-acid composition of skeletal acidic proteins and their

nonacidic homologs was estimated with ProtParam (https://

web.expasy.org/protparam/; last accessed July 20, 2019). The

analysis was limited to sequences predicted as complete by

TransDecoder (see above). To visually investigate the contri-

bution of changes in acid and basic amino acids to variations

in isoelectric point, we performed a principal component anal-

ysis (PCA) on sequences grouped according to their phylog-

eny. Additionally, relative abundance of lysine and aspartic

acid for each protein was calculated for the total proteome

of seven anthozoan species, for which genomic data are avail-

able. Only species with available genomic resources were in-

cluded in the analysis to avoid potential biases associated with

transcriptome assemblies (e.g., missing transcripts due to lack

of expression at the time of sampling).

The newly sequenced octocoral transcriptomes were data-

mined to investigate the presence of putative

biomineralization-related acidic proteins. Assembled contigs

from the meta-assemblies were first assigned to either the

host or the symbiont using psytrans (https://github.com/syl-

vainforet/psytrans; last accessed July 17, 2019). Host acidic

proteins were identified using a custom script (available in

the project repository) using 9% aspartic acid content as

the cutoff value and the identified sequences were searched

(BLASTp, e-value >e�05) against the nonredundant NCBI

database. Proteins with no hit or with octocoral-only hits

were retained and their distribution mapped across octocoral

data sets.

Homolog Selection for Phylogenetic Analysis

For the phylogenetic reconstruction of acidic proteins, all best-

hit sequences identified through the BLASTp searches de-

scribed above were used. Additionally, nonscleractinian

sequences retrieved after BLASTp searches were used as

query against scleractinian data sets (using BLASTp, e-value

<1e�09) (supplementary material 4, Supplementary Material

online). If the corresponding scleractinian best-hit differed

from those identified using the previous query, sequences

were also considered for phylogenetic analysis. The analyses

of galaxin sensu stricto (i.e., scleractinian orthologs of G. fas-

cicularis galaxin) and galaxin-related proteins (i.e., other puta-

tive homologs within and outside scleractinians) are based on

all putative homologs (e-value<1e�09), with the exception of

those matching galaxin-like 1 and 2 (ADI50284.1 and

ADI50285.1), as these are exclusively expressed during early

stages of calcification (Reyes-Bermudez et al. 2009).

Predicted, partial sequences of <200 aa long were excluded.

In addition to scleractinians, we surveyed taxa in which

galaxin-related proteins have been identified, namely

Mollusca, Annelida (Class Polychaeta), and Echinodermata.

All resulting sequences were searched, using BLASTp, (e-value

<1e�09) against the NCBI nonredundant database to avoid

including usherin homologs in the data set. Homologous

sponge collagen IV sequences were searched using the type

IV collagen (Q7JMZ8) identified in the homoscleromorph

sponge Pseudocoriticium jarrei as query. The analysis was lim-

ited to the N-terminal NC1 domain. Sequence of each puta-

tive homolog was checked for the presence of conserved

cysteines (Aouacheria et al. 2006) and added to the collagen

IV-spongins data set in Aouacheria et al. (2006). Finally octo-

coral homologs for the carbonic anhydrases (CA) CruCA1-6

(Le Goff et al. 2016) were searched in all octocoral data sets

considered and added to the CAs data set used in Voigt et al.

(2014).

Phylogenetic Analysis

Protein sequences were aligned with MAFFT (Katoh and

Standley 2013) and MUSCLE (Edgar 2004) to investigate a

possible effect of the aligning algorithm on the final phylog-

eny. Alignment was followed by a first site selection with

Gblocks (Castresana 2002) run within Seaview 4 (Gouy

et al. 2010) with the relaxed default parameter, which allows

for less stringent site selection. In some instances Gblocks re-

trieved portions of the signal peptide or did not include well-

aligned portions of the sequences. Therefore, a final manual

curation step was performed. Untrimmed and trimmed align-

ments can be found in the project repository and in the

untrimmed alignments the excluded/included sites can be vi-

sualized in SeaView. Best-fit models were determined with

Prottest 3 (Darriba et al. 2011). Maximum-likelihood and

Bayesian analyses were performed in PhyML 3.1 (Guindon

et al. 2010) from Seaview 4 (Gouy et al. 2010) with 500

bootstrap replicates, and MrBayes 3.2 (nruns¼ 2,

samplefreq¼ 100; Huelsenbeck and Ronquist 2001;

Ronquist et al. 2012), respectively. Effective Sample Sizes

(EES> 200) and burn-in fractions (0.20–0.25) were deter-

mined with Tracer v.1.6 (http://tree.bio.ed.ac.uk/software/

tracer/).

