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Purpose: To review the potential and challenges of integrating diffusion weighted magnetic resonance
imaging (DWI) into radiotherapy (RT).
Content: Details related to image acquisition of DWI for RT purposes are discussed, along with the chal-
lenges with respect to geometric accuracy and the robustness of quantitative parameter extraction. An
overview of diffusion- and perfusion-related parameters derived from mono- and bi-exponential models
is provided, and their role as potential RT biomarkers is discussed. Recent studies demonstrating poten-
tial of DWI in different tumor sites such as the head and neck, rectum, cervix, prostate, and brain, are
reviewed in detail.
Conclusion: DWI has shown promise for RT outcome prediction, response assessment, as well as for tumor
delineation and characterization in several cancer types. Geometric and quantification robustness is chal-
lenging and has to be addressed adequately. Evaluation in larger clinical trials with well designed imaging
protocol and advanced analysis models is needed to develop the optimal strategy for integrating DWI in RT.
� 2018 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. Introduction

The integration of magnetic resonance (MR) imaging into radio-
therapy (RT) represents an active field of ongoing research.
Anatomical MR imaging may be highly beneficial for the precise
delineation of the gross tumor volume (GTV) [1,2]. Moreover, func-
tional imaging might allow for biological and physiological tumor
characterization. It might therefore be a basis for treatment indi-
vidualization strategies such as dose painting [3–5], as well as a
tool for treatment monitoring and early response assessment [6–
8]. In addition to standalone MR scanners and combined positron
emission tomography (PET)/MRI, first commercial MR-linac sys-
tems are available and being implemented at clinical sites [9–11].

One of the most promising functional MR imaging methods for
RT applications is diffusion weighted imaging (DWI). This paper
provides a review of current research about using DWI for RT pur-
poses. It addresses the derivation of biomarkers from DWI, poten-
tial benefits of using DWI-derived biomarkers for RT adaptation
and response assessment, as well as the specific challenges with
respect to integrating DWI into RT.
2. Basic physics of DWI

DWI can be achieved by placing two additional diffusion sensi-
tizing gradients on each side of the 180� radio frequency (RF) pulse
of a spin-echo sequence, as introduced by Stejskal and Tanner [12].
The magnitude of diffusion weighting can then be expressed by the
b-value, which is defined as

b ¼ c2G2d2ðD� d=3Þ;

where c is the gyromagnetic ratio, G is the magnitude of the diffu-
sion sensitizing gradients, d is the temporal duration of each of the
gradients, and D is the time interval between the application of the
gradients.

The diffusion sensitizing gradients do not have an effect on sta-
tionary spins, since any phase accumulation from the first gradient
lobe is reversed by the second. However, for non-stationary spins a
non-vanishing phase shift remains, with the magnitude of the shift
being determined by the respective trajectory performed between
the start of the first and the end of the second gradient. This results
in a loss in signal of an ensemble of diffusing spins. A higher b-
value chosen for diffusion-weighing results in a more pronounced
signal loss. Diffusion weighting thus provides an additional con-
trast mechanism for MR image acquisition. When acquiring several
images with different b-values, quantitative diffusion- and
perfusion-related parameters can be derived by applying a model
describing the b-value dependent signal loss.

The microstructural organization in tissue, and consequently
the local diffusion coefficients, are in general anisotropic. In
anatomical regions with a strong anisotropy, such as the brain,
the directional information can be highly relevant and might be
obtained by diffusion tensor imaging (DTI). In DTI, directional
information is obtained by applying diffusion-weighted gradients
in at least six directions and deriving a diffusion tensor [13]. For
many applications in RT, however, directional information is not
required. Measurements with diffusion weighting in the three
orthogonal spatial directions can then be combined into a single
directionally averaged diffusion weighted image. As diffusion coef-
ficients derived from these averaged images are identical to the
trace of the diffusion tensor divided by a factor of three, corre-
sponding images are also referred to as trace images [14].
3. DWI models and potential biomarkers

Studies have revealed that signal loss at low b-values is domi-
nated by perfusion effects, whereas signal loss at high b-values is
dominated by diffusion [15]. The b-value representing the transi-
tion between the perfusion and diffusion effects depends on the
vascular properties of the tissue. As for head and neck, transition
b-values as different as 100 s=mm2 [16] and 300 s=mm2 [17] were
proposed in literature without systematic site-specific derivation.
A more quantitative approach to possibly determine the transition
between perfusion and diffusion regimes has been provided in the
context of non-small cell lung cancer [18].

