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Abstract

Despite the establishment of the important role of nitric oxide (NO) on apoptosis, a molecular- level understanding of the
origin of its dichotomous pro- and anti-apoptotic effects has been elusive. We propose a new mathematical model for
simulating the effects of nitric oxide (NO) on apoptosis. The new model integrates mitochondria-dependent apoptotic
pathways with NO-related reactions, to gain insights into the regulatory effect of the reactive NO species N2O3, non-heme
iron nitrosyl species (FeLnNO), and peroxynitrite (ONOO2). The biochemical pathways of apoptosis coupled with NO-related
reactions are described by ordinary differential equations using mass-action kinetics. In the absence of NO, the model
predicts either cell survival or apoptosis (a bistable behavior) with shifts in the onset time of apoptotic response depending
on the strength of extracellular stimuli. Computations demonstrate that the relative concentrations of anti- and pro-
apoptotic reactive NO species, and their interplay with glutathione, determine the net anti- or pro-apoptotic effects at long
time points. Interestingly, transient effects on apoptosis are also observed in these simulations, the duration of which may
reach up to hours, despite the eventual convergence to an anti-apoptotic state. Our computations point to the importance
of precise timing of NO production and external stimulation in determining the eventual pro- or anti-apoptotic role of NO.
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Introduction

The survival of an organism depends on homeostatic mecha-

nisms that establish a balance between cell proliferation and cell

death. Apoptosis, a form of programmed cell death, assists in

regulating cell proliferation. This process stands in contrast to

necrosis, which is thought to be uncontrolled. Dysregulation of

apoptosis has been implicated in various disease processes in which

the cells apoptose to a higher or lower extent compared to those in

healthy tissues [1]. When cells undergo apoptosis, a series of

morphological and biochemical changes occur, the mechanisms of

which are current topics of broad interest [2].

Apoptosis may be induced by various events, such as binding of

extracellular (EC) death signaling ligands to host cell receptors, the

lack of pro-survival signals, and genetic damage. These events are

usually followed by the activation of caspases, cysteine-dependent

aspartate-specific proteases, which initiate and execute apoptosis.

Caspases are activated through two major pathways: (a) ligand-

dependent or receptor-induced activation (extrinsic pathway),

involving death receptors such as Fas or the members of tumor

necrosis factor (TNF) receptor superfamily, and (b) mitochondria-

dependent activation (intrinsic pathway) via cytochrome c (cyt c)

release from mitochondria, triggered by stress, irradiation or

inflammation [3,4].

Binding of death ligands such as Fas ligand (FasL), TNF, or tumor

necrosis-related apoptosis-inducing ligand (TRAIL) usually induces

the oligomerization of associated receptors, followed by binding of

adaptor proteins, e.g., Fas-Associated Death Domain proteins

(FADD), to the cytoplasmic domains of the receptors [5]. The

resulting Death Inducing Signaling Complex (DISC) recruits

multiple procaspase-8 molecules that mutually cleave and activate

one another into caspases-8 (casp8). In Type I cells, large quantities

of casp8 activate other caspases including the executioner caspase-3

(casp3) molecules that ultimately lead to apoptosis. In Type II cells,

on the other hand, the amount of casp8 activated at the DISC is

small, such that the activation of casp8 does not propagate directly

to casp3, but instead is amplified via the mitochondria.

Nitric oxide has opposite, competing effects in regulating

apoptosis: it exerts an anti-apoptotic effect on hepatocytes [6–8],

endothelial cells [9–13] and keratinocytes [14], whereas it is pro-

apoptotic in the case of macrophages [15–18]. The variability and

complexity of the effects of NO on ultimate cellular fate may arise

from this molecule’s ability to react with oxygen, reactive oxygen

species, metal ions, small thiol-containing molecules, and proteins.

The resulting reactive NO species can either trigger or suppress

apoptosis through various mechanisms. Chief among them is the

S-nitrosative suppression of caspase activation, subsequent to the

generation of FeLnNO or other species capable of carrying out S-

nitrosation reactions (see below) [7,19]. Differences in the levels of

NO and its reaction products may also arise from diverse

inflammatory settings in which the expression of nitric oxide
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synthases (NOS) is affected. For example, quiescent endothelial

cells express constitutive NOS (eNOS) that directly produce NO

molecules and mediate so-called ‘‘direct’’ effects [20]. Some

inflammatory stimuli, on the other hand, lead to inducible NOS

(iNOS) expression that subsequently generates reactive NO

species, which in turn mediate ‘‘indirect’’ effects of NO. The

simultaneous presence of oxygen radicals can generate other

reactive NO species that mediate further indirect effects of NO

[20]. As another example, hepatocytes and macrophages have

different amounts of non-heme iron complexes, which affect the

levels of iron-nitrosyl species when NO is produced [21]. Finally,

different intracellular levels of glutathione (GSH) can also

modulate the time evolution of NO-related compounds [22].

Computational approaches have been used previously to help

unravel the complex biology of NO. Biotransport of NO was first

modeled by Lancaster [23,24] followed by other groups, among

them Zhang and Edwards [25] (reviewed by Buerk [26]).

