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Background/Aims: Hydroxy-3-methylglutaryl-coenzyme A 
(HMG-CoA) reductase inhibitors (statins) and peroxisome 
proliferator-activated receptor gamma (PPARγ) ligands can 
modulate cellular differentiation, proliferation, and apoptosis 
through various pathways. It has been shown that HMG-CoA 
reductase inhibitors and PPARγ agonists separately inhibit 
pancreatic stellate cell (PaSC) activation. We studied the ef-
fects of a combination of both types of drugs on activated 
PaSCs via platelet-derived growth factor (PDGF), which has not 
previously been reported. The present study was performed 
to elucidate the underlying mechanisms of these effects by 
focusing on the impact of the signaling associated with cell-
cycle progression. Methods: Primary cultures of rat PaSCs 
were exposed to simvastatin and troglitazone. Proliferation 
was quantifi ed using the BrdU method, and cell-cycle analy-
sis was performed using a fluorescent activated cell sorter. 
The protein expression levels of smooth muscle actin (SMA), 
extracellular signal-regulated kinase (ERK), and a cell cycle 
machinery protein (p27Kip1) were investigated using Western 
blot analysis. Results: Simvastatin reversed the effects of 
PDGF on cell proliferation in a dose-dependent manner. The 
combination of a low concentration of simvastatin (1 mM) 
and troglitazone (10 mM) synergistically reversed the effects 
of PDGF on cell proliferation but had no effect on cell viability. 
The expression of a-SMA was markedly attenuated by com-
bining the two drugs, which blocked the cell cycle beyond the 
G0/G1 phase by reducing the levels of phosphorylated ERK 
and reversed the expression of p27Kip1 interrupted by PDGF. 
Conclusions: Simvastatin and troglitazone synergistically in-
hibited cell proliferation in activated PaSCs by blocking the cell 
cycle beyond the G0/G1 phase. This inhibition was due to the 
synergistic modulation of the ERK pathway and the cell cycle 
machinery protein p27Kip1. (Gut Liver 2012;6:262-269)
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INTRODUCTION

Chronic pancreatitis is characterized by irreversible fibrosis 
from sustained inflammation, pain and loss of exocrine and en-
docrine functions.1 Like hepatic stellate cells (HSCs), pancreatic 
stellate cells (PaSCs) are considered to have a key role in pan-
creatic fibrosis, inflammation and the desmoplastic reaction in 
pancreatic cancer.2-8

Quiescent PaSCs which have a typical phenotype character-
ized by vitamin A-containing lipid droplet, changes to activated 
form in response to pancreatic injury or profibrogenic stimuli 
by growth factors (platelet-derived growth factor [PDGF] and 
TGF-β1), cytokines (IL-1, IL-6, IL-8, and TNF-α) or angiotensin 
II, and reactive oxygen species.2,5,7,9-12 Activated PaSCs have a 
fibroblast-like phenotypes including nuclear enlargement, en-
hanced prominence of the endoplasmic network, while vitamin 
A containing lipid droplet lost.2 Furthermore activated PaSCs 
express α-SMA and the extracellular matrix proteins such as 
collagen type I, collagen II and fibronectin and secrete proin-
flammatory cytokines and chemokines.5,7

Due to a pivotal role of PaSCs in the development of pancre-
atic fibrosis, the target treatment for the factors associated with 
the modulation of these cells can be a promising modality for 
pancreatic fibrosis.13 So, there have been many studies about 
antifibrotic therapies for targeting on treatment of activated 
PaSCs such as blockade of the receptors for PDGF, TGF-β, and 
angiotensin II as well as antioxidant.13-18

Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reduc-
tase inhibitors (statins) are widely used in clinical settings for 
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their cholesterol-lowering properties. In addition to lowering 
cholesterol levels, many experimental studies have shown that 
statins have a pleotropic effect on the fibrogenic or cancer cells  
with antiproliferative, proapoptotic and antifibrogenic proper-
ties.19-23 Therefore, statins have been suggested as a potential 
therapeutic or preventive agents for the patients with fibropro-
liferative disorder.24

Peroxisome proliferator-activated receptor gamma (PPARγ) 
is a ligand-activated transcription factor located in the nucleus 
membrane and has been known as a key transcription fac-
tor for adipocyte differentiation.25,26 Like statins, PPARγ ligand 
have been demonstrated to affect proliferation, differentiation 
and apoptosis of different cell types.27,28 PPARγ also mediate 
antifibroic effects in HSCs and PaSCs.29-33 Previous studies using 
thiazolidinedione derivatives have shown that troglitazone de-
creased proliferation of PaSCs and the expression of α-SMA by 
the modulation of PPARγ expression31 or PPARγ independent 
manners.34

