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Abstract 

Background:  The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adoles-
cence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to 
the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), 
a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, 
produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this 
study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, 
GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model.

Methods:  Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-
tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially 
available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was 
assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar 
humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma 
(IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster 
vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp 
mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination.

Results:  Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no 
difference was found between two test groups and positive control group. All the vaccinated groups indicated a 
Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test 
groups and positive control group.

Conclusions:  Our results confirmed the immunogenicity of GC Pharma’s Tdap vaccine; enhanced GC3111 was 
equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine 
expression.
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Background
Sporadic outbreaks of pertussis among adolescents 
and adults have continuously been reported world-
wide, including in advanced countries such as Europe, 
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Australia, the USA, and Japan, where the rate of vac-
cination is above 90%, and yet, the disease is spreading 
steadily [1–3]. The reasons for the increased occur-
rence of pertussis include the following. The antibod-
ies produced after acellular pertussis vaccination last 
for approximately 5–6 years, [4, 5], and thus, the like-
lihood of reinfection increases during adolescence and 
adulthood because of the waning effect of acellular per-
tussis vaccine. Moreover, the genetic changes in circu-
lating strains of Bordetella pertussis (B. pertussis) such 
as pertactin (PRN)-deficient variants [6–8] or pertussis 
toxin (PT) promoter alleles [9] in advanced countries, 
may have caused the reemergence of pertussis. In addi-
tion, the pertussis vaccination rate reported to be low 
in adolescents and adults. Furthermore, resistance to 
macrolide antibiotics following outbreaks is a major 
challenge in some countries [10]. Therefore, to address 
the epidemiological changes, the tetanus-reduced 
dose diphtheria-acellular pertussis (Tdap) vaccination 
should be encouraged to adolescents and adults, and 
simultaneously, new vaccines that protect against vari-
ant strains should be developed.

In Korea, the Korea National Institution of Health 
established the laboratory diagnostics of pertussis in 
1999, and since then, only 18 incidences observed annu-
ally until 2008. However, the numbers increased subse-
quently, with 66 cases in 2009, 27 in 2010, and 97 cases 
observed in 2011 [11]. In the first half of 2012, sudden 
small outbreaks reported around the schools in certain 
regions. Since then, small sporadic outbreaks have con-
tinued to occur with a steady increasing trend. With 
epidemiological changes in Korea, immunization of ado-
lescents and adults with Tdap vaccine is necessary [12, 
13]. Currently, no Tdap vaccine manufacturer exists in 
Korea, so the country relies on imported vaccines. There-
fore, vaccination is limited, as the vaccine is not easily 
available. To resolve this issue, Green Cross Pharma (GC 
Pharma, Yongin, Korea) began developing a Tdap vaccine 
(GC3111) in 2010 and began Phase I and IIa clinical tri-
als in 2017. During the trials, the antibody titre against 
PT, filamentous hemagglutinin antigen (FHA), and PRN 
antigens revealed positive seroconversion and seropro-
tection after vaccination; however, the vaccine induced 
a lower titre level of the antibody to FHA compared to 
the commercially available control vaccine Boostrix™ 
(GlaxoSmithKlein, Rixensart, Belgium) [14]. Based on 
this finding, an enhanced GC3111 Tdap vaccine with 
increased antigen volume was developed by improving 
FHA inactivation and purification. The present study 
aimed to investigate whether the enhanced vaccine 
(enhanced GC3111) had improved immunological out-
comes and efficacy by comparing the vaccine produced 
in 2010 (GC3111) and the existing commercial vaccine 

using an animal-based model prior to conducting human 
trials.

Methods
Mice
During the animal research period, the mouse were 
housed in filter-top cages under semi-specific pathogen 
free conditions and food and water are available freely. 
All animal research procedures performed in accordance 
with the Laboratory Animals Welfare Act, the Guide for 
the Care and Use of Laboratory Animals and the Guide-
lines and Policies for Rodent Experiments provided by 
the IACUC (Institutional Animal Care and Use Commit-
tee) in the School of Medicine, The Catholic University of 
Korea. (Approval number: CUMS-2019-0100-01).

