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COMMENT ON “ANALYSIS OF LONGITUDINAL TRIALS
WITH PROTOCOL DEVIATIONS: A FRAMEWORK FOR
RELEVANT, ACCESSIBLE ASSUMPTIONS, AND
INFERENCE VIA MULTIPLE IMPUTATION,”
BY CARPENTER, ROGER, AND KENWARD

Shaun R. Seaman, Ian R. White, and Finbarr P. Leacy
Medical Research Council, Biostatistics Unit, Institute of Public Health,
Cambridge, United Kingdom

Carpenter et al. (2013) propose a multiple imputation (MI) approach for analyzing data
from clinical trials with protocol deviations. Sensitivity analysis to departures from missing
at random (MAR) is widely acknowledged as important, but is poorly handled in practice,
so we welcome their detailed proposals. However, here we highlight two problems with
their method: an implicit assumption of noninformative deviation, and failure of the Rubin’s
Rule (RR) variance estimator.

1. THE METHOD OF CARPENTER ET AL. (2013)

We start by summarizing the method of Carpenter et al. (2013), using their nota-
tion and additional notation μT , μT ,O, μT ,M , �T ,OO, �T ,MO, Y∗

M , and Y∗. The number of
repeated outcomes per patient and number of patients are J and n, respectively. For each
patient, D denotes the deviation time (i.e., time of last outcome before protocol deviation),
T is the randomization group (r for reference, a for active), and YOare the outcomes prior
to deviation. Let Y∗ = (

YT
O, Y∗T

M

)T
, where Y∗

M denotes a vector of hypothetical outcomes
after deviation. These may or may not be the same as the actual postdeviation outcomes
YM . Carpenter et al. specify separate normal distributions for Y∗ given T = r and for Y∗
given T = a, and denote the unknown means of these distributions by μr = (

μr,1, . . . , μr,J
)

and μa = (
μa,1, . . . , μa,J

)
, and the variances by �r and �a. Let μT ,O and μT ,M (T = r, a)

denote
(
μT,1, . . . , μT ,D

)T
and

(
μT ,D+1, . . . , μT ,J

)T
, respectively, and let the submatrices of
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�T corresponding to Var(YO|T) and Cov
(
Y∗

M , YO|T)
be denoted �T ,OO and �T ,MO, respec-

tively. Carpenter et al. denoted �r,OO,�r,MO, �a,OO, and �a,MO as, respectively, R11, R21,
A11, and A21. A noninformative prior is assumed for

(
μr, μa, �r, �a

)
and its posterior is

obtained under the assumption that the missingness mechanism is ignorable.
Under the assumption of “randomized-arm MAR,” the posterior predictive

distribution of the actual postdeviation outcomes YM is the same as that of Y∗
M , so can

be multiply imputed using this distribution. Therefore, as described by Carpenter et al.,
imputation under “randomized-arm MAR” is done by sampling a value of

(
μr, μa, �r, �a

)
from its posterior and then sampling YM from a normal distribution with mean μT ,M +
�T ,MO �−1

T ,OO

(
Yo − μT ,O

)
and variance given by Carpenter et al. As an addition to

this established MI procedure for randomized-arm MAR, Carpenter et al. propose four
novel MI procedures for MNAR data. These procedures differ from that described for
randomized-arm MAR in the mean and variance of the normal distribution from which
YM is sampled. For “jump to reference,” the mean is μr,M + �r,MO�−1

T ,OO

(
YO − μr,O

)
; for

“copy reference” it is μr,M + �r,MO�−1
r,OO

(
Yo − μr,O

)
; for “copy increments in reference”

it is
(
μT ,D + μr,D+1 − μr,D, . . . , μT ,J + μr,J − μr,D

)T + �r,MO�−1
T ,OO

(
Yo − μT ,O

)
; and for

“last mean carried forward” (LMCF) it is
(
μT ,D, . . . , μT ,D

)T + �T ,MO�−1
T ,OO

(
Yo − μT ,O

)
.

Let θ̂q denote the treatment effect estimate from the qth imputed dataset

(q = 1, . . . , Q), and V̂ar
(
θ̂q

)
be its variance estimate. The Q effect estimates are com-

bined into an overall estimate θ̂(Q) using RR for the mean: θ̂(Q) = Q−1 ∑Q
q=1 θ̂q. RR for the

variance gives an estimate of the repeated sampling variance of θ̂(Q) : V̂ar
(
θ̂(Q)

)
= BQ +

(
1 + Q−1

)
WQ, where BQ = Q−1 ∑Q

q=1 V̂ar
(
θ̂q

)
and WQ = (Q − 1)−1 ∑Q

q=1

(
θ̂q − θ̂(Q)

)2
.