Because both statins and PPARγ agonist have the character-
istics of the suppressive fibrogenetic activities in PaSCs, we hy-
pothesized that there may be a positive effects on the inhibition 
of PaSCs’ activities between two drugs. Indeed, a synergistic 
effect was observed on the suppression of cancer cell prolifera-
tion through the combination treatment of such drugs.35,36 Also, 
statin has been reported to activate PPARγ receptor in immune 
cells.37,38 However, the effects of combined treatment of these 
drugs in PaSCs have been not yet been fully evaluated. There-
fore, we tried to clarify whether combined treatment using a 
statin (simvastatin) and a PPARγ agonist (troglitazone) has the 
synergistic capacity to affect the proliferation/activation of 
PaSCs and to examine the mechanism underlying this effect.

MATERIALS AND METHODS

1. Study materials

We purchased simvastatin and troglitazone from Sigma-
Aldrich Inc. (St. Louis, MO, USA). Each drug was dissolved in 
dimethylsulfoxide and was diluted in phosphate-buffered saline 
(PBS) before use. α-SMA and ERK monoclonal antibodies were 
purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, 
USA). The cell growth media PDGF (recombinant bovine PDGF-
BB) was purchased from Sigma-Aldrich Inc.

2. PaSCs isolation and culture

Pancreatic tissues from 6- to 8-week old male Sprague-
Dawley rats weighing 200 to 250 g were extracted and finely 
ground. The ground pancreatic tissue was digested in Gey’s bal-
anced salt solution with 0.05% collagenase P, 0.02% proteinase 
and 0.05% DNAse and was shaken in a 37oC water tub and cen-
trifuged at 3,000 rpm for 5 minutes. After filtration through 150 
μm mesh, cells were centrifuged in a 28.7% Nycodenz (Sigma-
Aldrich Inc.) gradient at 1,400 g for 20 minutes. The band just 

above the interface of the Nycodenz solution was suspended 
in Dulbecco’s modified Eagle’s Medium containing 10% fetal 
bovine serum (FBS). Cell viability was assessed according to 
trypan blue staining, and cells were cultured at 37oC in a 5% 
CO2 humidified atmosphere. After isolation, cells were cultured 
for 5 to 7 days until activated and confluent. Experiments were 
performed between passages 2 and 4. 

3. Cell proliferation assay

PaSCs were treated with simvastatin (1, 2.5, 5 μM) or trogli-
tazone (10 μM) at various concentrations for 1 hour and then 
stimulated with PDGF (10 ng/mL) for 48 hours. Cell proliferation 
was assessed using a commercial kit (Cell Proliferation ELIZA, 
BrdU; Roche Diagnostics, Mannheim, Germany) according to 
the manufacturer’s protocol. BrdU incorporation was quantified 
according to differences in absorbance at wavelengths 370 to 
492 nm.

4. Assessment of cell viability

Cell viability was assessed using an LDH detection kit (Roche 
Diagnostics) which measures LDH activity released from the cy-
tosol of damaged cells. Briefly, PaSCs were seeded in a 96-well 
tissue culture plate at a density of 1×104 cells per well, and reac-
tion buffer and experimental drugs were added to each well. The 
mixtures were incubated for 30 minutes at room temperature. 
The reaction was stopped by additional 2 mol/L HCl, and absor-
bance was measured spectrophotometrically at 492 nm using an 
Anthos Labtec microplate reader (Labtec, Uckfield, Sussex, UK). 
Results were expressed as a percentage of the total LDH released 
from cells incubated with 1% (wt/vol) Triton X-100.

5. Cell cycle analysis

The cell cycles of PaSCs were analyzed using flow cytometry. 
Briefly, serum-derived SCs (60% to 70% density) were treated 
with simvastatin or troglitazone or control vehicle for 1 hour 
and then exposed to 10 ng/mL PDGF. After 24 hours, the cells 
were harvested and washed twice with PBS and suspended in 
PBS solution containing 40 μg/mL propidium iodide, 0.02% Tri-
ton X-100, and 50 μg/mL ribonuclease A. Cell fluorescence was 
measured using a FACSCaliber flow cytometer and analyzed us-
ing software to determine the distribution of cells in the various 
phases of the cell cycle.