Different models can be applied to extract quantitative param-
eters from the images, which might be potential biomarkers for RT.
A more advanced model might describe the b-value dependent sig-
nal loss more accurately than a simpler one, and provide more
insights into tissue organization. However, it may perform worse
if the quality of the evaluated data is not sufficient. It is thus crucial
to take robustness of the evaluation into account.

3.1. Mono-exponential model

The simplest and most commonly used model for analysis of
DW images assumes a mono-exponential decay of the signal Swith
increasing b-values

S ¼ S0 expð�ADC � bÞ: ð1Þ
The fit parameter in the exponent is called apparent diffusion

coefficient (ADC). When derived from the high b-value range, it
describes the effective water diffusion in the tissue [15]. In con-
trast, coefficients derived from the low b-value range predomi-
nantly contain perfusion information, whereas, when derived
from a mixture of low and high b-values, both perfusion and diffu-
sion effects are included. The biological meaning of the ADC value
therefore strongly depends on the b-values included in the analy-
sis, making it difficult to compare results across studies when
based on different b-values. The mono-exponential model is, in
contrast to other models, generally implemented in the vendor-
provided scanner software. Compared to other models, it also has
the lowest requirements for image acquisition in terms of the
number of b-values and measurement accuracy. This is especially
beneficial if diffusion should be analyzed on a voxel level.

3.2. IVIM model

By modeling signal decay using a bi-exponential function, per-
fusion and diffusion parameters can be taken into account
separately

S ¼ S0 f expð�D� � bÞ þ 1� fð Þ expð�D � bÞð Þ: ð2Þ
This model is called intravoxel incoherent motion (IVIM). Perfu-

sion fraction f and pseudo-diffusion coefficient D� are derived as
perfusion-related parameters, whereas true diffusion is quantified
by the diffusion coefficient D. Fig. 1 shows a comparison of apply-
ing IVIM and the mono-exponential model in an exemplary case of
DWI acquired in a head and neck cancer patient. Generally, the
IVIM can reproduce the DWI-related signal decay more accurately.



Fig. 2. Dedicated positioning solution for MR imaging of head and neck cancer
patients in RT treatment position. The components are a flat table top with an add-
on for the fixation of a head and neck positioning mask, and coil holders to with
flexible RF coils can be attached.

Fig. 1. Applying different models to extract quantitative parameters from the mean
DWI signals derived within the gross tumor volume (GTV) of a oropharyngeal
cancer patient. Blue: mono-exponential model (mExp) using high and low b-values
(mExp_all), orange: mExp using only high b-values > 200 s=mm2 (mExp_high),
green: intra-voxel incoherent motion (IVIM) model. Fit parameters are ADC = 1293
� 10�6 mm2=s (mExp_all), ADC ¼ 1018� 10�6 mm2=s (mExp_high), and
f ¼ 0:21;D ¼ 958� 10�6 mm2=s, D� ¼ 16;500� 10�6 mm2=s (IVIM). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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However, it requires higher data quality as it contains four fit
parameters instead of two in mono-exponential modeling. Also,
the model may be over-parametrised, and especially model param-
eter D� might be not robustly estimated [19,20]. For the application
of IVIM, ten or more b-values are considered reasonable, including
multiple b-values in the low range to capture perfusion effects. The
IVIM model is usually only applied within region-based evalua-
tions [19,21], likely due to the lack of robustness in voxel-by-
voxel analysis.