2. PROBLEM 1: INFORMATIVE DEVIATIONS

The first problem with the procedures proposed by Carpenter et al. is that they
make an implicit “noninformative deviation” assumption, P (D = t|D ≥ t, T , Y) =
P (D = t|D ≥ t, T , Y1, . . . , YD), that is, that the hazard of deviation does not depend
on later outcomes given earlier outcomes. For simplicity of exposition, suppose J =
2, there are no deviations in the reference group, and outcomes at different times are
independent and the imputer knows this (however, the problem we now describe applies
more generally). Under the “jump to reference” and “copy reference” assumptions, the
mean of the imputation distribution of postdeviation Y2 given deviation is μr,2, which
is the unconditional expected outcome in a randomly sampled untreated patient. This
is a reasonable assumption if the factors influencing deviation are independent of those
influencing Y2. However, this will often not be the case. The following example illustrates
what happens when deviation is informative.

For each patient, let D∗ denote the (possibly counterfactual) time that the patient
would have deviated had she/he been randomized to the active group. Thus, D∗ = D
if T = a and is missing if T = r. Suppose that E (Y2|D∗, T) = α + βI (D∗ = 1). Thus,
treatment has no effect on outcome, but outcomes of patients who deviate are, on aver-
age, greater by β than those who do not. Assume deviation is informative, that is, β �= 0.
Let π = P (D∗ = 1) > 0. The expected mean of the imputation distribution for postde-
viation outcomes is μr,2 = E (Y2|T) = α + βπ , which is different from the true mean
E (Y2|D∗ = 1, T) = α + β. Therefore, in the imputed data set the mean of Y2 in the active



1360 SEAMAN ET AL.

group has expectation π (α + βπ) + (1 − π) α = α + βπ2. This is different from α + βπ ,
the expected mean in the reference group, so the treatment effect estimate is biased away
from zero. Similar considerations apply in the case of “copy increments in reference”
and LMCF.

3. PROBLEM 2: USE OF THE RUBIN’S RULE VARIANCE ESTIMATOR

The second problem is that the Rubin’s Rule (RR) estimator of the repeated sampling
variance of θ̂(Q) may not be valid unless the data are “randomized-arm MAR” and MI is
carried out assuming this. This is because under the other missingness assumptions (“jump
to reference” etc.), the imputer assumes more than the analyst, which is known to cause the
RR variance estimator to overestimate the repeated sampling variance (Meng, 1994). The
following extreme example illustrates this.

Assume noninformative deviation (so Problem 1 does not apply), J = 2, no devia-
tion in the reference group, all patients in the active arm deviate at time 1 (D = 1), and
outcomes at different times are independent and the imputer knows this. Suppose the treat-
ment effect of interest is θ = E (Y2|T = a) − E (Y2|T = r) and the complete-data estimator
of this effect is just the difference between the sample means in the two arms. The posterior
of μr,2 is normal with mean equal to the sample mean of Y2 in the reference arm. Therefore,
under “jump to reference” or “copy reference,” θ̂q is normally distributed with mean zero.
Consequently, θ̂(∞) = 0 and the repeated sampling variance of θ̂(∞) equals zero. On the

other hand, B∞ and hence V̂ar
(
θ̂(Q)

)
are both positive. The variance estimator is overesti-

mating the true variance because the data are imputed under a strong assumption that is no
longer made when these imputed data are analyzed, specifically, that there is no treatment
effect in those who deviate.

More generally in the four MNAR imputation procedures, the imputer (but not the
analyst) assumes a relation between the expected postdeviation outcomes of an individual in
the active arm given that the individual deviates and the expected outcomes of an individual
in the reference arm. This enables the imputer to use data from the reference arm when
imputing postdeviation outcomes in the active arm. In “randomized-arm MAR” imputation,
on the other hand, the imputer does not assume a relation between outcomes in the two
arms, and imputes postdeviation outcomes in the active arm using only the observed data
from the active arm.

To illustrate that the RR variance estimator can be positively biased in less extreme
cases than that just considered, we carried out a simulation study. We considered a trial
with J = 4, n = 200, and P (T = r) = P (T = a) = 0.5. Patients in the active arm devi-
ated (noninformatively) at time 2 (D = 2) with probability 0.2; otherwise, they did not
deviate (D = 4). There was no deviation in the reference arm. The treatment effect of
interest was θ = E (Y4|T = a) − E (Y4|T = r). For each nondeviating patient in arm T ,
outcome vector (Y1, Y2, Y3, Y4) was generated from a normal distribution with mean μT

and variance �T . We used the same mean and variance as in Lu (2014). Specifically, μr =
μa = (29, 22, 17, 14)T for a “no-treatment effect” scenario, and μa = (29, 20, 14, 11)T and
μr = (29, 22, 17, 14)T for a “treatment effect” scenario. For both scenarios, the (j, k)th entry
of �a = �r was 36 × (1 − 0.2 × |k − j|). For deviating patients, (Y1, Y2, Y3, Y4) was also
generated from a normal distribution but with mean and variance depending on the assumed
imputation procedure. For example, in the “treatment effect” scenario, the mean and vari-
ance were μr and �r for the “copy reference” procedure, but (29, 22, 22, 22) and �a for the