Vaccination
The study conducted according to previous murine 
model studies at our laboratory at the Vaccine Bio 
Research Institute [15, 16]. Four-week-old BALB/c female 
mice from Orient-bio Co., Ltd. (Seongnam, Korea) used 
in the study. All mice were vaccinated with two doses of 
primary diphtheria-tetanus-acellular pertussis (DTaP) 
vaccine at 3-week intervals with 0.125 mL (one-fourth of 
the human dose) via intramuscular (quadriceps muscle) 
injection and vaccinated except for the negative control 
group, which was injected with saline before booster vac-
cination. DTaP vaccines were provided by GC Pharma 
and composed of 25 Lf diphtheria toxoid (DT), 10 Lf tet-
anus toxoid (TT), 25 μg PT, 25 μg FHA 25 μg and 8 μg 
PRN per 0.5 mL. The mice divided into 4 groups (30 mice 
per group) according to booster vaccine types: nega-
tive control injected with saline, positive control with 
licensed Tdap vaccine (Boostrix™) and two study groups; 
one study group with the Tdap vaccine GC3111 produced 
in 2010 by GC Pharma and the other study group with 
the enhanced FHA antigen of GC 3111 vaccine (Table 1). 
All Tdap vaccine components were equivalent to DT 
2 IU, TT 20 IU, PT 8 μg, FHA 8 μg, and PRN 2.5 μg per 
0.5 mL and vaccinated with 0.125 mL via intramuscular 
injection. The vaccination and assay schedule described 
in Fig. 1.

Humoral immune response assay
Blood samples from the retro-bulbar venous plex-
uses were collected in each group at 1  week before 
booster vaccination (n = 6 per group) and 2, 4  week 
after booster vaccination (n = 10). When sampling 
the blood, all mice were anesthetized with tiletamine, 
zolazepam and xylazine via intra peritoneal injection 
except last sampling. At 4  week after booster vaccina-
tion, mice were euthanized by 2% isoflurane inhalation 
while sampling and sacrificed via CO2 inhalation. The 
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humoral immunogenicity against pertussis antigens 
(anti-PT IgG, anti-FHA IgG and anti-PRN IgG) was 
evaluated by commercially available ELISA kits (Alpha 
Diagnostic International Inc., San Antonio, TX, USA). 
Additionally, anti-diphtheria toxoid (DT) IgG and anti-
tetanus toxoid (TT) IgG titres were measured using 
commercially available ELISA kits (Alpha Diagnos-
tic International Inc. San Antonio, TX, USA). Results 
were analysed through optimal density using an Epoch 
ELISA plate reader (BioTek Instrumetns Inc., Winooski, 
VT, USA). Antibody titres of each tested antigen com-
pared between groups at each time point.

Cell‑mediated immune response assay
Four weeks after the booster vaccination, mouse spleen 
cells (n = 5 per group) were resuspended in RPMI-1640 
(HyClone, GE Healthcare Life Sciences, SouthLogan, 
Utah, USA) medium containing penicillin, streptomy-
cin, and 10% FBS. For cell-based experiments, 1  μg/mL 
pokeweed mitogen (PWM; Sigma-Aldrich, St. Louis, 
MO, USA) was used as a positive control, and the follow-
ing three stimulators were tested: 1 × 106 colony forming 
units (CFUs) /mL of heat inactivated B. pertussis (hBp), 
PT (8 μg/mL), FHA (8 μg/mL) and PRN (4 μg/mL) vac-
cine antigens, and the mixture of the two (hBp + anti-
gens). Splenocytes (5 × 106 cells/mL) of each mice were 
added to 6-well plates (2 mL/well) and treated with three 
simulators separately and cultured for 3  days. Subse-
quently, the cytokine response was assessed by analysing 
the supernatant using ELISA kits (R&D Systems, Minne-
apolis, MN, USA).