Results

Distribution Analysis of Skeletogenic Proteins

The distribution analysis of SOMP homologs resulted in di-

verse presence/absent patterns (fig. 1). Carbonic anhydrases,

peptidases, and extracellular/adhesion proteins display the

widest taxonomic distribution, although similarity was often

limited to conserved domains within protein sequences. In

Porifera and Cnidaria however, differences could also be ob-

served in terms of domain presence. Among sponges, the

zona pellucida (ZP) domain was observed only in Calcarea,

while the MAM domain appears to be absent in

Novel Insights into the Evolution of Coral Skeletomes GBE

Genome Biol. Evol. 11(11):3068–3081 doi:10.1093/gbe/evz199 Advance Access publication September 13, 2019 3071

Deleted Text: s
Deleted Text: d
Deleted Text: a
Deleted Text: p
Deleted Text: -
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
Deleted Text: 7
Deleted Text: is
https://github.com/sylvainforet/psytrans
https://github.com/sylvainforet/psytrans
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: s
Deleted Text: p
Deleted Text: a
Deleted Text: -
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz199#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz199#supplementary-data
Deleted Text: less than 
Deleted Text:  
Deleted Text: -
Deleted Text: a
Deleted Text: (
Deleted Text: )
Deleted Text: -
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
Deleted Text: 3. 
Deleted Text: a
Deleted Text: s
Deleted Text: p


Demospongiae, as reported in Riesgo et al. (2014). In Cnidaria

the cupredoxin domain could not be retrieved in Hydrozoa. In

contrast, all SAPs and all small cysteine-rich (SCRiPs) proteins

with the sole exception of SCRiP-3a (ACO24832.1), which

was detected in Scleractinia and Octocorallia, showed the

most taxonomically restricted distribution. Despite the pres-

ence of proteins found only among certain scleractinian fam-

ilies (e.g., SAPs, Threonine-rich protein), no protein hitherto

isolated from the skeleton of A. millepora was found here

restricted to acroporids. No protein was exclusively found in

“CnidariaþPlacozoa” or “CnidariaþCtenophora,” while a

small set of coral SOMPs appeared to possess homologs in

Cnidaria and Porifera. These include galaxin-related proteins

and the uncharacterized A. millepora protein USOMP-5

(B8VIU6.1). Although absent in Homoscleromorpha and

Hexactinellida, galaxin-related proteins are ubiquitous among

calcareous sponges and also found in all three currently de-

scribed subclasses of Demospongiae. Within

Heteroscleromorpha however, differences were observed be-

tween groups as no galaxin-related protein was retrieved

from the genome of Amphimedon queenslandica

(Srivastava et al. 2010), while a significant hit was returned

from the genome of Tethya wilhelma (Francis et al. 2017). The

highest occurrence rate for USOMP-5 homologs in sponges

was observed in Homoscleromorpha, but matches were

detected in all groups. Although no domain was originally

reported for B8VIU6.1 in A. millepora (Ramos-Silva et al.

2013), analysis of matching sequences from sponges revealed

the presence of fibrinogen-related subdomains (IPR014716,

IPR036056) within the protein (supplementary fig. 1,

Supplementary Material online). Domain location partly over-

laps the conserved region of the protein, and might thus ex-

plain the detected local similarity.

Cnidaria exclusive proteins showed diverse presence/ab-

sence patterns with some SOMPs retrieving putative homol-

ogous sequences across the phylum’s classes while others

could be only found restricted to few anthozoan families.

Acidic proteins SAARPs and CARPs produced significant

BLASTp matches among several cnidarian groups, although

the presence of acidic regions (i.e., sequences segments

enriched in aspartic and glutamic acid) appears to be charac-

teristic of scleractinian corals (see below). Within Octocorallia,

homologs of SAARPs and CARPs could be retrieved only in the

precious coral C. rubrum using BLAST. Nonetheless, in silico

analyses of octocoral transcriptomes identified octocoral ex-

clusive, secreted, aspartic-rich proteins in different species.

These sequences did not produce significant BLASTp hits

against public databases. Members of the SAP acidic family

were, on the other hand, detected solely in complex sclerac-

tinians, but not only in acroporids as previously suggested

(Shinzato et al. 2011; Takeuchi et al. 2016). Homologs of

SAP-1b (B3EWZ1.1) are in fact also present within families

Dendrophylliidae and Agariciidae. Other uncharacterized pro-

teins (USOMPs) displayed varying presence/absence patterns.