An approximation of the original IVIM model is provided by the
so-called simplified IVIM model [22–24]. As in tissue the condition
D� � D is usually met, the first term of Eq. (2) can be neglected for
high b-values. Thus, Eq. (2) can be approximated by the mono-
exponential relation

S ¼ S0ð1� f Þ expð�D � bÞ: ð3Þ
By applying the substitution

S0ð1� f Þ � Sint; ð4Þ
we can write

S ¼ Sint expð�D � bÞ: ð5Þ
Sint can be determined by a mono-exponential fit applied to the high
b-value range (as in the mono-exponential model in Eq. (1)).
According to Eq. (4) the perfusion fraction f of the IVIM model can
then be derived as

f ¼ 1� Sint=S0; ð6Þ
where S0 can be directly obtained by measurement without
diffusion gradient (b ¼ 0). An advantage of the simplified over the
original IVIM model is the reduced requirements in the number of
b-values, as the steep initial perfusion-related signal loss does not
have to be captured by measurements.

3.3. Kurtosis model

Both the mono-exponential model and the IVIM model assume
an isotropic Gaussian diffusion. However, due to the interaction of
water molecules with microstructural components such as cell
membranes, there will be a deviation from pure Gaussian diffusion.
A correction to the models above is to take account for this non-
Gaussian diffusion behaviour by an additional fit parameter, the
kurtosis coefficient K, which is derived along with the kurtosis-
corrected diffusion coefficient DK [25,26]. Kmight contain informa-
tion about the microstructural organization of the tissue which is
complementary to the perfusion- and diffusion-based parameters
contained in the mono-exponential and the IVIM model. When
adding the kurtosis correction, the mono-exponential model (cf.
Eq. (1)) changes to

S ¼ S0 exp �bDK þ 1
6
b2D2

KK
� �

: ð7Þ

One pre-requisite for using this model is the acquisition of very
high b-values, which should exceed 1000 s=mm2 [25]. There is only
a limited number of studies applying this model for RT applications
so far, but some promising results have been published recently
[26–28].

3.4. Interpretation of DWI parameters and relation to other
biomarkers

The detailed interpretation of parameters derived from DWI
with respect to underlying biological-physiological conditions is
not straightforward and still a matter of debate. Diffusion-related
parameters, such as the ADC derived from high b-value images,
and the diffusion parameter D from the IVIM model, are usually
related to tissue cellular density, extracellular-space tortuosity,
and the integrity of cellular membranes [29]. As an example, low
ADC has been associated with high cellularity in histological sec-
tions in various cancer types [15]. During the course of RT diffusion
tends to increase due to cell membrane disruption and treatment-
induced cell death. Especially high diffusivity within the tumor is
observed in necrotic, as well as in inflammated regions [29,30].

Low ADC has also been found to be related to other biological
parameters such as a high [18F]-fluorodeoxyglucose (FDG) uptake
in PET images [31] and a high expression of the Ki67 proliferation
marker [32,33]. The perfusion parameter f derived from IVIM has
been less studied. Positive correlations between f and vascular den-
sity [34,35] as well as perfusion parameters derived from dynamic



Table 1
Previous studies about potentials of integrating DWI in RT. Purpose – 1: pre-treatment outcome prediction, 2: response assessment, inter-treatment prediction, 3: tumor
delineation; Mexp - mono-exponential model, IVIM – intra-voxel incoherent motion; NGK – non-gaussian kurtosis, ADC – apparent diffusion coefficient, DADC – difference of
inter- or post-treatment ADC to baseline; DTI - diffusion tensor imaging, DCE – dynamic-contrast enhanced imaging.

