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Abstract

For skill advancement, motor variability must be optimized based on target information during practice sessions. This study
investigated structural changes in kinematic variability by characterizing submovement dynamics and muscular oscillations
after practice with visuomotor tracking under different target conditions. Thirty-six participants were randomly assigned to
one of three groups (simple, complex, and random). Each group practiced tracking visual targets with trajectories of varying
complexity. The velocity trajectory of tracking was decomposed into 1) a primary contraction spectrally identical to the
target rate and 2) an intermittent submovement profile. The learning benefits and submovement dynamics were
conditional upon experimental manipulation of the target information. Only the simple and complex groups improved their
skills with practice. The size of the submovements was most greatly reduced by practice with the least target information
(simple . complex . random). Submovement complexity changed in parallel with learning benefits, with the most
remarkable increase in practice under a moderate amount of target information (complex . simple . random). In the
simple and complex protocols, skill improvements were associated with a significant decline in alpha (8–12 Hz) muscular
oscillation but a potentiation of gamma (35–50 Hz) muscular oscillation. However, the random group showed no significant
change in tracking skill or submovement dynamics, except that alpha muscular oscillation was reduced. In conclusion,
submovement and gamma muscular oscillation are biological markers of learning benefits. Effective learning with an
appropriate amount of target information reduces the size of submovements. In accordance with the challenge point
hypothesis, changes in submovement complexity in response to target information had an inverted-U function, pertaining
to an abundant trajectory-tuning strategy with target exactness.
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Introduction

Motor learning produces relatively permanent increases in

motor success and performance consistency. Although variations

in motion could degrade task performance, motor variability is not

completely negative, as it can be integral to the exploration of

drive actions [1,2]. Some motor variability is necessary for shaping

undesired movement patterns [3]. Research has shown that

practice could reduce the size of motor variability [4,5] and alter

the structure of motor variability in terms of reductions in noise

level and error tolerance [6,7,8]. For one-dimensional kinematic

data, the structure of motor variability is typically indexed with

entropy measures, which characterize the degree of predictability

of kinematic fluctuations over a data stream. Entropy changes in

movement fluctuations with effective practice are subject to

engagement of error corrections with sensory feedback [9,10]

and/or adaptability to environmental perturbations [11].

One of the major sources of motor variability is submovements,

which manifest as numerous pulse elements in the movement

trajectory [12,13]. Submovements are generated because the

central nervous system plans and approximates the desired

movement pattern with sampled processes against feedback delays

[14,15,16]. Namely, central scaling of submovements is a part of

an additive accuracy control during visuomotor tracking [13].

Structure of submovements in the movement trajectory changes

with manipulation of visual feedback [17,18]. Increase in target

rate [17], enhanced intermittent frequency of visual information

[18], or removal of online visual feedback [15,19] during

visuomotor tracking leads to a reduction in the signs of

submovements, due to interruption of actor’s corrective actions

with feedback processes. Although movement reorganization due

to motor learning has been analyzed at a number of levels, little

attention has been paid to changes in the submovement dynamics

[20] underlying the strategic rebalancing of the feedback and feed-

forward processes after learning [18,21].

The amount of information in a learning paradigm determines

task difficulty and learning benefits. According to the challenge

point framework [22], learning benefits are optimized with the

amount of skill-dependent task information. Learning alters the

transmission of information from inputs to outputs and dimen-

sional changes in the state space of observed behaviors [6,7]. A

prevailing view is that learning reduces dynamic degrees of

freedom (dimension); however, a dimensional increase is possible

for learning a challenging motor task, known as motor abundance

[23]. The present study aims to map the learning benefits of single-

joint visuomotor tracking onto submovement characteristics under
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the condition of varied target information. Our main hypotheses

are that 1) the size and the complexity of submovements will be

differently modulated with the amount of target information in a

learning paradigm, and 2) learning benefits under different target

constraints will be represented by practice-related changes in

submovement dynamics. This study also links the practice-related

submovement scaling to muscular oscillatory activities normally

present in phasic movements [24,25,26]. Theoretically, charac-

terizing submovement dynamics and muscular oscillation will lend

insight into the fine-tuning and internal coding of movement

trajectories associated with information-based learning.

Materials and Methods

Ethics Statement
The experiment was approved by the local human experiment

and ethics committee (National Cheng Kung University Hospital

Institutional Review Board, NCKUH IRB), and written informed

consent was obtained from all participants before the experiment,

conforming to the Declaration of Helsinki.