The α-SMA, ERK, and p27Kip1 protein expression in PaSCs 
were determined by Western blot. PaSCs were collected by 
scraping and homogenized in lysis buffer containing 25 mMol/
L Tris-HCl pH. 7.4, 1 mMol/L EDTA, 0.5% Triton X-100. Protein 
concentrations were measured with the use of Bradford’s meth-
od (BioRad, Rockville, NY, USA). Equal amounts of proteins (20 
μg) were separated on 12.5% SDS-polyacrylamide gel, trans-
ferred onto nitrocellulose membranes, and blocked with TBST 
(Tris-buffered saline [pH 7.4], 0.05% Tween-20) with 5% nonfat 
milk and 5% FBS. The primary antibodies were applied over-
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night at 4oC. Antibodies against α-SMA (1:200; Sigma-Aldrich 
Inc.), p27Kip1 (1:1,000; Cell Signaling Technology, Beverly, MA, 
USA), and ERK/pERK (1:1,000; Santa Cruz Biotechnology Inc.) 
were used, and β-actin-specific antibody (Santa Cruz Biotech-
nology Inc.) served as the sample loading control. After exten-
sive washing with TBST, the membranes were incubated for 1 
hour in corresponding horseradish peroxidase-coupled second-
ary antibodies (goat anti-mouse and donkey anti-rabbit 1:1,000; 
Santa Cruz Biotechnology Inc.). The chemiluminescent reaction 
was developed using a West Pico (Pierce) reagent.

6. Statistical analysis

Statistical significance of the LDH difference between treated 
and untreated samples was determined by t-test. For the dose 
response studies including proliferation, cell cycle study and 

Western blot, statistical significance between untreated samples 
and samples treated with simvastatin, troglitazone, and com-
bined treatment was determined by Mann-Whitney U test. p-
values <0.05 were considered statistically significant.

RESULTS

1. Neither simvastatin or troglitazone is cytotoxic to rat-
isolated PaSCs

To determine whether simvastatin and troglitazone affect cell 
viability, primary cultured PaSCs were incubated for 24 hours 
with simvastatin (1, 2.5 μM) or troglitazone (10 μM). This obser-
vation was verified through an LDH assay. As depicted in Fig. 1, 
neither of the two drugs nor the combination of the two drugs 
were cytotoxic to PaSCs.

2. Simultaneous treatment with simvastatin and trogli-
tazone induces phenotypic change in PaSCs 

When primary PaSCs were exposed to PDGF (10 ng/mL) for 
24 hours, these cells acquired a myofibroblast-like morphology 
with expanded cytoplasm (Fig. 2A). Increasing concentrations 
of simvastatin induced considerable morphological changes in 
activated PaSCs with PDGF. In contrast, no significant morpho-
logic changes were noted in troglitazone-treated cells (data not 
shown). Next, we tested the effects of combined simvastatin and 
troglitazone on the phenotypic changes of PaSCs. As depicted 
in Fig. 2B, simultaneous treatment with these two drugs resulted 
in significant morphologic changes in PaSCs compared with 
activated PaSCs by PDGF.

3. Simultaneous treatment with simvastatin and trogli-
tazone inhibits cell proliferation and α-SMA expression 
in activated PaSCs 

We tested whether each drug or combined treatment with 
these two drugs affect the proliferation in quiescent and acti-

Fig. 1. Cytotoxicity analysis. The cytotoxicities induced by simvas-
tatin and troglitazone were analyzed by LDH measurement. Exposure 
to simvastatin and troglitazone for 24 hours did not result in cyto-
toxicity in primary pancreatic stellate cells (PaSCs).
PDGF, platelet-derived growth factor.

Fig. 2. The morphological changes in pancreatic stellate cells. PaSCs in the second passage were exposed to (A) platelet-derived growth factor (10 
ng/mL) or (B) simvastatin at 1 μM plus troglitazone at 10 μM.
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vated PaSCs. In the quiescent state, pre-incubation with simvas-
tatin (5 μM) showed inhibitory tendency of cell proliferation but 
troglitazone alone (10 μM) had no effect on cell proliferation. 
However, the combined treatment with two drugs significantly 
suppressed cell proliferation in quiescent state (Fig. 3A). Expo-
sure to PDGF (10 ng/mL) for 24 hours increased the rate of pro-
liferation of PaSCs, and pre-incubation with simvastatin (5 μM) 
significantly blunted the effect of PDGF on cell proliferation (Fig. 
3B).