Purpose Site Author/year
citation

#
patients

b-Values in s/mm2 Imaging time
point

Model Main findings

1 HNSCC Lambrecht
2014 [44]

161 0, 50, 100, 500,
750, 1000

pre-RT Mexp (high-,
low- and full
b-value
range)

higher pre-treatment ADC in tumor, when derived
from the high b-value range, is related to disease
recurrence

1 ‘‘ Noij 2015
[30]

78 0, 750 and 0, 1000 pre-(C) RT Mexp
(ADC750,
ADC1000)

higher pre-treatment ADC1000 in lymph nodes is
related to lower disease-free survival

1 ‘‘ Hauser 2013
[53]

22 0, 50, 100, 150,
200, 250, 700, 800

pre-RT IVIM high perfusion fraction f in tumor may be related to
poor prognosis

1,2 Rectal cancer Jung 2012
[45]

35 0, 500, 1000 pre- and post-
CRT
(neoadjuvant)

Mexp significant correlation between pre-treatment ADC
and tumor volume reduction, as well as between
DADC and tumor volume reduction

1,2 ‘‘ Lambrecht
2012 [46]

20 0, 50, 100, 500,
750, 1000

pre-, inter-, and
post-CRT
(neoadjuvant)

Mexp pre-treatment ADC as well as inter- and post-
treatment DADC may be useful for prediction and
early assessment of treatment response; pretreatment
ADC is significantly lower in patients with pathologic
complete response

1 ‘‘ Joye 2017
[47]

85 0, 50, 100, 300,
600, 1000

pre-, inter-, and
post-CRT

Mexp (high-,
low- and full
b-value
range)

DWI is predictive for treatment response; the
predictive power can be improved by combining DWI
with FDG-PET and T2-weighted volumetry

1 Glioblastoma Pramanik
2015 [48]

21 0, 1000, 3000 pre-CRT no model
applied

hypercellularity volume as defined on the b = 3000
acquisition is a significant prognostic factor for
progression-free survival

1 Cervical
cancer

Heo 2013
[49]

42 3 0, 500, 1000 pre-CRT Mexp higher mean ADC related to tumor recurrence; 75th
percentile ADC predictor for tumor recurrence

1 ‘‘ Onal 2016
[50]

44 0, 800 pre-CRT, post-
CRT

Mexp lower ADC values pre-RT and post-RT associated to
disease recurrence

1 ‘‘ Marconi 2016
[51]

66 0, 600 and 0, 800 pre-CRT Mexp Pre-treatment minimum ADC may be a prognostic
factor for disease-free survival

1 ‘‘ Gladwish
2016 [52]

85 0, 50, 400, 1000,
and 0, 100, 800
and 0, 50, 400, 800

pre-CRT Mexp 95th percentile ADC might be a metric to predict
treatment failure

2 HNSCC Dirix 2009
[56]

15 0, 50, 100, 500,
750, 1000

Pre-, inter-, and
post-CRT

Mexp lesions showing loco-regional recurrence had a
significantly lower inter-treatment ADC

2 ‘‘ King 2013
[57]

30 0, 100, 200, 300,
400, 500

Pre- and inter-
CRT

Mexp local failure is associated with lower relative increase
of ADC compared to local control, as well as with a
decrease of skewness and kurtosis in GTV-based ADC
histograms

2 ‘‘ Marzi 2015
[65]

34 0, 25, 50, 75, 100,
150, 300, 500, 800

Pre-, inter-, and
post-CRT

IVIM pre-treatment f and D are independent predictors for
shrinkage of major salivary glands

2 ‘‘ Vandecaveye
2012 [66]

29 0, 50, 100, 500,
750, 1000

Pre- and post-
CRT

Mexp DADC three weeks after RT allows for early treatment
response assessment

2 Cervical
cancer

Haack 2015
[59]

11 0, 150, 600, 1000 Pre- and inter-RT Mexp volume with reduced diffusion as derived from DWI
changes significantly during treatment, along with a
significant mean ADC increase

2 ‘‘ Das 2015 [60] 24 0, 400, 800 Pre- and inter-
CRT

Mexp inter-treatment DADC can be used for early response
prediction

2 ‘‘ Zhu 2017
[21]

30 0, 10, 20, 30, 40,
50, 100, 150, 200,
350, 500, 650, 800,
1000

Pre- and inter-
CRT

IVIM D at 2 weeks as well as D and f 4 weeks after start of
RT prognostic for therapy outcome

2 ‘‘ Daniel 2017
[61]