Subjects
A total of thirty-six right-handed young adults (19 female and 17

male, age: 20–29 years) without any history of neuromuscular

disorders participated in this study. Handedness was tested

according to the Oldfield questionnaire.

Behavioral task
The subjects were randomly assigned to three experimental

groups of twelve subjects, trained in one of three tracking protocols

(simple, complex, and random). The subjects in the simple

protocol learned to track a 0.5 Hz sinusoidal target within a

range of 3 cm (61.5 cm), and the subjects in the complex protocol

learned to track a combined wave of 0.25 Hz and 0.75 Hz with

1.5 cm (60.75 cm) of amplitude for each sinusoidal component.

The subjects in the random protocol learned to pursue a quasi-

random target spectrally ranging from 0 to 1 Hz. By conditioning

of white noise with a 1 Hz low-pass filter, the peak-to-peak

amplitude of the quasi-random target was empirically adjusted to

3 cm. The means of target rate were theoretically identical for all

tracking protocols. A target rate below 1 Hz was chosen for the

simple, complex, and random protocols to stimulate the use of

feedback processes in the control of the tracking maneuvers

[18,27]. The target complexity (or information) of the practice

protocol increased with the spectral components in a target signal

(random . complex . simple). There were 3 pre-test trials (1-min

rest between trials), 15 training trials (1-min rest between training

trials), and 3 post-test trials (1-min rest between trials) of 20

seconds per trial for each group (Fig. 1, left). The training session

began 20 minutes after the end of the last pre-test trial, and the

post-test assessment was performed 1 hour after the last training

trial was completed. During the experiment, a subject sat on a

chair with his/her wrist and forearm of the practice (right) limb

fixed within a thermoplastic splint on the table. No finger

movements were constrained by the thermoplastic splint, and

the fingers remained fully extended in parallel to the ground

during the experiment. By carefully controlling the flexion-

extension of the right metacarpophalangeal (MCP) joint, the

subjects in these trials were required to couple the positional trace

of the fingertip of the extended middle finger to the designated

target movement with visual feedback.

Recordings
A displacement-transducing laser (ZX-LD100, Omron, Kyoto,

Japan) was placed 4 cm above the fingertip (the midpoint of its

recording range)(Fig. 1, right). The laser device could measure the

distance between itself and the finger tip, such that the positional

trajectory of the middle finger in reference to the midpoint of the

recording range was registered during manual tracking. Target

signals were generated by an analog-digital card with program-

mable analog outputs. Target signals and displacement of the

middle finger were displayed on a computer screen as a visual

guide for the manual tracking. Muscle activities of the extensor

digitorum (ED) and the flexor digitorum superficialis (FDS) were

measured with a pair of bipolar surface electrode units (1.1 cm in

diameter, gain = 365, CMRR = 102 dB, Imoed Inc., Salt Lake

City, UT, USA). The electrode on the ED was placed over the

muscle about three quarters of the distance between the elbow and

the wrist from the elbow. The muscle activity of the FDS was

recorded by placing the electrode on an oblique angle approxi-

mately 4 cm above the wrist on the palpable muscle mass. All

physiological measures, including target movement, finger trajec-

tory, and EMG signals, were digitized at 1 kHz via a 16-bit A/D

converter (NI USB-6218, National Instruments, Austin, TX, USA)

controlled by a computer program constructed on a LabView

platform (LabView v.8.0, National Instruments, Austin, TX,

USA).

Analysis
Target signal and finger position traces were conditioned with a

low-pass filter (cut-off frequency: 6 Hz)[13,17]. EMG recordings

from the ED and FDS muscles were band-pass filtered (pass-band:

1,400 Hz) to preclude a potential linear trend of a biased current

and sinusoidal movement artifacts. All conditioned physiological

signals in the first and last 1 second were excluded from

subsequent analyses.

Tracking Performance. Tracking performance was assessed

with tracking congruency, defined as the cross correlation

maximum (CM) between the target trajectory and the positional

trace of the middle finger. A higher CM represented better

tracking congruency and a higher degree of trajectory similarity

between the target and the manual output. In terms of CM,

tracking congruency was determined from all the experiment trials

in the pre-test, practice, and post-test sessions. CM of the three

trials in the pre-test and post-test sessions was averaged to assess

baseline and post-practice performances. The learning benefit

after practice was defined as a standardized change in the mean

tracking congruency between the pre-test and post-test sessions (D
tracking congruency), or (CMpost-test - CMpre-test)/CMpre-test.