Bacterial challenge test
The protective efficacy against B. pertussis infection 
was assessed with intranasal clearance tests accord-
ing to previous study [15–17]. The challenge B. pertus-
sis strain obtained from a Korean adult pertussis patient 
was supplied from the Korean Centers for Disease Con-
trol & Prevention (KCDC) (No. 13674) and was inocu-
lated at 4 weeks after booster vaccination. 6 × 106 CFUs 
of B. pertussis suspended in 50μL of phosphate buffered 
saline (PBS) and injected intranasally. Four mice in each 
group at each time point were euthanized by 2% isoflu-
rane inhalation and their lungs were extracted 2 h, 2 days, 
5  days and 8  days after infection. The extracted whole 
lungs (5 lobes) were grinded with 10  mL of PBS and 
diluted to tenfold dilutions. Each diluted homogenate 
was cultured on Bordet-Gengou agar supplemented with 
15% defibrinated horse blood and incubated for 5 days at 
37  °C. CFUs on each media were determined and mean 
CFUs were compared between groups at each time point.

Statistical analysis
All results are expressed as the means ± standard errors 
of the means (SEM) and compared by two-way ANOVA 
with Tukey’s multiple comparison test. Statistical analy-
sis was performed using GraphPad Prism™ software 
v7.02 (GraphPad, San Diego, CA, USA), and statistical 
significance was defined as a p value (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001).

Results
Humoral response
The humoral immune response was examined 1 week 
before (n = 6 per group) and 2 and 4  weeks (n = 10 
per group) after the booster vaccination. In the anti-
DT IgG, anti-TT IgG and anti-pertussis IgG humoral 
responses, the enhanced GC3111 group had equiva-
lent titres compared to the positive control (p > 0.01, 
Fig.  2). Titre of two study groups and positive con-
trol group had highest titre at 4  weeks after boosting 
against for PT antigen but for FHA and PRN antigen 
had highest titre at 2  weeks after boosting (Fig.  2B). 
The mean titre of anti-PT IgG peaked to 22,270.00 
U/mL in positive control group and 19,203.90 U/mL 

Table 1  Characteristics of study groups

DTaP = diphtheria-tetanus-acellular pertussis, GC Pharma = Green Cross Pharma, Tdap = tetanus-reduced dose diphtheria-acellular pertussis, FHA = filamentous 
hemagglutinin

Group Primary (1st, 2nd) vaccine Booster vaccine

Negative control Saline Saline

Positive control DTaP from GC pharma Commercially available Tdap

GC3111 DTaP from GC pharma GC3111 Tdap produced in 2010

Enhanced GC3111 DTaP from GC pharma GC3111 Tdap FHA enhanced

1st 2nd

3 week 9 week0 

13 week8 week 11 week

Primary vaccination
DTaP vaccine (i.m)

B.pertussis challenge
(Intranasal )

13 week

Single Booster vaccination 
TdaP vaccine (i.m)

2h, 2d, 5d, 8d 
B.pertussis
bacterial clearance

Humoral responses (IgG) at 8, 11, 13w
Cytokine response at 13w

Fig. 1  Schemes for vaccination, challenge and assay 
of study (DTaP = diphtheria-tetanus-acellular pertussis, 
Tdap = tetanus-reduced dose diphtheria-acellular pertussis)
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in enhanced GC3111 group at 4  weeks after boost-
ing (Table 2). The mean titre against for FHA antigen 
had increased 2 weeks after boosting, 117.70 U/mL in 
positive control, 93.90 U/mL in enhanced GC3111 and 
73.10 U/mL in GC3111 group (Table  2). In a similar 

way to FHA, anti-PRN IgG peaked 2 weeks after boost-
ing, 2,181.00 U/mL in positive control and 2,686.10 U/
mL in enhanced GC3111 group (Table 2).
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Fig. 2  Humoral immune response. Humoral response was assessed 1 week before and 2 and 4 weeks after the booster vaccination. The results 
from commercially available ELISA kits are presented as the mean ± SEM (U/mL) in the graphs. The experiment was performed using five mice per 
group in the naïve groups and six mice per group 1 week before vaccination. In all other conditions, experiments were performed on 10 mice per 
group. Statistical differences were tested with two-way ANOVA and Tukey’s multiple comparison test. A IgG responses to diphtheria and tetanus 
were assessed by using commercially available ELISA kits. B Anti-PT, anti-FHA, and anti-PRN IgG titer levels were assessed by using commercially 
available kits. (SEM = standard errors of the means, PT = pertussis toxin, FHA = filamentous haemagglutinin, PRN = pertactin) (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001)