Next, we tested whether the combination of these drugs could 
affect cell proliferation in low concentration. A lower dose of 
simvastatin (1 μM) further decreased the PDGF-induced PaSCs 
proliferation with co-treatment of troglitazone (10 μM) (p<0.05) 
(Fig. 3C). Next, we studied whether this combination affected 
the expression of α-SMA. Both simvastatin (1 μM) and trogli-
tazone (10 μM) decreased expression of α-SMA in PaSCs and 
the combination of both drugs further decreased its expression 
(Fig. 4).

4. Simultaneous treatment with simvastatin and trogli-
tazone induces G1 arrest in activated PaSCs 

In subsequent experiment, we tested the effect of combined 
treatment (simvastatin 1 μM and troglitazone (10 μM) on cell-

cycle progression using flow cytometry (Fig. 5A). Exposure to 
PDGF (10 ng/mL) resulted in an increased fraction of cells in 
the S phase and a corresponding decrease in the G0/G1 fraction, 
whereas exposure to combined treatment with troglitazone be-
fore PDGF reduced the fraction of cells in the S phase, suggest-
ing that combined treatment synergistically induced cell-cycle 
arrest in activated PaSCs by PDGF at the G0/G1 stage (Fig. 5B).

5. Simultaneous treatment of simvastatin and troglitazone 
afftects PDGF-induced ERK activation and p27Kip1 ex-
pression in activated PaSCs

The roles of ERK in the control of cell proliferation has been 

Fig. 3. The cell proliferation assay in pancreatic stellate cells. The rate of 
cell proliferation was measured using a BrdU assay. (A) Cells were serum-
starved for 24 hours and incubated with simvastatin or troglitazone for 
6 hours without an activator. Incubation with simvastatin resulted in the 
dose-dependent inhibition of cell proliferation. (B) Cells were pre-incubat-
ed with simvastatin for 1 hour and exposed to 10 ng/mL of platelet-de-
rived growth factor (PDGF) for 24 hours. Pre-incubation with simvastatin 
resulted in the dose-dependent inhibition of cell proliferation by PDGF. 
(C) The increased cell proliferation rate with PDGF was not inhibited by 
pre-incubation with simvastatin or troglitazone alone at concentrations 
of 1 μM or 10 μM, respectively. However, simvastatin plus troglitazone 
markedly suppressed the cell proliferation rate to the level of the control 
group (*p<0.05 compared with control groups, †p<0.05 compared with 
the PDGF treatment groups).

Fig. 4. Expression of α-smooth muscle actin (α-SMA). α-SMA ex-
pression was increased by platelet-derived growth factor (PDGF) 
(lane 2). This increased expression was reduced by pre-incubation 
with simvastatin (1 μM) and troglitazone (10 μM) and was further 
decreased by the combination of the two drugs.
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well established in may studies.39 We examined the effect of 
combined treatment with these two drugs on ERK activation. 
The result of Western blot revealed that simvastatin (1 μM) and 
troglitazone (10 μM) decreased the PDGF-induced ERK activa-
tion, and that combined treatment with the two drugs signifi-
cantly suppressed the phosphorylation of ERK (Fig. 6).

p27Kip1 is a cell cycle machinery protein and is known as a 
universal cyclin-dependent kinase (CDK) inhibitor, a putative 
tumor suppressor. Here, we found that elevation of p27Kip1 was 
induced by combination treatment, whereas neither simvastatin 
(1 μM) nor troglitazone (10 μM) alone affected p27Kip1 protein 
level (Fig. 6). 

DISCUSSION 

The main findings of this study relate to the synergistic inhi-
bition in proliferation of PaSCs and the expression of α-SMA 
by combining a statin and a PPARγ agonist. This mechanism 
was mediated by the modulation of the expressions of ERK and 
p27Kip1.