Submovement. Displacement data of the middle finger were

down-sampled to 100 Hz in submovement analysis. The displace-

ment data were differentiated to obtain a velocity profile. Then the

velocity profile was further decomposed into two time series, the

primary movement and the submovement profile (Fig. 2)[13,17].

Spectrally identical to the moving target, the amplitude of the

hypothetical primary movement approximated the velocity profile

of a target signal in amplitude. The primary movement was the a

priori standard of intended movement with a deterministic nature,

specifically synchronized with the moving target. On the other

hand, the submovement profile was of a stochastic nature,

pertaining to the additive mechanisms of error correction to

remedy tracking deviations [13,17]. For the simple protocol, the

submovement profile was obtained by conditioning the velocity

profile with a zero-phasing notch filter that passes all frequencies

except for the target rate at 0.5 Hz. The transfer function of the

Submovement Reorganization after Practice
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notch filter wasH0(z)~b0
(1{ejv0z{1

)(1{e{jv0z{1

)

(1{rejv0z{1
)(1{re{jv0z{1

)
, r = .9975,

v0 = p/360. Subtracting the submovement profile from the velocity

profile gave the primary movement, a 0.5 Hz sinusoidal wave with

its amplitude approximating the velocity profile of the target signal.

For the complex protocol, the submovement profile was obtained by

conditioning the velocity profile with a zero-phasing notch filter

to exclude frequencies of the target rate at 0.25 Hz and 0.75 Hz.

The transfer function of the notch filter was H1(z)~

b1
(1{ejv0z{1

)(1{e{jv0z{1

)

(1{rejv0z{1

)(1{re{jv0z{1

)

(1{ejv1z{1

)(1{e{jv1z{1

)

(1{rejv1z{1

)(1{re{jv1z{1

)
, r =

.9975, v0 = p/720, v1 = 3p/720. The primary movement was a

combined sinusoidal wave of 0.25 Hz and 0.75 Hz with its

amplitude approximating the velocity profile of the target signal.

For the random protocol, the velocity profile of manual tracking

was conditioned with a zero-phase 4th order Butterworth low-pass

filter (cut-off frequency: 1 Hz). The spectral components of the

velocity profile that were greater than 1 Hz (1–6 Hz) were

considered as submovements, since they did not spectrally couple

the target movement in the random condition.

Root mean square (RMS) was applied to obtain a time-averaged

amplitude of a submovement profile and a primary movement.

The relative submovement amplitude was defined as the ratio of

the submovement RMS to the RMS value of the velocity profile of

manual tracking. RPM/S was the amplitude ratio of the primary

movement relative to the submovement profile. Multi-scale

entropy (MSE) analysis was a complexity measure used to reveal

information hidden in the submovement profile. The details of the

Figure 1. Experiment procedure, system setup, and data recording.
doi:10.1371/journal.pone.0082920.g001

Figure 2. Schematic illustration of acquisition of primary
movement and submovement profile from velocity profile
during tracking.
doi:10.1371/journal.pone.0082920.g002
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MSE algorithm have been reported elsewhere (Appendix

S1)[28,29]. Briefly, the MSE algorithm quantifies the sample

entropy (SampEn) of the coarse-grained time series of kinematic

data, such as to gain SampEn across different time scales (1–25 in

this study), or the SampEn curve. The area under the SampEn

curve in time scales 1–10 was empirically determined as the MSE

area in low time scales. Each time scale for MSE in this study was

10 ms, conforming to the sampling rate of 100 Hz. The MSE area

is a robust measure of biological complexity. A higher MSE area

in submovement data indicates a noisier structure with more

information contents in tuning of the movement trajectory. The

standardized change in submovement complexity was the

difference in MSE area between pre-test and post-test sessions

divided by the MSE area of the pre-test session.