Recently, Hu and coworkers focused on detailed reaction

mechanism of NO [22]. These models have shed light into the

biotransport of NO and the types of chemical reactions that

involve NO and related reactive species. Additionally, a number of

mathematical models have been proposed for understanding the

mechanisms of apoptosis [27–35], including in particular the work

of Eissing et al., which demonstrated the importance of IAP

inhibition for imparting bistability in type I cells [30], and that of

Rehm et al. [33] and Legewie et al. [32] that showed the same

effect in type II cells. These studies have improved our

understanding of the robustness of switch mechanisms for

regulating apoptosis, but none of them has addressed the

dichotomous effects of NO [27–35].

Herein, we propose a mathematical model that may shed light

on the pro- and anti-apoptotic effects of NO in specific contexts.

The model we propose couples the apoptotic cascade [28] to an

extended model of NO reaction pathways initially proposed by Hu

et al. [22]. First, we illustrate how identical cells can undergo

apoptosis at different time points after being exposed to apoptotic

stimuli, in accord with experimental data collected on single cells

[36,37]. Then, we examine the apoptotic behavior in response to

changes in N2O3, FeLnNO, ONOO2, and GSH levels in the

presence of NO production by iNOS. Our simulations provide

insights into the origin of the dichotomous effects of NO on

apoptosis observed in experiments.

Results

First, we illustrate how different strengths of EC pro-apoptotic

signals may result in opposite qualitative responses or different

quantitative (time-dependent) responses in the same type of cells

[37], using our recently introduced bistable model [28] (illustrated

in Figure 1A). Then, we examine the differences in the bistable

response of diverse NO producing cells, e.g. cells with different

concentrations of GSH and FeLn-and in different settings, i.e.,

with or without production of superoxide.

Delay in apoptosis induction (Model I)
Tyas et al. [37] showed that cells of the same type

simultaneously subjected to EC stimuli initiate their apoptotic

Figure 1. (A) Mitochondria-dependent apoptotic pathways in
Model I. The dotted box includes the interactions considered in the
model. Solid arrows indicate chemical reactions or upregulation; those
terminated by a bar indicate inhibition or downregulation; and dashed
arrows indicate subcellular translocation. The components of the model
are procaspase-8 (pro8), procaspase-3 (pro3), procaspase-9 (pro9),
caspase-8 (casp8), caspase-9 (casp9), caspase-3 (casp3), IAP (inhibitor of
apoptosis), cytochrome c (cyt c), Apaf-1, the heptameric apoptosome
complex (apop), the mitochondrial permeability transition pore
complex (PTPC), p53, Bcl-2, Bax, Bid, truncated Bid (tBid). The reader
is referred to our previous work [28] for more details. Three compounds
(N2O3, FeLnNO and ONOO2) not included in the original Model I [28] are
highlighted. These compounds establish the connection with the nitric
oxide pathways delineated in panel B. (B) Nitric oxide (NO)-related
reactions in Model II. The following compounds are included: ONOO2

(peroxynitrite), GPX (glutathione peroxidase), O2
2 (superoxide), GSH

(glutathione), GSNO (nitrosoglutathione), GSSG (glutathione disulfide),
CcOX (cytochrome c oxidase), SOD (superoxide dismutase), FeLn (non-
heme iron compounds), FeLnNO (non-heme iron nitrosyl compounds),
NADPH (reduced form of nicotinamide adenine dinucleotide phos-
phate), NADP+ (oxidized form of nicotinamide adenine dinucleotide
phosphate). FeLnNO, ONOO2 and N2O3, highlighted in both panels A
and B, bridge between Models I to II. Model III integrates both sets of

reactions/pathways through these compounds. GSH modulates their
concentrations by reacting with them. GSH is converted by these
reactions to GSNO, which is then converted to GSSG and finally back to
GSH. Those compounds and interactions are shown in blue. See Table 1
for the complete list of reactions and rate constants.
doi:10.1371/journal.pone.0002249.g001

Effects of NO on Apoptosis
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response at different times. Figure 2 panels A–C illustrate the

theoretical time evolutions of casp3 in three identical cells

subjected to different strengths of EC apoptotic stimuli (repre-

sented here by the initial concentration of casp8) in the absence of

NO. For these simulations, we used Model I with three different

values of [casp8]0; 1025 mM, 1024 mM, and 1.561024 mM in the

respective panels A–C, while [casp3]0 was 1025 mM in all three

cases. Panel A shows that low [casp8]0 leads to the depletion of

[casp3], while [casp8]0 above a certain threshold (8.3561025 mM)

(panels B and C) lead to increase in [casp3] and thereby onset of

cell death. Furthermore, comparison of panels B and C shows that

a relatively lower [casp8]0 (or weaker EC apoptotic signal) results

in a time-delayed initiation of apoptosis, in agreement with the

single cell experiments done by Tyas et al. [37]. The sharp

increase in [casp3] to its equilibrium level indeed starts about

30 minutes later in panel B, compared to panel C.

Next, we examined how this onset time varies with [casp8]0.

Figure 2D displays the results. An increase in onset time is predicted

with decreasing [casp8]0 up to [casp8]0 = 8.3561025 mM, after

which no apoptotic effect is observed. The time delay is found to

obey a logarithmic decay with increasing D[casp8]0;[casp8]0–

8.3561025 mM, as indicated by the best fitting curve.