USOMP-7 (B8WI85.1) and USOMP-3 (B8RJM0.1) were found

across Cnidaria and Anthozoa, respectively. The latter also

represents the only difference we detected between arago-

nitic and calcitic octocorals as this protein was solely found in

H. coerulea. As reported in Lin et al. (2017), USOMP-1 is pre-

sent in anemones and scleractinians, while both USOMP-2

and USOMP-8 first appear in corallimorphs. Finally, USOMP-

4 and USOMP-6 are restricted to scleractinians, although the

first is shared by complex and robust corals and the second

was only found in the families Acroporidae and Agariciidae.

No significant match was detected among octocorals for

the acidic carbonic anhydrase MLP-2 (Rahman et al. 2006),

while we retrieved homologs across the group for both scler-

itin and five (CruCA1-5) of the six carbonic anhydrases de-

scribed for C. rubrum (supplementary figs. 8 and 9,

Supplementary Material online) (Le Goff et al. 2016), includ-

ing the putative skeletogenic CruCA-4. No difference has thus

been observed here for octocoral calcification-related proteins

between aragonite and calcite-deposing species.

Phylogenetic Analysis of Acidic Proteins

Phylogenetic analysis split acidic proteins and their nonacidic

homologs into five well-supported clades: two of these

(marked as “S” for skeletogenic clades) are occupied by pro-

teins found occluded in coral skeletons. Only scleractinians are

represented within these groups. S1 contains homologs for

the acidic SOMP (B3EWY7) and P27 isolated from A. mille-

pora (Ramos-Silva et al. 2013) and S. pistillata (Drake et al.

2013), respectively. Both of these proteins display shorter

acidic regions and a lower aspartic acid content compared

with SAARPs and CARPs, which occupy clade S2. Tree topol-

ogy within this group did however change between phylog-

enies obtained using different alignment methods (i.e.,

MUSCLE vs. MAFFT). In the MAFFT-based phylogeny dis-

played below, (fig. 2a) CARPs and SAARPs are split into two

distinct subgroups although bootstrap support was low. All

other sequences were divided among three nonskeletogenic

(NS) clades. Taxonomic diversity for these groups differed and

ranged from Cnidaria (NS1) to scleractinians (NS3), while NS2

contained scleractinians and corallimorphs.

When aligned with MUSCLE, SAARP-2 grouped with both

CARPs but support was again low ( supplementary fig. 2,

Supplementary Material online). The internal topology of

clade NS2 was also affected. When aligned with MUSCLE

both Porites sequences, together with Favia sp. 24967,

Platygyra carnosus 1685, and Pseudodiploria strigosa 22901,

were placed as sister group to other scleractinians (supple-

mentary fig. 2, Supplementary Material online). The split be-

tween corallimorphs and scleractinians within NS2 was

nevertheless retrieved in both phylogenies. All other cnidarian

sequences grouped with the scleractinian homologs of S. pis-

tillata protein 17235 (NS1). As previously reported (Takeuchi

et al. 2016), similarity between acidic proteins and their
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putative homologs is restricted to nonacidic regions. Analysis

of clade-consensus sequences shows that the appearance of

the aspartic acid-rich regions corresponds with the secretion

of the proteins into the skeleton matrix and not with the shift

between corallimorphs and scleractinian sequences (fig. 2b).

Within B3EWY7-P27 the increment in aspartic acid appears

restricted to the first acidic region, and it then continues in

SAARP1 and CARP4, ultimately escalating in SAARP-2 and

CARP-5 which exhibit the longest extension of the first acidic

region. The transition from nonskeletogenic to skeletogenic

proteins is also marked by a sharp decrease in protein isoelec-

tric point that is mainly driven by the increase in aspartic acid

(see above) and a concurrent decline in lysine content (sup-

plementary material 2 and fig. 10, Supplementary Material

online). These trends do not apply to the whole scleractinian

proteome but are specific to skeletal proteins. Finally, the

amount of glutamic acid does appear to remain unaltered

between the NC and S clades, although principal components

analysis based on sequence composition points to lower con-

tents in clade S2 compared with clade S1.