10 0, 850 Pre-, inter-, and
post- CRT

Mexp Patient averaged ADCs increased from baseline to
follow up, low-ADC regions spatially varied over time

2 ‘‘ Schreuder
2015 [7]

231
(review)

mixed Pre-, inter- and
post-RT

Mexp DWI can be used for early post-RT assessment, but not
for early response monitoring

2 Glioma Kassubek
2017 [63]

18 0, 800 Pre- and post-RT DTI DTI can potentially be used to asses irradiation-
induced microstructural white matter damage

2 Glioblastoma Nagesh 2008
[64]

25 0, 1000 Pre-, inter- and
post-RT

DTI DTI has potential for the assessment of radiation-
induced white matter injury

2 ‘‘ Chu 2013
[67]

30 0, 1000 and 0,
3000

post-RT Mexp
(ADC1000,
ADC3000)

Fifth percentiles of cumulative histograms of ADC1000

as well as of ADC3000 promising for the differentiation
between true progression and pseudo-progression

2 Esophageal
cancer

van Rossum
2015 [58]

20 0, 200, 800 Pre-, inter-, post-
CRT
(neoadjuvant)

Mexp inter-treatment DADC is a predictive factor for
histopathologic response

3 ‘‘ Hou 2013
[68]

42 400, 600, 800 pre-treatment no model
applied

DWI is superior to CT or anatomical MR in GTV
delineation
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Table 1 (continued)

Purpose Site Author/year
citation

#
patients

b-Values in s/mm2 Imaging time
point

Model Main findings

3 Pancreas
cancer

Kartalis 2016
[26]

15 0, 50, 150, 200,
300, 600, 1000

pre-treatment IVIM, Mexp,
NGK

ADC and DK might be valuable for differentiating
between tumorous and non-tumorous parenchyma

3 Glioblastoma Jensen 2017
[69]

11 0, 1000 pre-RT DTI DTI in combination with a model for the microscopic
spread of tumor cells along white matter fiber tracts
might be of value for defining the clinical target
volume (CTV) of glioblastomas

3 Cervical
cancer

Schernberg
2017 [70]

44 0, 1000 after CRT, before
image guided
adaptive
brachytherapy

no model
applied

DWI images (without applying quantitative models)
might lead to modifications in high-risk clinical target
volumes

3 Prostate
cancer

Langer 2009
[71]

25 0, 600 pre-treatment Mexp ADC is superior to DCE and T2-mapping for
differentiating between tumorous and non-tumorous
tissue; classification accuracy can be increased by
using a multi-parametric model

3 ‘‘ Groenendaal
2012 [72]

87 300, 500, 1000 pre-treatment Mexp Logistic regression-derived model including DWI, DCE
can define different risk levels for tumor presence on a
voxel level

3 ‘‘ Yu 2017 [73] 140 50, 600, 1000 pre-treatment Mexp Multiparametric model of DWI, T1, and T2 may
discriminate between tumorous tissue and normal
peripheral zone
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contrast enhanced (DCE) MR images [36,37] have been shown,
supporting utilization of f parametric maps as a biomarker of
tumor vascularization and blood flow.
4. DWI acquisition details

4.1. Choice of b-values

The imaging protocol for DWI should be carefully designed. A
crucial point to consider is the choice of b-values. The actual choice
should depend on the context in which the images are acquired
and on the model chosen for analysis. Given the model used for
DWI data analysis (cf. Section 3) provides an adequate description
of the signal decay, a higher number of b-values generally lead to a
better estimation of fit parameters as well as a better quantifica-
tion of fit accuracy. For advanced models considering both perfu-
sion and diffusion information, various b-values in the low as
well as in the high b-value range are necessary. However, since
the signal decreases with higher b-value, more averages should
be performed for high b-value acquisitions to achieve an accept-
able signal to noise ratio. For a voxel-by-voxel analysis, signals at
very high b-values might be still too much influenced by noise. A
thorough evaluation of the signal decay curves is required to select
optimal b-values for a particular model and anatomical site before-
hand, for example by analyzing the goodness of fit when including
different b-value combinations. An approach of performing such an
evaluation is provided in [24] in the context of prostate cancer.
4.2. Patient positioning