EMG analysis. The EMG data of the FDS and ED muscles

of the pre-test and post-test conditions were rectified for spectral

analysis. Rectification of surface EMG is believed to enhance the

spectral peaks that represent common oscillatory inputs or the

mean firing rate of an active muscle [30,31,32]. The power spectra

of the rectified EMG signals were computed using Welch’s

method. A Hanning window with a window length of 1.6 seconds

and an overlap of 0.4 seconds was used. Spectral resolution was

0.244 Hz. The spectral profiles of rectified EMG of the three trials

in the pre-test and post-test sessions were averaged and then

standardized with the mean spectral amplitude to reduce inter-

subject variability. We obtained mean spectral peaks in the alpha

(8–12 Hz), beta (13–20 Hz), and gamma (35–50 Hz) bands from

standardized EMG spectral profiles of the three tracking trials in

the pre-test and post-test sessions. Signal analyses were completed

with custom-written programs using Matlab R2007 (Mathworks

Inc., Natick, MA, USA).

Statistical Analyses
For the simple, complex, and random conditions, the Wilcoxon

signed-rank test was used to examine the practice effect by

comparing the tracking congruency, submovement variables

(relative submovement power, RPM/S, and MSE area), and

EMG variables (peak oscillations in alpha, beta, and gamma

bands) between the pre-test and post-test for each practice

protocols. The Kruskal-Wallis test and a post-hoc test with

Bonferroni correction were used to contrast standardized changes

in tracking congruency, submovement variables among the simple,

complex, and random conditions. Pearson’s correlation analysis

was used to examine the contributions of standardized changes in

the submovement variables (the size and the complexity) to the

standardized change in tracking congruency (learning benefits). All

statistical analyses were completed using the SPSS 15.0 statistical

package (SPSS Inc., USA) with the significance level set at

P = 0.05.

Results

Tracking Congruency
In terms of CM, Figure 3A contrasts the evolutional changes in

tracking congruency among the three different practice protocols.

The tracking congruency of the simple and complex protocols

increased progressively with the number of practice blocks, and

post-test trials exhibited a greater CM than pre-test trials (Simple:

Z = 3.052, p = 0.002; Complex: Z = 3.052, p = 0.002). For prac-

ticing under the random condition, tracking congruency did not

vary between the pre-test and post-test sessions (Z = .001, p.0.05).

The results of the Kruskal-Wallis test on the standardized change

in CM suggested a task-dependent benefit of practice protocols

(x2(2) = 14.69, p = 0.001), with the greatest improvement in

tracking congruency for the complex protocol (Complex . Simple

. Random)(p,0.0167)(Fig. 3B).

Submovement Characteristics
Figures 4A and 4B contrast the evolutional changes in the

percentage of the submovement amplitude and amplitude ratio of

primary movement relative to submovement (RPM/S) among the

different practice protocols. For both the simple and complex

protocols, practice led to decreases and increases in submovement

amplitude and RPM/S, respectively (Figs. 4 A and B, left). The

percentages of submovement amplitude in the post-test session

were smaller than those in the pre-test session (Simple:

Z = 23.061, p = 0.002; Complex: Z = 23.061, p = 0.002). The

RPM/S values were conversely larger in the post-test session than

those in the pre-test session (Simple: Z = 23.059, p = 0.002;

Complex: Z = 22.903, p = 0.004). For the random protocol,

however, the percentage of submovement amplitude

Figure 3. Contrast of mean evolutional changes in tracking
performance among three practice protocols. (A) Tracking
congruency, (B) Standardized change in tracking congruency due to
practice effect among three practice protocols. (*: post-test . pre-test,
p,0.05; ***: post-test . pre-test, p,0.001)(#: significant difference
between protocols, p,0.0167; ###: significant difference between
protocols, p,0.001).
doi:10.1371/journal.pone.0082920.g003
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(Z = 21.020, p = 0.308) and RPM/S (Z = 21.020, p = 0.308) were

invariant to the practice effect. The results of the Kruskal-Wallis

test revealed that standardized change in the submovement

amplitude (x2(2) = 20.126, p,0.001) and RPM/S (x2(2) = 17.479,

p,0.001) varied with the practice protocol. The simple protocol

resulted in the greatest reduction in submovement amplitude and

enhancement in RPM/S (p,0.0167)(Figs. 4A and 4B, right).

Figure 5A contrasts the SampEn curves by the time scale factors

of the three practice protocols. Of note is that the SampEn curves,

especially for the shorter scale factors (1–10), increased after

practice under the simple and complex conditions. Figure 5B

shows evolutional change in the MSE area under scale factors 1–

10 for different practice protocols. The practice effect on the MSE

area (or submovement complexity) was evident for the simple and

complex protocols (Simple: Z = 22.040, p = 0.041; Complex:

Z = 23.059, p = 0.002), but not for the random protocol

(Z = .000, p = 1.0). The Kruskal-Wallis test suggested a protocol-

dependent change in submovement complexity (x2(2) = 12.12,

p = 0.002), and complex protocol produced the greatest practice

potentiation in submovement complexity (p,0.001)(Fig. 5C).