This analysis shows that cells of the same type may undergo

apoptosis at different times due to their different EC microenviron-

ments. Hence, the difference in the onset times among cells of the

same type in a given cell culture may be explained without recourse to

alterations in the underlying network of biochemical reactions [28].

Nitric oxide-associated network (Model II) (Figure 1B)
The results from our calculations using Model II are shown in

Figure 3. Here, we focused on the time evolution of four

compounds, GSH, N2O3, FeLnNO and ONOO2, displayed in

respective panels A–D. The NO species N2O3, FeLnNO and

ONOO2 have been proposed to carry out various indirect effects

of NO on cellular pathways, including apoptosis, during

inflammation [20].

GSH is an anti-oxidant reduced to GSSG by reacting with

nitrosative N2O3 and FeLnNO, and with oxidative ONOO2

(Table 1). GSH is depleted to low levels in a switch-like manner

due to those reactions (panel A). The depletion of GSH is

accompanied by increases in N2O3 and FeLnNO concentrations

(panels B–C). On the other hand, this switch-like behavior is not

that pronounced in [ONOO2] time dependence (panel D).

Simulations performed with different initial GSH concentrations

(three different curves in each panel) change the steady-state

concentrations of all three NO-related compounds that interfere

with apoptotic pathways (panels B–D). The switch-like increase in

[N2O3] and non-switch-like increase in [ONOO2] is in agreement

with the results of Hu et al. [22].

Anti-apoptotic and pro-apoptotic effects of NO (Model
III)

We analyze here the dynamics of the reduced mitochondria-

dependent apoptosis model coupled to anti- and pro-apoptotic

Figure 2. Time evolution of [casp3] predicted by a bistable
model in response to different strengths of apoptotic stimuli,
A) in a cell subjected to a weak EC apoptotic signal (reflected
by the low concentration [caps8]0); B) in a cell that is subjected
to a stronger EC pro-apoptotic signal. Caspase-3 is activated at
60 minutes; C) in a cell that is subjected to a stronger EC pro-apoptotic
signal than one in panel B. Caspase-3 is activated at 30 minutes. Panels
A and B illustrate two opposite effects induced by different initial
concentrations of caspase-8. The threshold concentration of [caps8]0

required for the switch from anti-apoptotic to pro-apoptotic response is

calculated to be 8.3561025 mM. Panels B and C illustrate the shift in the
onset time of apoptosis depending on [casp8]0. D) Dependence of
apoptotic response time on the initial caspase-8 concentration. The
ordinate is the onset time of caspase-3 activation, and the abscissa is
the initial concentration of caspase-8 in excess of the threshold
concentration required for the initiation of apoptosis (evidenced by
increase in [casp3], see panels B–C). The onset time of caspase-3
activation exhibits a logarithmic decrease with D[casp8]0 ([casp8]0–
8.3561025 mM).
doi:10.1371/journal.pone.0002249.g002

Effects of NO on Apoptosis
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pathways associated with NO; see Materials and Methods for the

list of reactions/interactions/steps that come into play in this

model (III). As mentioned above, NO-related pathways are

coupled to apoptotic pathways through N2O3, FeLnNO, and

ONOO2 that are produced by the reaction of NO with O2, FeLn

and O2
2, respectively. For simplicity, those effects of NO

mediated by cGMP [38,39] are not included in this initial

mathematical model.

Modulating roles of N2O3 and GSH in apoptosis. We

initially excluded non-heme iron compounds in order to assess the

effect of N2O3 exclusively. The production rate of superoxide was

likewise assumed to be zero. N2O3 is produced by reactions (xii)

and (xiii) in Table 1. NO production and EC stimulation were

initiated simultaneously. Figures 4A–C are the counterparts of

Figures 2A–C, respectively (same initial conditions, except for the

interference of NO pathways through N2O3), where the time-

dependence of [casp3] (solid curve) and [GSH] are shown. The

bistable response to apoptotic stimuli, dependent on [casp8]0, is

shown to be maintained despite the interference of NO pathways

through N2O3. The three columns refer to different initial

concentrations of GSH, decreasing from [GSH]0 = 103 (Panels

A–C), to [GSH]0 = 102 (panels D–F) and GSH]0 = 0 (panels G–I).

The threshold [casp8]0 value for casp3 activation was

8.3561025 mM in Figure 2, where NO was not produced at all.

This value remains the same for both [GSH]0 = 104 mM (not

shown) and 103 mM (panels A–C) in the presence of NO, but

increases to 9.9 61025 mM when [GSH]0 is 102 mM (panels D–F)

and to 1.26 61024 mM when [GSH]0 is zero (panels G–I), hence

the different (pro-apoptotic) behavior observed in panel H.

These results suggest that N2O3 does not affect the bistable

character of the response to EC stimuli, except for modifying the

threshold for onset of apoptosis, which is shifted to higher [casp8]0

(i.e. rendered more difficult) with decreasing [GSH]0. However,

high initial concentrations of GSH restore the threshold back to

8.3561025 mM. Therefore, N2O3 can serve as an effective

modulator of apoptosis provided that the level of GSH in the

system is sufficiently low.