Statins and PPARγ agonists are widely used in the treatment 
of hypercholesterolemia and diabetes mellitus. In addition to 
their cholesterol-lowering and blood glucose-lowering func-
tions, it is known that statins and PPARγ agonists have addi-
tional anti-cancer effects in various cancer cells.22,28 Also, it has 

Fig. 5. (A, B) The analysis of cell-cycle progression. Pancreatic stellate 
cells were serum-starved for 24 hours, pre-incubated with troglitazone or 
vehicle for 1 hour, and exposed to 10 ng/mL of platelet-derived growth 
factor (PDGF) for 24 hours. The cells were collected and stained with 0.5 
mg/mL propidium iodine, and cell fluorescence was measured with FAC-
Scan. Compared with the control cells (dark), the cells exposed to PDGF 
showed a decrease in the number in the G0/G1 phase and an increase in 
the number in the S phase. Pre-incubation with simvastatin (1 μM) and 
troglitazone (10 μM) decreased the number of cells in the S phase, indi-
cating an induction of cell-cycle arrest at G0/G1 (*p<0.05 compared with 
the PDGF treatment group).
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been demonstrated that these drugs could inhibit the activation 
and proliferation of fibrogenic cells, including HSCs and PaSCs 
through the attenuation of extracellular matrix protein produc-
tion and apoptosis induction.23,40-42

It is therefore expected that these drugs could serve as an-
other therapeutic or preventive agent for various cancers and 
for fibrosis-associated diseases including chronic pancreatitis 
and liver cirrhosis. Accordingly, several clinical trials have been 
undertaken to verify both chemopreventive and antitumor ef-
fects of statins. However, these clinical trials have provided con-
flicting data as to whether statins have anti-cancer effects.43,44 
Therefore, statin therapy as a supplement to or in conjunction 
with other drugs is currently being studied.

Combined treatment with statin and PPARγ agonists is clini-
cally efficacious and safe. Previous studies have shown that the 
combination of these two drugs can be useful and has a syner-
gistic effect on the treatment of dyslipidemia and cardiovascular 
diseases. Furthermore, additional anti-inflammatory effects 
of combined treatment with simvastatin and pioglitazone has 
been demonstrated in non-diabetic patients with cardiovascular 
disease and elevated high sensitive C-reactive protein levels.45 
Recent study has shown that simultaneous treatment with these 
two drugs had synergistic anti-cancer effects in different cancer 
cells.35 Therefore, the theoretical basis of using a combination 
strategy has been demonstrated.

In this study, we have shown that a lower dose of simvas-
tatin (1 μM) significantly potentiated antiproliferative effects in 
activated PaSCs and decreased the expression of α-SMA when 
combined with troglitazone. Previous studies showed that a 
lower concentration of lovastatin inhibited the proliferation and 
activation of PaSCs which is consistent with our findings.40 Our 
study showed that simvastatin mono-treatment could inhibit 
cell proliferation and show changes in phenotype in a dose-
dependent manner. When combined with these drugs, cell pro-
liferation could be inhibited with a lower dose of simvastatin 

(1 μM), a level which might be clinically available and shorter 
treatment period (24 hours).

Second, the combined effects of the two drugs are due to the 
synergistic effect in the regulation of cell proliferation and acti-
vation.39 In this study, both simvastatin (1 μM) and troglitazone 
(10 μM) decreased the phosphorylation of PDGF-induced ERK, 
and the combination of the two drugs synergistically suppressed 
the activation of ERK. This result suggests that the Ras-ERK cas-
cade may be involved in the mediation of combination effects 
on PaSCs.

Statin and PPARγ agonists were shown to interfere with cell 
cycle progression by affecting cell cycle machinery proteins 
such as CDKs, p21, and p27Kip1.46-48 In this study, using FACS 
analysis, combination treatment was shown to induce cell cycle 
arrest in the G0/G1 phase. It participated in cell cycle regulation 
by controlling the expression of p27Kip1, which inhibits CDK ac-
tivation. The Ras-ERK signaling system has a role in these path-
ways, and through the phosphorylation of ERK, cyclin D ex-
pression increases, whereas expression of p27Kip1 is suppressed, 
which further activates cell growth.49,50 We observed that both 
simvastatin (1 μM) and troglitazone (10 μM) failed to restore the 
suppression of PDGF-induced p27Kip1, but combined treatment 
increased the expression of p27Kip1 suppressed by PDGF. These 
results suggest that synergistic effect of these drugs on PaSCs 
was implemented by the cell cycle machinery protein p27Kip1.

In summary, our findings reveal a synergistic effect of sim-
vastatin and troglitazone in the inhibition of PaSC prolifera-
tion. This effect is mediated by suppression of ERK and the 
modulation of the cell cycle machinery protein p27Kip1. Thus, the 
combination of a statin and PPARγ agonist might represent a 
novel therapeutic modality for the prevention of fibrosis of the 
pancreas and for treatment of chronic pancreatitis. However, 
the exact mechanism of other beneficial effect of this combined 
treatment need to be elucidated. 
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