Galaxin and Type IV Collagen

Phylogenetic analysis of metazoan galaxin-related proteins

revealed high degrees of polyphyly among lineages both at

the phylum and lower levels, with only terminal nodes display-

ing moderate to high support (fig. 3). Taxonomically uniform

clades were observed in both MAFFT- and MUSCLE-based

phylogenies. These included galaxin-related proteins from cal-

careous sponges, octocorals and Hydrozoa. However, for the

vast majority of these clades, both support and topology were

influenced by the alignment algorithm employed.

The exception to this general pattern is a scleractinian-only

clade comprising both complex and robust corals. The group

includes both A. millepora skeletogenic (D9IQ16.1 and

B8UU51.1) and the original G. fascicularis galaxins. The uni-

fying feature of this clade is the RXRR endoprotease target

motif described in Fukuda et al. (2003) (supplementary fig. 4,

Supplementary Material online). This RXRR motif is not unique

to scleractinians, but it was not detected in any other galaxin-

related protein within the group. Its presence thus appears to

effectively discriminate a group of galaxins, here dubbed gal-

axins sensu stricto, from galaxin-related proteins.

Although the monophyly of galaxins sensu stricto was ro-

bust to the alignment algorithm, its internal topology was

affected, with galaxin-2s and Rhizotrochus typus sequences

nesting either within Complexa (MAFFT) or Robusta

(MUSCLE). When performing the analysis on galaxin sensu

stricto sequences only, galaxin-2 sequences concordantly

grouped together with other complex scleractinians (supple-

mentary fig. 5, Supplementary Material online), in agreement

with the topology derived from the MAFFT alignment and

presented in figure 3. To investigate putative interactions be-

tween galaxin-related proteins and collagen IV, we mapped

the distribution of both proteins in Porifera, as both are pre-

sent but not ubiquitous in the phylum (fig. 4).

As for galaxin-related proteins, type IV collagen is present

across calcareous sponges, while Homoscleromorpha are the

only sponge class with collagen IV but no galaxin homologs.

Collagen IV is also present in both keratose and verongimorph

sponges, while within Heteroscleromorpha it appears associ-

ated with the freshwater environment. Finally, neither protein

is present in glass sponges (Hexactinellida).

Both phylogenetic analysis resulted in monophyly of colla-

gen IV for all three sponge classes in which the protein is

present (supplementary figs. 6 and 7, Supplementary

Material online). In one instance (MAFFT-based phylogeny),

support for monophyly of Porifera was also retrieved.

Discussion

A common feature of skeletal proteomes is the presence of

both taxonomically widespread proteins with homologs in

other, not necessarily calcifying, organisms and of lineage-

specific innovations or TRGs (Ramos-Silva et al. 2013; Kocot

et al. 2016). The diversity of evolutionary histories character-

izing skeletogenic proteins, make phylogenetic analyses and

gene distribution maps a necessary step to examine the evo-

lution of biomineralization. Key to this is the need for exten-

sive taxon sampling. Here, we data-mined available resources

across nonbilaterian metazoans to examine the distribution of

skeletogenic proteins, allowing comparative investigations of

the genetic repertoires of diverse calcifying organisms, and

produced detailed phylogenies for key components of coral

biomineralization toolkits. As most of the information pre-

sented is based on transcriptomic data, the distribution pat-

terns observed for the studied homologs may be

underestimated due to transcriptome incompleteness. To mit-

igate possible sampling biases, and to reduce the impact of

different sampling sizes across taxa, gene presence within a

taxon was presented and discussed as relative abundance.

Secondly, for several SOMPs, evidence of indirect involve-

ment in calcification is still lacking and a random incorpo-

ration in the skeleton cannot be excluded (Takeuchi et al.

2016). We therefore focus our discussion on proteins—

that is, acidic SOMPs and galaxin—for which proteomic-

independent evidence for a role in skeleton formation is

available (Reyes-Bermudez et al. 2009; Mass et al. 2017;

Von Euw et al. 2017).

Distribution analysis reflected evolutionary heterogeneity,

with homologs being present across phyla or restricted to

selected families. Although a few coral skeletogenic proteins

remain largely restricted taxonomically, increased taxon sam-

pling resulted in the expansion of their taxonomic distribution.