Effect of N2O3 on the threshold degradation rates of Bax

for transition from bistable to monostable behavior. In

our previous computational study of apoptotic pathways, we

observed a bistable behavior (selecting between cell death and

survival) for degradation rates of Bax (mBax) lower than a threshold

value (0.11 s21), while monostable cell survival was predicted

when mBax.0.11 s21 (Figure 4A in Ref. [28]). This critical value of

Figure 3. Time evolutions of A) GSH, B) N2O3, C) FeLnNO, and D) ONOO2 predicted by Model II. N2O3 and FeLnNO increase to high
concentrations by a switch-like mechanism induced by a decrease in GSH concentration due to conversion of GSH to GSNO and subsequently to
GSSG. [ONOO2] does not follow a similar switch-like increase in its concentration. Solid curve is for [GSH]0 = 104 mM, dotted curve for [GSH]0 = 103 mM,
and dashed curve with diamonds for [GSH]0 = 102 mM. The response is thus sharper and earlier in the presence of lower initial concentrations of GSH.
doi:10.1371/journal.pone.0002249.g003

Effects of NO on Apoptosis
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mBax for the transition from bistability to monostability is called a

limit point. We explored how the inclusion of NO reactions affects

these findings. The limit point value of the Bax degradation rate

for monostable cell survival is found to remain unchanged (at

0.11 s21) for the range 103#[GSH]0#104 mM. However, it

decreases to 0.098 s21 for [GSH]0 = 102 mM and 0.096 s21 for

[GSH]0 = 0 mM in the present model. The model again predicts

that N2O3 is not influential when the GSH level is sufficiently high

in the cell.

Roles of non-heme iron complexes and GSH in apoptotic

response. One of the important anti-apoptotic effects of NO is

presumed to occur via its ability to react with non-heme iron

complexes (FeLn) to form FeLnNO. These species inhibit caspases

by S-nitrosating the catalytic cysteine in the active site of these

enzymes [19,40,41].

The results are presented in Figure 5, panels A-F, organized

similarly to Figure 4 (i.e. using different [casp8]0 in each row, and

different [GSH]0 in the two columns). Our calculations suggest

that when the FeLn concentration is higher than 0.03 mM, there

are no longer two stable steady-states at long times: caspase-3

levels always decrease to zero, even though their time evolutions

depend on [casp8]0 and [GSH]0. Yet, depending on the level of

GSH, both apoptosis and cell survival may be possible. Panels A–

C correspond to relatively high [GSH]0. In panel A, [casp3]

decreases to 1028 mM that is less than 1 molecule per cell, hence

zero, from 1025 mM within the first two hours. However, in panels

B and C, [casp3] increases to nanomolar values and remains at

those levels for more than three hours. Caspase-3 may cause

enough damage to kill the cell before it is depleted at longer times.

We note that lower [GSH]0 (e.g. [GSH]0 = 103 mM, panels D–F

and [GSH]0,103 mM, data not shown) do not permit the casp3

concentration to reach such pro-apoptotic levels and monostable

cell survival is observed irrespective of [casp8]0.

Various cell types subject to different intracellular microenvi-

ronments, or even the same cells under different settings (e.g.

healthy state vs. inflammation or oxidative stress), may produce or

experience different reactive NO intermediates [7,20,42]. For

example, more FeLnNO may be produced in hepatocytes than in

RAW264.7 macrophage-like cells due to the high level of non-

heme iron complexes in hepatocytes [21]. In our previous study,

RAW264.7 cells underwent apoptosis in the presence of NO;

conversely, no casp3 activation was observed in either hepatocytes

or iron loaded RAW264.7 cells [21]. The results (Figure 4 and

data not shown) suggest that in cells with iron concentrations lower

than 0.03 mM (e.g. RAW264.7 cells), both cell survival and

apoptosis are possible depending on the strength of apoptotic

stimuli (in agreement with our experimental results) [21].

However, a change in the intracellular environment of the same

cell can change the response. Figure 5D–F shows that casp3 is not

activated in the presence of non-heme iron ([FeLn]0 = 0.05 mM)

when [GSH]0 = 103 mM and [GSH]0,103 mM (data not shown).

We also checked if casp3 is activated when [casp8]0 is as high as

0.1 mM when [GSH] = 103 mM. In this case, caspase-3

concentration increased to 0.0007 mM for approximately 5 min-

utes, an apoptotic stimulus that is likely insufficient for apoptosis.

This prediction is in good agreement with our observation that

caspase-3 is not activated in non-heme iron-loaded RAW264.7

cells whose [GSH]0 does not reach 104 mM [21].