For the integration of DWI into RT planning, imaging should
ideally be performed in RT treatment position. As for head and
neck cancer patients, positioning solutions generally include a flat
table top and a mask fixation system, as well as the usage of flex-
ible RF coils instead of a standard diagnostic head coil to provide
enough space for the RT mask [38–40]. Such a positioning system
is shown in Fig. 2. As the signal to noise ratio can be impaired due
to the usage and setup of different receiver coils, it is necessary to
validate that image quality using RT-setups is sufficient for extract-
ing reliable imaging parameters [41].
5. Potential benefits of DWI for RT

There is an increasing number of publications investigating
potential benefits of DWI in the context of RT. However, DWI has
not found its way into clinical application yet for most cancer sites.
Nonetheless, DWI with multiple b-values is recommended as part
of minimum requirement for detection, staging and nodal involve-
ment evaluation in prostate cancer by the European Society of Uro-
genital Radiology (ESUR) [42]. In cervical cancer, DWI has become
part of the brachytherapy planning protocol at many institutions,
and there is a focus on documenting the added value of DWI for
this purpose [43].

In the following, an overview of recent publications about the
potential of DWI-derived biomarkers for RT outcome prediction,
response assessment, and tumor delineation is provided. A detailed
listing of the cited studies is provided in Table 1.
5.1. Pre-treatment prediction of RT outcome

In different tumor sites, a lower mean pre-treatment ADC
derived from the gross tumor volume (GTV) has been found to
be related to better RT treatment response (cf. Table 1). A possible
explanation for this finding might be that tumors with higher
mean pre-treatment ADC are likely to be more necrotic [31], and
might in consequence also contain more hypoxic areas [44].

As for head and neck squamous cell carcinoma (HNSCC), mean
ADC has been identified as a prognostic factor particularly if
derived from the high b-value range only, whereas mean ADC
could not be related to outcome if derived from low b-values only
[44,30]. Moreover, several studies show that mean pre-treatment
ADC is of predictive value for neoadjuvant radiochemotherapy
response in rectal cancer [45–47] as well as a prognostic factor
for progression-free survival in glioblastoma [48]. In cervical can-
cer, low mean pre-treatment ADC has been associated with good
outcome [49], whereas the opposite relationship has also been
reported [50]. Other studies found a relation of parameters derived
from histograms of ADC distribution within the GTV and treatment
response [49,51,52]. Perfusion-related parameters have been less
studied. However, in HNSCC the lymph node perfusion fraction f
as derived by IVIM has been related to locoregional recurrence
after therapy [53].
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5.2. Inter-treatment monitoring and outcome prediction, early
response assessment

Another application of DWI might be RT monitoring and early
response assessment after treatment. Changes in functional MR
images often proceed anatomical changes, and might therefore
be early indicators of treatment response [15,54].

Moreover, DWI acquired in the course of fractionated treat-
ment, eventually when set into relation with the acquisition at
baseline, might potentially have a greater prognostic value than
DWI at baseline alone. A higher increase in ADC during therapy
seems to be related with a better outcome for the patient (cf.
Table 1), which might likely to be attributed to reduced cellularity
in the tumor caused by treatment-induced cell death [44,55].

DWI has been shown to be of value in monitoring tumor
changes as well as in predicting outcome during fractionated RT
in different cancer types, such as the HNSCC [56,57], esophageal
cancer [58] and cervical cancer [59,60,21,61]. In the treatment of
cerebral tumors, microstructural damage of white matter may be
detected by directional diffusion anisotropy derived from DTI
[62–64]. In addition to tumor monitoring, DWI might also be used
to monitor organs at risk during treatment, such as the major sali-
vary glands in head and neck RT [65]. With respect to the assess-
ment of early treatment response after therapy in terms of
locoregional failure or metastasis detection, DWI has been found
to be promising in HNSCC [66], glioblastoma [67], cervical cancer
[7], and rectal cancer [46].
5.3. Tumor delineation, local dose escalation