In these cases, the most common pattern was their presence

across phyla, or limited to Cnidaria or Scleractinia, which does

not support the involvement of these proteins in biomineral-

ization across groups. SCRiP-3a and galaxin-related proteins
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are, however, potential targets for future (functional) re-

search, because of their presence pattern (e.g., SCRiP-3a

found among calcifying anthozoans only). The distribution

of the latter within sponges is of particular interest as we

show that these proteins are present in all calcifying species,

regardless of their taxonomic position. Moreover, the pres-

ence of multiple potential galaxin homologs among calcifying

Calcarea and their absence among homoscleromorphs and

FIG. 3.—Phylogenetic analysis (ML; 500 bootstrap replicates) of metazoan galaxin-related proteins. Tree displayed in figure based on protein sequences

aligned with MAFFT. MUSCLE alignment and tree available in supplementary material 3, Supplementary Material online. MUSCLE-based phylogeny in

supplementary figure 3, Supplementary Material online. Bold number: node supported (>50) also in MUSCLE phylogeny. Dot on node indicates full support

(100 bootstrap, 1.0 posterior probability) in both phylogenies. Support for nodes with bootstrap <50 not shown regardless of posterior probability value.
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glass sponges, supports their potential involvement in calcium

carbonate biomineralization.

As for galaxin-related proteins, collagen IV appears either

ubiquitous or absent in different sponge classes, while a

patchy distribution can be observed among groups of

Demospongiae. Within Heteroscleromorpha presence of

type IV collagen appears however, as previously hypothesized

by Riesgo et al. (2014), associated with the freshwater envi-

ronment, but among keratose sponges it could be related to

the collagenous framework of their organic skeletons (Junqua

et al. 1974; Germer et al. 2015).

Scleractinian TRGs also exhibited a wider variety of distri-

bution patterns, ranging from being present across both ro-

bust and complex corals down to small set of scleractinian

families only (e.g., galaxin-2 and SAPs). The former are of

particular interest for the evolution of corals. Although differ-

ent time estimates have been put forward, the accepted

consensus places the divergence of Complexa and Robusta

Tethya wilhelma

Cliona elegans

Haliclona tubifera
Haliclona ambonensis
Amphimedon queenslandica

Petrosia ficiformis
Xestospongia testudinaria

Ephydatia muelleri
Ephydatia fluviatilis

Spongilla lacustris

Scopalina sp.
Stylissa carteri

Asbestopluma hypogea

Crella elegans

Latruncula apicalis

Crambe crambe

Kirkpatrickia variolosa

Mycale phyllophila
Tedania anhelans

Halisarca caerulea
Halisarca dujardini
Chondrilla nucula

Pleraplysilla spinifera
Sarcotragus fasciculatus

Vaceletia sp.

HEXACTINELLIDA (n=5)

CALCAREA (n=6)

HOMOSCLEROMORPHA (n=4)

Keratosa

Verong.

Heteroscl.

DEMOSPONGIAE

Presence       and absence      of type IV collagen 

 Presence       and absence      of galaxin-related proteins within group.

Freshwater sponges 

FIG. 4.—Presence-absence analysis of type IV collagen and galaxin-related proteins within Porifera. For galaxin-related proteins, data are presented as

percentage of species within group in which one significant match (BLASTp, e-value <1e�10) was detected. When present, collagen IV was found in all

species considered for a particular taxon (supplementary material 1, Supplementary Material online). Phylogenetic relationships between sponge classes

based on Simion et al. (2017). Phylogeny of Demospongiae based on Morrow and C�ardenas (2015). Heteroscl, Heteroscleromorpha; Verong,

Verongimorpha.
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in the Palaeozoic, prior to the (ca. 240 Ma) appearance of

fossil modern scleractinians in the early/mid-Triassic

(Romano and Palumbi 1996; Stolarski et al. 2011; Chuang

et al. 2017). The discovery of palaeozoic scleractinian-like fos-

sils does support a Palaeozoic origin for the group, with con-

sequent fossil gaps likely being caused by poor preservation or

abiotic conditions hindering the deposition of skeletons

(Stolarski et al. 2011). Whether a particular skeletogenic pro-

tein was available to the common ancestor of complex and

robust scleractinian corals is thus of particular evolutionary

interest as it allows to determine which components of the

biomineralization toolkit preceded the Triassic appearance of

the skeleton and whether putative palaeozoic scleractinians

had access to the same molecular machinery currently

employed by modern representatives of the group. In this

regard, one biomineralization-related event that might have

preceded the Complexa-Robusta divergence appears to be

the expansion in the number of acidic residues within acidic

proteins. The close phylogenetic relationship between P27 (S.

pistillata) and B3EWY7 (A. millepora)—which are best BLAST

reciprocal hits—is supported by the high similarity in the loca-

tion and structure of their acidic regions. Moreover, such

increases in aspartic acid could not be observed within scler-

actinian total proteomes. This excludes the possibility of higher

aspartic content representing a lineage-specific innovation,

and supports it being a biomineralization-related event.