Roles of ONOO2 and GSH in apoptotic response. The

mechanism by which NO or its reactive species exert pro-

Table 1. Reactions in Model II

Description of the reaction/interaction Rate constant (*) Reference Reaction index

Production of NO k1NO = 1 mM/s [22] (i)

Production of O2
2 k2NO = 0.1 mM/s [22] (ii)

Production of GSH k3NO = 0 [22] (iii)

NO+O2
2RONOO2 k4NO = 6700 mM21s21 [56] (iv)

SOD+O2
2+H+RSOD+K O2+K H2O2 k5NO = 2400 mM21s21 [57] (v)

ONOO2+GSHRGSNO+products k6NO = 0.00135 mM21s21 [58] (vi)

ONOO2+GPXRGPX+products k7NO = 2 mM21s21 [59] (vii)

ONOO2+CO2Rproducts k8NO = 0.058 mM21s21 [60,61] (viii)

ONOO2+cyt cRcyt c+products k9NO = 0.025 mM21s21 [62] (ix)

2GSNO+O2
2+H2ORGSSG+products k10NO = 0.0006 mM22s21 [63] (x)

N2O3+GSHRGSNO+NO2
2+H+ k11NO = 66 mM21s21 [64] (xi)

2NO+O2R2NO2 k12aNO = 0.000006 mM22s21 [65] (xii)

NO2+NO « N2O3 k12bNO
+ = 1100 mM21s21 [65] (xiii)

k12bNO
2 = 81000 s21

N2O3+H2ORproducts k13NO = 1600 s21 [65,66] (xiv)

GSSG+NADPH+H+R2GSH+NADP+ Vm = 320 mMs21 [67] (xv)

Km = 50 mM

Cu+ GSNORK GSSG+NO k14NO = 0.0002 s21 [68,69] (xvi)

CcOx+NORCcOX.NO k15NO = 100 mM21s21 [70] (xvii)

FeLn+NORFeLnNO k16NO = 1.21 mM21s21 [71] (xviii)

FeLnNO+GSHRGSNO+FeLn k17NO = 66 mM21s21 a [72] (xix)

GSH+O2
2RK GSSG+products k17bNO = 0.0002 mM21s21 [73] (xx)

aSame as k11NO

doi:10.1371/journal.pone.0002249.t001

Effects of NO on Apoptosis
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apoptotic effects is not well established [43]. In the present study,

we assume that the pro-apoptotic effect of NO occurs via

formation of ONOO2, as has been suggested from a large

number of experimental studies both in vitro and in vivo [44,45].

Experimental studies suggest that ONOO2 may induce the

opening of mitochondrial permeability transition pores (MPTPs)

and subsequent cyt c release from mitochondria [38].

The possible mechanisms of cyt c release from mitochondria are

diverse and controversial [46,47]. In our model, we assume that

cyt c release is mediated by activation of MPTPs, independent of

Bax channel formation on mitochondria. The complex that forms

the MPTPs is called mitochondrial permeability transition pore

complex (PTPC). The complex consists of peripheral benzodiaz-

epine receptor, cyclophilin D, adenine nucleotide translocator

(ANT), voltage-dependent anion channel (VDAC), and other

proteins [48]. ANT is proposed to be converted from a specific

transporter to a non-specific pore which then releases cyt c into the

cytoplasm and subsequently induces apoptosis. It has been

suggested that ONOO2 acts on PTPC, specifically on ANT, to

convert it to a non-specific pore (PTPCact) [49]. We represent this

process as:

ONOO�zPTPC?PTPCactzproducts

Cytochrome c is then released from the pore formed by PTPCact

cyt cmitozPTPCact?cyt czPTPCact

The results are shown in Figure 6. The initial concentration of

PTPC is assumed to be high (0.01 mM). At that value, Model I

predicts the response to apoptotic stimuli to be monostable

apoptosis (Figure 6 in Ref. [28]). We see a similar response in

Figure 6A; a low initial value of casp8 (1025 mM) results in an

increase of [casp3] to nanomolar levels. Casp3 activation was

observed with even lower values of [casp8]0. However, casp3 does

not reach nanomolar concentrations when [GSH]0 = 103 mM

(Figures 6D–F) and [GSH]0,103 mM (data not shown). Initial

concentrations [casp8]0 higher than 1.561024 mM did not change

this prediction.

These results suggest that in cells with large numbers of MPTPs

(probably with high numbers of mitochondria), there are two

possible outcomes in the presence of NO and O2
2 production:

Figure 4. Time evolutions of [GSH] and [casp3] predicted by Model III in the presence of N2O3 effects. Here, in order to visualize the
effect of N2O3 exclusively, the reaction (xxii) in Table 4 is included in the model while those involving FeLnNO and ONOO2 (reactions (xx, xxiii-xxv) are
not, assuming FeLn concentration and rate of formation of superoxide to be zero. The solid curves depict the time evolution of [casp3], and dotted
curves refer to [GSH]. The three rows of panels are the counterparts of those in Figure 2 A–C, with the different columns referring to different initial
concentrations of GSH: A–C) [GSH]0 = 103 mM; D–F) [GSH]0 = 102 mM; G–I) [GSH]0 = 0 mM.
doi:10.1371/journal.pone.0002249.g004

Effects of NO on Apoptosis
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pathological cell death when GSH level is high (104 mM) and

solely cell survival when GSH level is low ([GSH]#103 mM) in the

presence of O2 and FeLn. This result stands in contrast with

studies in which GSH protects against oxidative stress (high

concentrations of O2
2 and ONOO2) that can cause apoptosis.

The reason for this paradoxical prediction is that GSH has both

protective and pro-apoptotic effects in our simulations: it exerts

apoptotic effects via its reaction with anti-apoptotic N2O3 and

FeLn, and protective effects due to its reaction with pro-apoptotic

O2
2 and ONOO2. Simulations (Figure 6) suggest that the pro-

apoptotic effect of GSH is stronger than its protective effect using

the interactions and parameters adopted in current simulations.