Table 2  Humoral responses against pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (PRN) (mean ± SEM)

SEM = standard errors of the means

Negative control Positive control GC3111 Enhanced GC3111

Anti-PT IgG (U/mL)

 Naïve (N = 5) 0.86 ± 0.17 0.55 ± 0.16 0.66 ± 0.16 0.82 ± 0.31

 1w before booster vaccination (n = 6) 0 9,804.25 ± 1,061.82 8,102.17 ± 1,002.83 10,608.92 ± 2,022.17

 2w after booster vaccination (N = 10) 92.20 ± 63.98 15,457.80 ± 1,781.44 11,734.00 ± 886.59 16,580.25 ± 1,663.38

 4w after booster vaccination (N = 10) 0 22,270.00 ± 3,286.30 19,936.00 ± 2,972.66 19,203.90 ± 3,494.35

Anti-FHA IgG (U/mL)

 Naïve (N = 5) 0.01 0 0 0.02 ± 0.01

 1w before booster vaccination (N = 6) 0.88 ± 0.22 51.41 ± 9.98 48.39 ± 11.00 40.74 ± 7.85

 2w after booster vaccination (N = 10) 0 117.70 ± 17.95 73.10 ± 15.04 93.90 ± 16.80

 4w after booster vaccination (N = 10) 7.50 ± 3.84 78.00 ± 8.79 60.50 ± 3.45 62.00 ± 6.35

Anti-PRN IgG (U/mL)

 Naïve (N = 5) 0 0 0 0

 1w before booster vaccination (N = 6) 2.88 ± 2.80 510.42 ± 42.25 436.08 ± 38.92 456.75 ± 52.19

 2w after booster vaccination (N = 10) 96.40 ± 96.40 2,181.00 ± 225.35 2,629.10 ± 272.59 2,686.10 ± 320.84

 4w after booster vaccination (N = 10) 18.90 ± 18.90 1,491.50 ± 127.52 2,101.40 ± 73.77 1,918.10 ± 237.37
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Cell‑mediated immune response
Cell-mediated immunity (CMI) was evaluated by stim-
ulating mouse splenocytes (n = 5 per group) to hBp, 
vaccine antigens or hBp + antigens, whereas the cul-
ture medium was used as a negative control, and 1 μg/
mL PWM was used as a positive control. The results 
showed that the secretion of IFN-γ, IL-17A and IL-5 
did not differ significantly among the vaccinated groups 
except for the media negative control group and PWM 
control group (p > 0.05, Fig.  3A). However, cytokine 
secretion was significantly different according to the 
stimulator used; the mean IFN-γ expression levels of 
the three vaccinated groups, stimulated by hBp + anti-
gen was three times higher than that of the antigen-
stimulated group. Furthermore, IL-5 was significantly 
upregulated in the groups stimulated by the vaccine 
antigens, while limited responses were observed when 
stimulated by hBp (Fig.  3A,B). On the other hand, IL-
17A had no responses because the negative control 
group overexpressed by non-specific inflammation 
response by all three stimulators. In this study, the CMI 
of the vaccinated groups confirmed Th1/Th2 immunity 
in both hBp + antigen and antigen stimulator (Fig. 3B). 

The immunity polarization was calculated with mean 
cytokine levels of three vaccinated groups (positive 
control and two study groups) that were baseline cor-
rected with media stimulated results and negative 
control (saline injected) group results. When hBp stim-
ulator used, only IFN-γ showed response as 3582.48 pg/
mL in the three vaccinated groups (Fig. 3B). The mean 
cytokine response of the three vaccinated groups was 
6826.51  pg/mL and 1247.40  pg/mL for IFN-γ and 
IL-5, respectively when stimulated with hBp + anti-
gen (Fig.  3B). IFN-γ showed 1943.97  pg/mL and IL-5 
showed 1773.25  pg/mL when stimulated with antigen 
(Fig. 3B).