Voxel-based DWI analysis might be of value for tumor delin-
eation, e.g. in esophageal tumors [68], pancreatic cancer [26], as
well as for glioblastoma [69]. In cervical cancer, DWI might have
an impact on the definition of high-risk clinical target volumes
[70]. In prostate cancer DWI has been reported to be a promising
tool for the differentiation of tumor from non-tumor tissue, espe-
cially when combined with other functional imaging modalities
[71–73]. Based on [72], a phase III multicenter trial (FLAME) is cur-
rently investigating the effects of a local dose boost to the macro-
scopic prostate tumor as derived from functional MRI including
DWI [74–76]. However, to the best of our knowledge, investiga-
tions for using DWI with respect to intra-tumor treatment adapta-
tion have been limited to planning studies so far. A more detailed
discussion of potential strategies for such an adaptation is given in
Section 7.
6. Challenges with respect to DWI accuracy

6.1. Geometric distortions

As DWI is very sensitive to motion-induced phase errors, it is
usually acquired using rapid echo-planar imaging (EPI) sequences
[77]. One drawback of EPI sequences is that they are prone to geo-
metric distortions, which are most prominent in phase-encoding
direction. They are induced by inhomogeneities of the static mag-
netic field B0, which can arise from external inhomogeneities or
induced internally by susceptibility differences within the imaged
object or patient. In addition to geometric distortions, B0 inhomo-
geneities are also accompanied by signal loss, which leads to lower
quantification accuracy. Adverse effects are most prominent in
regions with strong susceptibility changes such as the head and
neck [78–80].

For the integration of DWI into RT treatment planning, high
geometric and quantitative accuracy is crucial. Thus, it is important
to address this problem by preferably using an EPI sequence which
is optimized towards lower distortions.

One way to address this problem is to choose acquisition
parameters in favor of low distortions, such as a high receiver
bandwidth and parallel imaging [80]. One possibility to further
reduce distortions is the usage of readout-segmented multishot
EPI sequences, which have shown to greatly reduce geometric dis-
tortions by shortening effective echo time [81–83]. Another option
is to combine EPI acquisitions with integrated dynamic shimming,
in which the off-resonance field DB0 is reduced by adjusting shim
and excitation frequency slice-per-slice [84]. Combining these
two techniques is promising to further increase geometric accu-
racy; however, at the expense of a longer imaging time [85].

The above-mentioned sequences (readout-segmented EPI and
integrated shimming) require the availability of dedicated
sequences from the vendor. If no such implementation is available,
it is possible to acquire an additional image with reversed phase
encoding direction (RPED) for each b-value, and to calculate an
undistorted image by a registration-based approach [40,86]. How-
ever, this technique relies on a post-processing step and cannot
compensate for signal loss.

Another alternative is to use a reduced field of view (rFOV)
technique applying 2D spatially selective excitation pulses, excit-
ing only a small inner volume along the phase-encoding direction.
This technique allows a reduced number of phase-encoding steps,
leading to higher resolution imaging for a fixed scan time as well as
reduced geometrical distortion [87]. rFOV-DWI been successfully
applied to imaging of the prostate, spinal cord, breast, rectum,
and uterine cervix [87,88].

Furthermore, inherently less distorted non-EPI secquences may
be used, such as periodically rotated overlapping parallel lines with
enhanced reconstruction (PROPELLER) [89,90]. Up to now, only few
studies evaluating these sequences with respect to DW image
quality exist. The advantages and drawbacks in terms of imaging
time, image artifacts and signal-to-noise ratio have to be consid-
ered along with the extent of geometrical distortions.
6.2. Accuracy of DWI-derived parameters