A similar scenario could also apply to galaxin sensu stricto.

These proteins have been proposed to have been indepen-

dently recruited by and within scleractinians families (e.g.,

Pocilloporidae, Bhattacharya et al. 2016), implying that the

protein acquired its calcification-related role after the

Complexa-Robusta split. However, the presence of represen-

tatives of both robust and complex corals within the galaxin

sensu stricto clade described here points to an alternative sce-

nario in which the recruitment of galaxin for biomineralization

occurred only once, prior to the divergence of these clades.

On the other hand, the relationship between A. millepora

galaxin 1 and galaxin 2 remains uncertain due to the current

lack of support in phylogenetic analyses. Despite this, phylo-

genetic analysis allows to confidently argue that the protein is

present in the family Agariciidae and Acroporidae and it

should be considered a true (sensu stricto) galaxin. One aspect

that remains unsolved concerns the evolutionary history of

galaxin sensu stricto outside Scleractinia. Extensive divergence

between scleractinians and other cnidarians could have

eroded the evolutionary signal in these proteins (Forêt et al.

2010). Nevertheless, inability to obtain supported phylogenies

for galaxin proteins might also be currently exacerbated by

the inclusion of several, possibly functionally diverse, galaxin-

related proteins in phylogenetic analyses. Similarity between

galaxin sensu stricto and other galaxin-related proteins is of-

ten low and restricted to di-cysteine motifs (personal obser-

vations). Combined with the current lack of additional

defining features for galaxins, this complicates BLAST-based

homolog selection which can lead to the inclusion of unre-

lated proteins within protein data sets in phylogenetic analy-

ses. Although our analysis is not immune to these limitations,

expanding homolog selection beyond best-matches only

helped to identify putative erroneous inclusions. An example

described here is the Fungia scutaria protein 6662. When a

galaxin sensu stricto sequence is used as a query, this se-

quence is the only hit in F. scutaria. Including multiple galaxin

BLAST matches per species did reveal however that the pro-

tein is instead a scleractinian galaxin-related protein. The pres-

ence of “undetected” galaxin-related proteins, erroneously

considered genuine galaxin sensu stricto homologs, could

thus explain the previously described galaxin polyphyly

(Bhattacharya et al. 2016).

Finally, in contrast to scleractinians, octocoral TRGs were

found conserved across soft-coral taxa showing similar distri-

butions. Although the number of calcification-related genes

in soft corals is currently extremely limited, intra-Octocorallia

analyses are of potential interest, as they might allow for the

identification of differences between calcite and aragonite-

deposing species, and similarities between aragonitic animals

within Anthozoa (i.e., H. coerulea and Scleractinia). The pres-

ence of TRGs (such as scleritin) in species belonging to all the

three major octocoral clades (McFadden et al. 2006), indicates

that TRGs, although restricted to octocorals, were present in

the common ancestor of the subclass. On one hand, this

points toward a certain degree of commonality in spite of

the different biomineralization strategies (calcite vs. arago-

nite). On the other hand, it could be related to scenarios in

which, as galaxin sensu stricto (Forêt et al. 2010), the protein

played a different ancestral function with subsequent lineage-

specific recruitment events for biomineralization.

Here, we conducted a distribution and phylogenetic anal-

ysis of coral biomineralization genes to provide a comprehen-

sive homolog mapping and fine-scaled phylogenies of

selected genes. Through a relatively broad taxon sampling,

our work allowed us to detect similarities and differences be-

tween different taxonomic groups and investigate patterns of

protein presence/absence associated with skeleton poly-

morph. This led to the postulation of a single recruitment

for calcification of galaxin sensu stricto and provided a de-

tailed phylogeny of coral acidic proteins that revealed the in-

crease of acidic residues during cnidarian evolution. We also

provide insights into the evolution of proteins likely involved in

biomineralization, such as sponge collagen IV. With the inclu-

sion of four new octocoral transcriptomes, we have closed the

existing taxon bias toward certain cnidarian taxa, specifically

scleractinian corals, however gaps still exist. For instance,

groups like calcifying hydrozoans remain unexplored and their

inclusion in future studies on biomineralization will certainly

contribute to our understanding of this process in Cnidaria.

Proteomic investigations of the SOM of calcifying cnidarians

other than scleractinian corals and of sponges might reveal

the presence of shared skeletome components adding
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support to the transcriptomic presence patterns described

here, and will help discover lineage-specific innovations linked

to calcification in these groups.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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