Bacterial clearance in lung
The vaccine efficacy was evaluated against the clinical 
pertussis strain. Four mice was sacrificed at each time 
points per group. The results from the test using the 
clinically isolated strain showed that B. pertussis was 
removed quickly in the lungs and was almost eliminated 
after 5 days (Fig. 4). The results were the same in the two 
study groups and the positive control group. Compare 
to 2 h after intranasal challenge, the CFUs of B. pertussis 

Fig. 3  Cytokine response in each stimulator. Two and four weeks after booster vaccination, stimulation was carried out by three stimulators with 
heat-killed B. pertussis (hBp), PT, FHA, and PRN antigens or the mixture of the two (hBp + antigen) for 3 days (n = 5). The culture medium was used as 
a negative control, and 1 µg/mL PWM was used as a positive control. The results were obtained via commercially available cytokine ELISA kits and 
presented as the mean ± SEM (pg/mL). All results were baseline (medium only) corrected. Statistical differences were tested with 2-way ANOVA and 
Tukey’s multiple comparison test. A IFN-γ, IL-17A, and IL-5 cytokine levels were assessed for each stimulator. There were no statistically significant 
differences between the three vaccinated groups; however, different cytokines revealed various response levels according to the stimulator type. B 
The mean cytokine secretions of the three vaccinated groups, positive control group and two study groups had different levels by what stimulators 
used. When the mean cytokine levels were subtracted by the cytokine levels of the negative control group (saline injected) to correct baseline, 
Th1 (IFN-γ) immunity was confirmed by stimulator hBp. Th1 (IFN-γ) / Th2 (IL-5) polarization was confirmed by stimulator hBp + antigen and antigen 
respectively. (SEM = standard errors of the means, PT = pertussis toxin, FHA = filamentous haemagglutinin, PRN = pertactin) (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001)
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decreased at day 2 in the study groups and positive con-
trol group (Fig. 4). This result showed protective efficacy 
against B. pertussis in both the positive group and the two 
study groups while the negative control group retained 
bacterial CFUs during the test period and showed even 
more CFUs than 2 h after challenge.

Discussion
Since 2000, a serological study in Korea has confirmed 
incidents of pertussis infection with higher certainty than 
reported earlier, and small-scale pertussis outbreaks have 
occurred once every 3  years since 2009, leading to the 
requirement for Tdap vaccination. In 2010, GC Pharma, 
a national company, started developing Tdap and DTaP 
vaccines; and our laboratory, the Vaccine Bio Research 
Institute, conducted animal-based studies [15, 16] and 
performed clinical trials [14] using the Tdap booster vac-
cine. In animal studies, GC Pharma’s new Tdap vaccine, 
GC3111, was compared with Boostrix™, a commercially 
available product in Korea. The humoral immunity was 
assessed after a single dose of DTaP vaccine followed by 
Tdap booster vaccine [15], and CMI was assessed after 
two doses of DTaP vaccine followed by Tdap booster 
vaccine [16]. After two animal studies and clinical tri-
als, GC Pharma complemented GC3111 to improve the 
anti-FHA antibody response. The present study aimed 
to show the immunogenic response and efficacy of com-
plemented GC3111 (enhanced GC3111) compared to 
Boostrix™ and the former GC3111 vaccine and to verify 
anti-FHA response reinforcement.

The protective effects of the humoral response to the 
aP vaccine were actively investigated soon after aP vac-
cine development, and the importance of the humoral 
response to PT, PRN, FHA, and fimbriae antigens was 

evaluated in different systems, including animal models 
[18–20]. Humoral immunity to these antigens of B. per-
tussis is known to protect the individual from pertussis 
infection by neutralizing the pathogenic antigens or by 
activating the complement system that activates CMI 
[20–22]. Among the immunogens present in the vac-
cine, PT is known as the most important immunogen 
and induces the generation of protective antibodies that 
provide direct protection from pertussis infection [23, 
24]. Moreover, the humoral immunity generated by aP-
vaccinated pregnant women can prevent infants from 
pertussis infection since the antibodies produced by the 
mother can deliver to the foetus [25–28]. Thus, evalua-
tion of humoral response after pertussis vaccination is 
immensely significant. In this study, compared to the 
positive control, the GC3111 group showed lower anti-
FHA antibody level 2  weeks after booster vaccination, 
which was in line with the observations of a previous 
study [14]; however, the antibody response was com-
parable between the enhanced GC3111 group and the 
positive control group with respect to all antigens and 
all time points (Fig. 2B). Hence, our results verified that 
the humoral immune response was improved with the 
enhanced GC3111 Tdap vaccine. With respect to the 
effect of two doses of DTaP vaccination, anti-PT, anti-
FHA, and anti-PRN antibody titres were elevated even 
before the booster vaccination, and these levels were fur-
ther enhanced after the booster vaccination and retained 
at a high level until 4  weeks after vaccination (Fig.  2B). 
Considering the humoral responses to tetanus and 
diphtheria, all groups except the negative control group 
revealed a titre of over 0.1 U/mL (the protective level) 
from 1 week before booster vaccination, and this is pre-
dicted by two doses of DTaP vaccination (Fig. 2A).