Apart from geometric accuracy, robust quantification has to be
addressed [91]. For robust derivation of quantitative parameters
from DWI, the uncertainty in the acquired signals in terms of noise
and artifacts should be within reasonable limits for the applied
model. This issue is especially critical if voxel-based parameter
maps are to be derived, as uncertainty of measured samples on a
voxel-wise basis is much higher compared to averaged regions.
As the fit quality is usually not given in vendor-provided parameter
maps, it might be valuable to take a closer look at the originally
acquired data. In the ideal case, in–house fits should be performed
to allow for quantifying the accuracy of derived parameters, for
example by exploiting information of the fit covariance matrix.
Especially when using complex models such as IVIM or if voxel-
based parameter maps should be derived, high-quality data with
multiple b-values as well as a thorough evaluation of fit quality
are necessary [19].
7. Discussion

Different DWI-derived parameters such as ADC assessed from
the mono-exponential model, and IVIM model parameters have
been investigated as imaging biomarkers for RT, with promising
results for outcome prediction, therapy monitoring and early
response assessment (cf. Table 1). Up to now, mono-exponential
models have been applied in most studies, whereas the IVIM and
Kurtosis models have been investigated in only few studies.
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A general drawback of the current research is that the studies
often have small sample sizes and comparability between studies
is limited due to the use of different DWI protocols and evaluation
strategies. No standardization for DWI protocols and evaluation is
available yet, but potential guidelines are being discussed [92].It is
however reasonable that the choice of imaging parameters should
depend on the purpose of the study and on the model which is to
be applied for data evaluation. It is highly important to address
both geometric accuracy and robustness of quantitative parame-
ters when designing a DWI study, especially if parameters should
be obtained on a voxel-wise basis, or if complex models such as
IVIM should be used for data analysis.

In most studies, single parameters from functional imaging
have been investigated for their potential use as biomarkers in
RT. In addition to DWI parameters, other MR-based parameters
derived from dynamic contrast-enhanced (DCE) MR imaging, MR
arterial spin labeling (ASL), and MR spectroscopy have been stud-
ied [3,93,94]. Also PET imaging using tracers such as [18F]-
fluoromisonidazole (FMISO) or FDG might be highly beneficial
the context of RT [95–97]. Which imaging and parameter extrac-
tion method provides the most benefit for RT is a matter of ongoing
research. A combination of several functional parameters might
outperform the usage of single parameters. However, such multi-
parametric approaches have been investigated only in few studies
[5,71–73,98].

Most studies have been focusing on evaluating mean DWI
parameters of the GTV. The potential of DWI parameter maps eval-
uated on a voxel-by-voxel basis has not be thoroughly studied yet.
For example, histograms showing the distribution of DWI parame-
ters within the GTV could potentially contain more accurate pre-
dictors for RT outcome than mere GTV-averaged parameters
alone [57]. Moreover, voxel-by-voxel parameter maps may help
in differentiating between cancerous and non-cancerous tissue,
and therefore support tumor delineation [74–76]. Local biological
characterization of the tumor could additionally support intra-
tumor dose escalation strategies [3–5].

To the best of our knowledge, except for the FLAME trial (cf. Sec-
tion 5), clinical studies for treatment adaptation based on DWI
parameters have not yet been performed. Different concepts for
adapting therapy to functional image information within the
tumor are available such as a boost of RT dose to the whole tumor
volume, region-based adaptation by the definition of boost doses
to biological target volumes, or a voxel-based adaptation of dose
such as dose-painting by numbers (DPBN) [99]. First planning
studies for intra-tumor RT dose adaptation based on DWI have
demonstrated the dosimetric feasibility [100,101]. Due to the pre-
dictive value of DWI for treatment outcome dose adaptations seem
promising, however, comprehensive clinical studies are required to
prove the validity of this concept. Another potential approach to
validate DWI-based biomarkers might be the investigation of cor-
relations to more established biomarkers such as FMISO or FDG, for
which already studies with promising results with respect to treat-
ment adaptation are available [102].
8. Conclusion

DWI has potential to improve RT, and may be used for outcome
prediction, early response assessment, as well as tumor delineation
and characterization. Challenges such as geometric and quantifica-
tion robustness need to be addressed adequately. Further research
with respect to deriving biomarkers and how to implement them
into RT appears promising.
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