COMMENT ON “ANALYSIS OF LONGITUDINAL TRIALS” 1361

Table 1 Performance of Rubin’s Rules in simulation study

θ Mean θ̂comp Mean θ̂(Q) SE
(
θ̂comp

)
Sqrt mean V̂ar

(
θ̂(Q)

)
SE

(
θ̂(Q)

)
RR cover

“No treatment effect” scenario
MAR 0.0 −0.009 −0.009 0.784 0.820 0.823 0.948
copy ref 0.0 −0.009 −0.006 0.783 0.818 0.700 0.977
jump to ref 0.0 −0.009 −0.007 0.784 0.827 0.663 0.984
copy increm 0.0 −0.009 −0.007 0.784 0.823 0.715 0.974
LMCF 1.6 1.592 1.594 0.846 0.876 0.828 0.961

“Treatment effect” scenario
MAR −3.0 −3.019 −3.020 0.778 0.820 0.818 0.948
copy ref −2.4 −2.417 −2.415 0.786 0.827 0.708 0.975
jump to ref −2.4 −2.417 −2.415 0.787 0.835 0.668 0.983
copy increm −2.8 −2.818 −2.815 0.779 0.823 0.715 0.975
LMCF −1.2 −1.214 −1.213 0.856 0.892 0.842 0.959

Note. θ is true treatment effect; mean θ̂comp is average of complete-data estimates of θ (maximum Monte
Carlo standard error = 0.0086); mean θ̂(Q) is average of RR treatment effect estimates (max MCSE = 0.0084);

SE
(
θ̂comp

)
is empirical standard error of complete-data estimates (max MCSE = 0.0061); sqrt mean V̂ar

(
θ̂(Q)

)
is square root of the average RR estimate of the variance (max MCSE = 0.0005); SE

(
θ̂(Q)

)
is empirical standard

error of RR estimate (max MCSE = 0.0060); RR cover is coverage of 95% confidence interval from Rubin’s
Rules (max MCSE = 0.0022).

LMCF procedure. Table 1 shows the true values of θ . Note that for the LMCF imputation
procedure, θ �= 0 even when μa = μr (the “no treatment effect” scenario).

For each of the two treatment effect scenarios and Carpenter’s five imputation pro-
cedures, 10,000 data sets were generated. The standard analysis of covariance (ANCOVA)
estimator was first applied to each complete data set, yielding the complete-data estimator
θ̂comp. Postdeviation outcomes were then discarded and Q = 1000 imputed data sets were
created using the correct imputation procedure (i.e., that assumed when generating the com-
plete data). The ANCOVA estimator was applied to each of these Q imputed data sets,
and estimates and standard errors were combined using Rubin’s Rules, yielding θ̂(Q) and

ŜE
(
θ̂(Q)

)
. The norm package in R (Schafer, 2012) was used to draw from the posteriors of

(μr, �r) and
(
μa, �a

)
.

Table 1 shows the results. These demonstrate that the RR estimate of the standard
error of the treatment effect overestimates the true standard error for the “copy reference,”
“jump to reference,” and “copy increments in reference” procedures. This mirrors findings
for the alternative placebo-based pattern mixture model approach presented in Lu (2014).
The RR estimator achieves coverage at close to the nominal rate for the LMCF procedure.
While conservative variance estimates may sometimes be viewed as desirable, our simu-
lation study highlights another issue with the Carpenter et al. imputation procedures: they
yield smaller empirical standard errors than the estimator based on the complete data. This
reflects the strength of the assumption being made by the imputer.

4. CONCLUSION

While we welcome the Carpenter et al. proposals, we are concerned that they may
cause bias when deviations are informative (Problem 1). Methods from the causal infer-
ence literature (White, 2005) may be helpful to avoid such bias. Problem 2 may be of
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less practical importance if the reduction in variance caused by making a highly informa-
tive assumption like “jump to reference” is unwanted. If this is so, the positive bias in the
RR variance estimator may balance this reduction, thus yielding a variance estimate that
better reflects the real uncertainty. However, it is not clear how this estimate should be
interpreted in terms of repeated sampling. Alternatively, one could seek a different vari-
ance estimator, for example, using the general methodology of Robins and Wang (2000).
Lu (2014) used the delta method to derive a variance estimator that is consistent under
an assumption somewhat similar to “copy reference.” He also derived a related Bayesian
estimator.
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