As only the simple and complex groups exhibited significant

learning benefits, Pearson’s correlations were calculated between

the standardized changes in tracking congruency (D tracking

congruency) and standardized changes in submovement variables,

based on the subjects in the two groups (n = 24). D tracking

congruency was significantly related to standardized changes in

Figure 4. Contrast of mean evolutional and standardized changes in submovement amplitude among three practice protocols. (A)
Relative submovement amplitude in percentage, (B) Amplitude ratio of primary movement to submovement (RPM/S) (+++: pre-test . post-test,
p,0.05; ***: post-test . pre-test, p,.001)(#: significant difference between protocols, p,0.0167; ###: significant difference between protocols,
p,0.001).
doi:10.1371/journal.pone.0082920.g004

Submovement Reorganization after Practice

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e82920



submovement complexity (MSE area)(r = .813, p = 0.000) but not

in submovement size (r = 2.188, p = 0.380). Namely, the stan-

dardized change in submovement complexity was a potent

predictor for practice-related improvement in tracking congruen-

cy.

Emg Time Series
Figure 6 contrasts the pooled power spectra of the rectified

EMG of the ED muscle between the pre-test and post-test sessions

under different target conditions. There were several visible

changes in the spectral distribution of the ED EMG following

practice under the simple and complex conditions (Figs. 6A and

6B). The results of the Wilcoxon signed-rank test suggested that

the standardized amplitude of alpha spectral peak (8–12 Hz) was

smaller in the post-test condition than in the pre-test conditions

(Simple: Z = 22.432, p = 0.015; Complex: Z = 22.040, p = 0.04).

In contrast, the standardized amplitude of gamma oscillation (35–

50 Hz) was enhanced following practice, with a greater gamma

spectral peak in the post-test condition (Simple: Z = 22.746,

p = 0.006; Complex: Z = 22.903, p = 0.004). The beta spectral

peak (13–20 Hz) did not significantly differ in the pre-test and

post-test conditions (Simple: Z = 21.412, p = 0.158; Complex:

Z = 21.225, p = 0.209), although the beta oscillation in the pooled

spectral profile of the ED EMG appeared to be more prominent in

the post-test condition. For the random condition, alpha oscillation

was consistently present in the pre-test and post-test conditions

(Fig. 6C). The result of the Wilcoxon signed-rank test suggested

that alpha peak power was decreased in the post-test condition

(Z = 23.059, p = 0.002). Figures 7A–7C contrast the pooled power

spectra of the rectified EMG for the FDS muscle between the pre-

test and post-test sessions under the different target conditions. For

all the practice paradigms, only the alpha rhythm was present in

the FDS muscle during tracking. The result of the Wilcoxon

signed-rank test suggested no significant difference in alpha

spectral peak between the pre-test and post-test conditions (Simple:

Z = 21.255, p = 0.209; Complex: Z = 21.225, p = 0.209; Ran-

dom: Z = 0.000, p = 1.0).

Figure 5. Multi-scale entropy (MSE) analysis of submovement profile for different practice protocols. (A) Pooled sample entropy versus
scale factors of 1–25, (B) Evolutional change in MSE area under scale factors 1–10, and (C) Standardized change in MSE area due to practice effect. (*:
post-test . pre-test, p,0.05; ***: post-test . pre-test, p,0.001)(#: significant difference between protocols, p,0.0167; ###: significant difference
between protocols, p,0.001).
doi:10.1371/journal.pone.0082920.g005
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Discussion

In light of tracking congruence, submovement dynamics, and

muscular oscillation, the present results confirmed the effects of

information-based practice on learning benefits and a trajectory-

tuning strategy for visuomotor tracking. Practice in the simple and

complex conditions resulted in positive learning benefits, concur-

rent with reduction of the submovement size, potentiation of the

submovement complexity, and enhancement of the gamma

muscular rhythmicity at 35–50 Hz in the working muscle.

However, the tracking skill was not improved after practice with

excessive target information, and the submovement size, sub-

movement complexity, and gamma muscular oscillation were not

altered in the random condition.