To examine the possibility of an alternative response, we

repeated the computations depicted in Figure 6 in the absence of

O2 (so that N2O3 is not produced) and FeLn. We also used initial

PTPC concentration of 0.0001 mM, at which Model I predicts

bistability (Figure 6 in ref [28]). As seen in Figure 7, both cell

survival and apoptosis are possible under these conditions,

depending on [casp8]0. Higher [GSH]0 (104 mM) results in cell

survival (Figure 7B) in contrast to lower [GSH]0 resulting in

apoptosis (Figure 7E) under the same amount of EC stimulus

([casp8]0 = 761025 mM). The present analysis thus shows that the

protection by GSH against oxidative stress is possible provided

that O2 and FeLn levels are sufficiently low.

Discussion

We present here the results from simulations that incorporate

the main chemical interactions of NO with components of the

apoptotic interactions network, with the goal of shedding light on

the dichotomous effects of NO on apoptosis. Based on previously

published studies, we considered N2O3 and FeLnNO to be anti-

apoptotic and ONOO2 pro-apoptotic. The results predict that cell

survival or apoptosis is determined by a complex interplay among

these reactive NO species and GSH. We observed that relative

concentrations of anti-apoptotic and pro-apoptotic species deter-

mine the ultimate cell fate at late time points. Interestingly,

transient apoptotic effects were observed under specific conditions

(e.g. Figure 5 panels B–C). These intriguing findings point to the

importance of the timing of NO production and apoptotic stimuli in

determining the actual anti- or pro-apoptotic effect, even if steady

state conditions favor cell survival, in agreement with our previous

observations [50–52]. Another interesting effect we observed in

our simulations was the time shift/delay in the onset of apoptosis

in the presence of weak EC stimulus (panel B–D in Figure 2),

consistent with the experiments of Tyas et al. [37].

Our simulations suggest that N2O3 and non-heme iron nitrosyl

form in a switch-like manner after depletion of GSH. ONOO2

formation, on the other hand, hardly shows any switch-like

Figure 5. Time evolutions of [GSH] and [casp3] predicted by Model III in the presence of N2O3 and FeLnNO. N2O3 is present in the
model ([O2] is non-zero) as well as FeLnNO ([FeLn]0 is non-zero). Each column is a counterpart of Figure 2A–C with different initial concentrations of
GSH. A–C) [GSH]0 = 104 mM; D–F) [GSH]0 = 103 mM. Solid curve shows the time evolution of [casp3] and dotted curve that of [GSH].
doi:10.1371/journal.pone.0002249.g005
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behavior. We further found that N2O3 does not eliminate the

bistability between cell survival and apoptosis, but rather increases

the threshold [casp8]0 for onset of apoptosis. However, high initial

concentrations of GSH restore the threshold back to its original

value. Therefore, we would predict, non-intuitively, that N2O3

does not influence cell survival when [GSH]0 level is high.

On the other hand, our simulations suggest that there are no

longer two stable steady states (cell survival and apoptosis) in the

presence of non-heme iron at a level higher than a threshold value.

Caspase-3 levels always decrease to zero even though its time

evolution may depend on [casp8]0 and [GSH]0. Yet, despite the

steady state conditions that favor cell survival, executioner caspase

concentrations can reach and retain apoptotic levels for several

hours before they level off, when [GSH]0 is high. When [GSH]0 is

low, on the other hand, our simulations predict resistance to

apoptosis, in agreement with experimental observation [21].

In cells with high numbers of MPTPs (probably cells that

contain high numbers of mitochondria), our simulations suggest

two possibilities in the presence of simultaneous NO and O2
2

production and sufficiently high [FeLn]0: pathological cell death

when [GSH]0 is high (104 mM) or solely cell survival when [GSH]0

level is low ([GSH]0#103 mM). On the other hand, GSH is

protective against oxidative stress when O2 and FeLn levels are low

in cells with low numbers of MPTPs.

Tiedge et al. [53] have shown that pancreatic beta cells have

low anti-oxidant levels (notably, GSH) and that the number of

mitochondria is a determining factor in survival. They have also

shown that transfection of the cells with a peroxide-inactivating

enzyme, catalase, can protect against high-glucose induced

apoptosis. An interesting experiment would be to correlate the

number of mitochondria in the transfected cells with their survival.

Oyadomari et al. [54] have shown that the endoplasmic reticulum

(ER) plays a crucial role in the fate of NO-sensitive beta cells via

calcium signaling. A natural next step in the present model would

be to include these effects via a model which incorporates the

effects of NO on the ER.