The fact that CMI plays crucial roles in preventing per-
tussis infection was first shown in a mouse model in 1993 
[29] followed by clinical experiments [30]. The impor-
tance of both Th1 [31, 32] and Th17 [33–35] type CMI 
responses was confirmed in animal and clinical studies. 
IFN-γ and IL-17 are the main cytokines that provide 
crucial protection. Recently, the resurgence of pertus-
sis outbreaks [1–3] and the protective effects of the aP 
vaccine and whole cell pertussis (wP) vaccine [36] were 
compared frequently. This was based on the observations 
of some researchers who postulated that the wP vaccine 
induces Th1/Th17 responses similar to natural infec-
tion [33, 37, 38], whereas the aP vaccine mainly induces 
the Th2 response, resulting in a weaker protective effect 
than that of the wP vaccine. Previous studies showed that 
the aP vaccine generated Th1/Th2 [39] or Th2/Th17 [38, 
40] responses. This inconsistency in the findings may be 
attributed to the difference in animal models used in the 
studies [41] as well as the study design, such as vaccine 
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Fig. 4  Bacterial clearance in lung. Lungs were extracted from the 
mice subjected to the challenge test, and the pertussis bacterial 
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schedule and stimulation condition. In general, the Th2 
dominant response is the common CMI in aP vaccine-
based studies. In this study, hBp was included as one of 
the simulators to indirectly examine the effects of natural 
exposure, while vaccine antigens were used as simulators 
to evaluate the response to the aP vaccine. After exposure 
to the stimulators, IFN-γ, IL-17, and IL-5 showed signifi-
cant differences between stimulators that were used but 
no differences between the positive control group and 
study groups (Fig.  3A). In the negative control group, 
non-specific inflammation response was observed in the 
IFN-γ and IL-17 cytokines. Particularly, IL-17 cytokine 
showed no responses because the negative control group 
and vaccinated groups had similar results regardless of 
the stimulators (Fig. 3A). Notably, in the hBp stimulator 
group, we observed only IFN-γ responses (Fig.  3B). In 
the hBp + antigen or antigen stimulator group, the levels 
of IFN-γ and IL-5 were significantly higher compared to 
the saline injected negative control group, indicating that 
Th1 (IFN-γ)/Th2 (IL-5) adaptive immunity (Fig. 3B). This 
result is consistent with previous studies showing that 
the aP vaccine primarily induces the Th2 response but 
induces a dominant Th1 response when exposed to nat-
ural pertussis [42–45]. However, in this study, there are 
some limitations due to the in vitro system, and natural 
pertussis exposure could be substituted by hBp indirectly.

In addition, the results of the bacterial challenge test 
using the clinical pertussis strain for real and reliable 
assessment showed that all vaccinated groups cleared 
the pathogen from Day 2 post-challenge, and by Day 5, 
the pathogen was hardly found in the lungs, thereby con-
firming the similar efficacy of the booster vaccines in the 
three vaccinated groups (Fig. 4).

Conclusions
GC Pharma’s enhanced GC311 Tdap vaccine addresses 
the limitations of the previous GC311 Tdap vaccine, 
wherein a lower anti-FHA antibody response is observed 
compared to that of the commercially available product. 
Our study outcomes confirmed that after booster vacci-
nation, the humoral as well as the CMI responses were 
comparable to those of the commercially available prod-
uct with equivalent efficacy against the clinical strain. 
Our findings present strong evidence that similar find-
ings may be obtained in the phase II clinical trial that is 
currently being carried out.
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