Learning-based reduction in the size of submovements
For practicing under the simple and complex conditions, the

reduction in the size of submovements could be best explained as a

concomitant decrease in performance variability with improve-

ment in skill. In addition to peripheral afferents, the central

nervous system could scale speed pulses that are overlapped and

superimposed onto a desired movement trajectory according to

the accuracy constraints of visuomotor tracking [13,17]. Under the

framework of intermittent movement control [14,15], submove-

ments are corrective motor acts for fine-tuning a force trajectory,

predominantly with feedback processes. Central to this interpre-

tation, the learning-based reduction of the size of submovements

indicates a smoother and less variable tracking trajectory in the

post-test trials. Practice with an appropriate amount of target

information could effectively minimize the negative impact of

kinematic variability because the subjects could adopt kinematic

patterns of the target with practice and prevent excessive

corrective actions based on feedback processes.

Of particular importance for understanding the role of the size

of submovements in performance is that the standardized change

in the amount of submovement suppression (simple (S) . complex

(C) . random (R)) was inversely related to the amount of target

information (Fig. 4A). The fact that learning-based suppression of

submovement size is gated by target information is nicely

predicted by the learning-performance relationship [22] (Fig. 8).

Figure 6. Pooled power spectra of rectified EMG from the ED muscle before and after practice. (A) Simple protocol, (B) Complex protocol,
and (C) Random protocol. Visible changes in higher frequency muscular rhythmicity at 13–20 Hz and 35–50 Hz were noted in the simple and
complex conditions. The shaded area represents standard deviation of the pooled spectral profile. (*: post-test . pre-test, p,0.05; +++: pre-test .
post-test, p,0.001)(ED: the extensor digitorum).
doi:10.1371/journal.pone.0082920.g006

Submovement Reorganization after Practice

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e82920



Once the amount of target information exceeds what the subjects

could process, as occurred in practice under the random

condition, submovement size (or motor variability) could not be

tuned with practice according to task demands. Under the simple

and complex conditions, however, the submovement size is

gradually minimized with practice in consequence to less drastic

trajectory tuning in the course of tracking. An increase in RPM/S

(Fig. 4B) signifies consolidation of movement execution with less

uncertainty and relative enhancement of the internal drive to

produce rhythmic tracking movements of the target rate [8,20].

Learning-based enhancement in the complexity of
submovements

For concomitant learning benefits, the increase in submovement

complexity following practice with the simple and complex

protocols was a positive aspect of motor abundance. Hence, skill

improvement is often associated with a lower likelihood of similar

relative characteristics in the distance between submovement data

points [5]. This fact suggests that the subjects were able to develop

a richer trajectory-tuning pattern as a result of practicing with

appropriate amounts of target information [6]. In fact, complexity

is naturally inherent in skilled and mature motor behaviors. When

sensory information cannot be fully exploited in the setting of

visual or somatosensory impairments, motor behaviors could lose

complexity. For example, older adults [33] and patients with

neurological disorders [3,34,35] exhibit a larger but more regular

postural sway during quiet stance because they lack sufficient

adaptability to stance perturbation, known as the loss of

adaptability hypothesis.

It is apparent that the submovement complexity and submove-

ment size were differentially channeled and modulated following

practice as the amount of target information varied. Changes in

submovement complexity (gsubmovement complexity) in re-

sponse to target information had an inverted-U function (complex

(C) . simple (S) . random (R))(Figs. 5C and 8), akin to the

relationship between potential learning benefits and task difficulty

Figure 7. Pooled power spectra of rectified EMGs from the FDS muscle before and after practice. (A) Simple protocol, (B) Complex
protocol, and (C) Random protocol. There was a prominent 8–12 Hz oscillation peak in the pre-test and post-test sessions. The shaded area
represents the standard deviation of the pooled spectral profile. (FDS: the flexor digitorum superficialis).
doi:10.1371/journal.pone.0082920.g007
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[22]. According to the challenge point hypothesis, potential

learning benefits are optimal with practice at a moderate level of

task difficulty, or the optimal challenge point. In line with the

theoretical framework, our results also support that the greatest

complexity increment in submovements after practice took place

around the moderate target information level (moderate task

difficulty). When the amount of target information exceeded the

capacity of the visuomotor system to process it, no target

information could be successfully used to enrich the state of

movement complexity. Supplementary to the challenge point

framework, the change in submovement complexity is noted to be

a potent predictor for information-dependent learning benefits.