Our results are subject to several limitations. While we have

adopted values for kinetic parameters and concentrations in

accord with experimental data whenever available (Tables 1 and

2), many of the true intracellular rate constants for the reactions in

our simulations are unknown. Given that the observed apoptotic

responses are so sensitive to model parameters, detailed knowledge

of reaction mechanisms and accurate values of rate constants are

needed in modeling reaction networks as complicated as the ones

Figure 6. Time evolutions of [GSH] and [casp3] predicted by Model III in the presence of N2O3, FeLnNO and ONOO2. The initial
concentration of PTPC is 0.01 mM. Each column is a counterpart of Figure 2A–C and has a different initial concentration for GSH. A–C)
[GSH]0 = 104 mM; D–F) [GSH]0 = 103 mM. Solid line is for time evolution of [casp3] and dashed line is for time evolution of [GSH]. Caspase-3
concentrations at long times are 2.4 61024 mM and 2.561028 mM for panels A–C and D–F, respectively.
doi:10.1371/journal.pone.0002249.g006
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presented here. Due to an extensive literature basis, we have

posited that the pro-apoptotic NO species is ONOO2; however,

other species may in fact exert this effect. Additionally, the

hypotheses raised by our simulations remain to be tested by further

experiments. Some of the predictions could be tested by iron

chelation and/or treatment with superoxide donors in a cell-free

system or in single-cell studies, though each of these manipulations

may have additional, artifactual effects. The hypothesis of

bistability with regards to the apoptotic response can be tested

as suggested by Legewie et al. [32], either in cell free-systems by

adding caspase-3 or in single living cells by microinjecting caspase-

3. The time evolution of caspase-3 can be monitored by

fluorescent caspase-3 substrates. The time needed for caspase-3

activation will increase abruptly as caspase-3 concentration added

will approach threshold value in a bistable system (Figure 2D).

Such combined experimental and computational studies may

potentially help us understand and design therapeutics for diseases

associated with apoptosis dysregulation.

Materials and Methods

Models
Three models are considered in this study. Model I, proposed

in our earlier work [28], focuses on the pathways involved in

mitochondria-dependent apoptosis (Figure 1A). Model II is an

extension of the kinetic model of NO-associated reactions recently

proposed by Hu et al. [22] (Figure 1B). Finally, Model III is the

integration of Models I and II, proposed in the present study, to

examine the pro-apoptotic and anti-apoptotic effects of NO.

Figure 7. Time evolutions of [GSH] and [casp3] predicted by Model III in the absence of N2O3, FeLnNO and presence of ONOO2. The
initial concentration of PTPC is 0.0001 mM. A–C) [GSH]0 = 104 mM; D–F) [GSH]0 = 102 mM. Solid line is for time evolution of [casp3] and dashed line is
for time evolution of [GSH].
doi:10.1371/journal.pone.0002249.g007

Table 2. Equilibrium levels and initial concentrations used in
Model II

Equilibrium concentrations References

[SOD]‘ = 10 mM [74]

[GPX]‘ = 5.8 mM [67]

[CO2]‘ = 103 mM [61]

[O2]‘ = 35 mM [67]

[cyt c]‘ = 400 mM [75]

Initial concentrations References

[CcOx]0 = 0.1 mM [76]

[FeLn]0 = 0.05 mM [77]

[GSH]0 = 104 mM (or otherwise specified) [22]

doi:10.1371/journal.pone.0002249.t002
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All interactions (chemical or physical; single step or multiple

steps) are modeled using mass action kinetics theory and methods.

The simulations are performed using XPPAUT software (http://

www.math.pitt.edu/,bard/xpp/xpp.html) [55].

Model II-Generation of NO-related oxidative and
nitrosative species ONOO2, N2O3, and FeLnNO

We extended the network originally proposed by Hu and

coworkers [22] by introducing additional reactions involving NO,

as well as additional compounds such as the NO-related species

FeLnNO (L denotes ligands that do not contain heme), NO2, and

cytochrome c oxidase (CcOx). Figure 1B illustrates the extended

network of interactions. Table 1 lists the corresponding reactions

(indexed as (i)–(xx)) and rate constants. The reactions (xii) and (xiii)

break down the production of N2O3 from NO and O2 into two

steps that replace the corresponding reaction (with rate constant

k12) used in the model of Hu et al. [22]. Reactions (xvi)–(xx) are

introduced in the present study. The identity of the products are

not written when these compounds do not serve as reactants in any

of the reactions listed in Table 1. Table 3 lists the rate laws for

these reactions (the first 20 rows), which are used in the differential

rate equations (rows 21–29) that control the time evolution of the

concentration of the individual compounds. Model II contains 16

components. Eleven of them reach steady-state concentrations

Table 3. Rate equations for Model II (*)

Rate laws (Eq.s 1–20) and differential rate equations
(Eq.s 21–29)

Equation
numbers

r1NO = k1NO (1)

r2NO = k2NO (2)

r3NO = k3NO (3)

r4NO = k4NO[NO][O2
2] (4)

r5NO = k5NO[SOD][O2
2] (5)

r6NO = k6NO[ONOO2][GSH] (6)

r7NO = k7NO[ONOO2][GPX] (7)

r8NO = k8NO[ONOO2][CO2] (8)

r9NO = k9NO[ONOO2][cyt c] (9)

r10NO = k10NO[GSNO]2[O2
2] (10)

r11NO = k11NO[N2O3 ][GSH] (11)

r12aNO = k12aNO[NO]2[O2] (12)

r12bNO
+ = k12bNO

+[NO2][NO] (13)

r12bNO
2 = k12bNO

2[N2O3] (14)

r13NO = k13NO[N2O3] (15)

rm = Vm[GSSG]/(Km+[GSSG]) (16)

r14NO = k14NO[GSNO] (17)

r15NO = k15NO[CcOx][NO] (18)

r16NO = k16NO[FeLn][NO] (19)

r17NO = k17NO[FeLnNO][GSH] (20)

d[NO]/dt = r1NO–r4NO–2r12aNO–r12bNO
++r12bNO

2+r14NO –r15NO–r16NO (21)

d[O2
2]/dt = r2NO–r4NO–r5NO–r10NO (22)

d[ONOO2]/dt = r4NO–r6NO–r7NO–r8NO–r9NO (23)

d[GSH]/dt = r3NO–r6NO–r11NO+2rm–r17NO (24)

d[GSNO]/dt = r6NO–2r10NO+r11NO –r14NO+r17NO (25)

d[N2O3]/dt = –r11NO+r12bNO
+–r12bNO

2–r13NO (26)

d[NO2]/dt = 2r12aNO–r12bNO
++r12bNO

2 (27)

d[CcOx]/dt = –r15NO (28)

d[FeLn]/dt = –r16NO+r17NO (29)

(*) Note that [FeLnNO] = [FeLn]02[FeLn], and [GSSG] = ([GSH]0–[GSH]–[GSNO])/2
doi:10.1371/journal.pone.0002249.t003

Table 4. Reactions bridging between Models I to II (*)

Reaction Rate constant Reference Reaction index

ONOO2+PTPCRPTPCact+products k18NO accounts for ONOO2 induced formation of
non-specific pore associated with
mitochondrial permeability transition [49]

(xxi)

N2O3+casp8Rcasp8.NO+FeLn k19NO [78] (xxii)

FeLnNO+casp8Rcasp8.NO+FeLn k20NO [38] (xxiii)

FeLnNO+casp9Rcasp9.NO+FeLn k21NO [38] (xxiv)

FeLnNO+casp3Rcasp3.NO+FeLn k22NO [38] (xxv)

(*) The parameters used in the present study are k18NO = 1 mM21s21 (varying the value between 0.01 mM21s21 and 100 mM21s21 does not affect the results),
k19NO = 10 mM21s21 [78], k20NO = k21NO = k22NO = 66 mM21s21 (the same value as k11NO).
doi:10.1371/journal.pone.0002249.t004

Table 5. The modified equations from either Model I or II (*)

Rate laws (Eq.s 30–34) and differential rate equations
(Eq.s 35–43)

Equation
numbers

r18NO = k18NO[ONOO2][PTPC] (30)

r19NO = k19NO[N2O3][casp8] (31)

r20NO = k20NO[FeLnNO][casp8] (32)

r21NO = k21NO[FeLnNO][casp9] (33)

r22NO = k22NO[FeLnNO][casp3] (34)

d[ONOO2]/dt = r4NO–r6NO–r7NO–r8NO–r9NO–r18NO (35)

d[PTPC]/dt = –r19NO (36)

d[N2O3]/dt = –r11NO+r12bNO
+–r12bNO

2–r13NO–r19NO (37)

d[casp8]/dt = 2J0+J0
f+Jcasp8–r19NO–r20NO (*) (38)

d[FeLnNO]/dt = r16NO–r17NO–r20NO–r21NO–r22NO (39)

d[FeLn]/dt = –r16NO+r17NO+r20NO+r21NO+r22NO (40)

d[casp9]/dt = J4 –J4b–J5–J6 +J6
f+Jcasp9–r21NO (*) (41)

d[casp3]/dt = J6
f+J6b

f–J7 –J8+J8
f–J9+J9

f+Jcasp3–r22NO (*) (42)

d[cyt c]/dt = J14–J1+Jcytc+k[PTPCact][cyt cmit]
where k = 1 mM21s21 (*)

(43)

(*) J refers to fluxes of components, for details see ref [28]. PTPCact refers to the
nonspecific pore at the mitochondria that releases cyt c. Note that
[PTPCact] = [PTPC]0–[PTPC].
doi:10.1371/journal.pone.0002249.t005
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within a short time interval (,20 minutes) after initiation of the

simulations for [GSH]0#103 mM and within four and half hours

for [GSH]0 = 104 mM, whereas five compounds (superoxide

dismutase (SOD), glutathione peroxidase (GPX), CO2, O2, and

cyt c) retain their equilibrium concentrations. Table 2 lists the

initial and equilibrium concentrations different from zero, adopted

in Model II, and the corresponding references.

Model III–Effects of NO-related reactions on apoptotic
pathways

Model III combines Models I and II upon inclusion of the

additional reactions presented in Table 4. See the highlighted

compounds in Figure 1, which point to the species that couple the

apoptotic and NO pathways. We note that ONOO2 has a pro-

apoptotic effect, while N2O3 and FeLnNO (reactions labeled

(xxii)–(xxv)) deactivate the caspases, thus inducing anti-apoptotic

effects. The associated rate constants and references are given in

Table 4. Table 5 provides the rate expressions (rows 30–34) and

differential rate equations (rows 35–43) for these reactions and

involved compounds, respectively.

The steady-state concentrations [H+]‘ in reaction (v), [H2O]‘

in reactions (x) and (xiv), [NADPH]‘ and [H+]‘ in reaction (xv),

[Cu+]‘ in reaction (xvi) are incorporated into the corresponding

rate constants.
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