We posit that the potential learning benefits after effective practice

are determined by the transmission of information on target

movement, such as remedying trajectory deviations with versatile

submovement patterns due to strategic abundance.

Adaptive changes in muscular oscillations following
practice

In the simple and complex conditions, the improvements in the

submovement complexity and tracking success were very likely to

be inherited from the emergence of muscular oscillation at 35–

50 Hz in the ED muscle (Figs. 6 A, 6B). Coincidently, the gamma

band in rectified EEG-EMG coherence (EEG-EMG piper rhythm)

is enhanced when motor tasks require more computational loads

or cognitive resources during phasic contraction [36,37], such as

periodic isometric contraction [37] and repetitive isotonic

contraction [36,38,39]. During the holding of a compliant object

[40] or force exertion at a high level of precision [24], the EEG-

EMG piper rhythm also increases, representing the intensive use

of sensory cues. Although this study did not directly assess the

EEG-EMG corticomuscular coherence, the muscular oscillation at

the 35–50 Hz muscular oscillation was likely a peripheral part of

the gamma corticomuscular coherence due to synchronous firing

of spinal motoneurons in phase with the cortical rhythm [30].

Similar to the functioning of EEG-EMG corticomuscular coher-

ence in the gamma band, the potentiation of gamma muscular

oscillation in the simple and complex conditions was a physiolog-

ical signature of practice-related alterations for strategic advance-

ments. One possible explanation for the use of a fast coding

scheme (or gamma muscular oscillation) is an increased capability

of effectively integrating task-relevant sensory information after

practice [25]. The gamma band of the muscular oscillation was

not potentiated in the random condition, in parallel with

insignificant changes in learning benefits (Fig 3B) and submove-

ment dynamics (Fig. 6C),

Another practice-related modulation of muscular oscillation was

noted in the alpha muscular oscillation (8–12 Hz), probably

physiological tremor in the ED muscle [41,42]. Although the

Figure 8. Summary illustration of learning-based channeling and modulation of submovement characteristics with respect to
target information. The amounts of change in submovement size (gsubmovement size) and submovement complexity (gsubmovement
complexity) are differently modulated with respect to target information. In accordance with the learning-information relationship, gsubmovement
size is downward-modulated with target information increment (simple (S) . complex (C) . random (R)). Namely, submovement size is not
suppressed under practice with excessive target information. On the other hand, the effect of target information on gsubmovement complexity
during practice is an inverted-U function, with maximal change in complexity at medium target information.
doi:10.1371/journal.pone.0082920.g008
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alpha muscular oscillation was smaller in the post-test session for

all practice protocols, the reduction in this rhythm was not

functionally anchored to learning because suppression of the alpha

muscular oscillation concurred with practice under the random

condition. There were 4–5 subjects who presented evident beta

muscular oscillation (13–20 Hz) that contributed to a visible

change in the beta band of the pooled EMG spectral profile after

practice under the simple and complex conditions (Figs. 6 A and

B). Although the population mean of the beta peak power was not

significantly different before and after practice, the presence of

EMG beta rhythm in some of the subjects is still worth noting.

This scenario favors inter-individual strategic differences in the

control of phasic movements [43,44]. Increases in the beta band of

rectified EMG-EEG coherence have also been reported in some

subjects who demonstrated better performance during sinusoidal

force tracking [44].

In conclusion, this paper presents a novel finding, that the

scaling properties of submovement and muscular oscillations

reflect information-based motor learning. There are two separate

processes for submovement scaling (size and complexity) during

motor learning with different amounts of information. In

agreement with the theoretical model of optimal movement

variability, practice with a suitable amount of target information

reduces the negative impact of behavioral variability, or the size of

submovements. Submovement size is reduced because motor

variability and fruitless error-correction are minimized, fitting the

behavioral outputs consistently according to task constraints. In

agreement with the challenge point hypothesis, the increase in

submovement complexity after practice is the positive impact of

behavioral variability, showing an inverted-U relationship with

increases in target information. Submovement complexity is a

behavioral repertoire of exploratory flexibility to achieve task

goals. Contingent on the channeling and modulation of submove-

ments, the potentiation of gamma muscular oscillation is a

biological marker of information-based learning of trajectory

control.
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