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Abstract

Accurately forecasting the case rate of malaria would enable key decision makers to inter-

vene months before the onset of any outbreak, potentially saving lives. Until now, methods

that forecast malaria have involved complicated numerical simulations that model transmis-

sion through a community. Here we present the first data-driven malaria epidemic early

warning system that can predict the 13-week case rate in a primary health facility in Burkina

Faso. Using the extraordinarily high-fidelity data of infant consultations taken from the Inte-

grated e-Diagnostic Approach (IeDA) system that has been rolled out throughout Burkina

Faso, we train a combination of Gaussian Processes and Random Forest Regressors to

estimate the weekly number of malaria cases over a 13 week period. We test our algorithm

on historical epidemics and find that for our lowest threshold for an epidemic alert, our algo-

rithm has 30% precision with > 99% recall at raising an alert. This rises to > 99% precision

and 5% recall for the high alert threshold. Our two-tailed predictions have an average 1σ
and 2σ precision of 5 cases and 30 cases respectively.

Introduction

According the the World Health Organisation (WHO), in 2019 there were 229 million cases of

malaria resulting in roughly 400 thousand deaths with 94% of these occurring in Africa. Of

those that die, children under five are the most vulnerable, accounting for 67% of all deaths

[1]. In 2019 alone, three billion dollars was contributed to programmes that aimed to control

and eliminate malaria. In 2015 the WHO released a global plan that aimed to reduce cases and

mortality by 90% and eliminate it from 35 countries by 2030. This ambitious goal is now to be

tackled by a host of different researchers and organisations.

Recent technological advancements in computational sciences have paved the way for

sophisticated analytical and numerical mathematical modelling of the transmission of malaria

[2–4]. By modelling the movement of mosquitoes, weather and people in a country, these

models have allowed scientists to predict the rise and fall of malaria in specific districts. These

models are powerful at predicting the prevalence of malaria in areas where there is very little

knowledge about the local infection rate. However, the draw backs are that they are compli-

cated and take large amounts of computational resources to run. As a result, the continual
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application of these models to make real-time predictions for decision makers is non-trivial.

Indeed if we are to make frequent predictions of malaria without the need to run large simula-

tions, then we need a new way of making predictions.

Data driven models

Machine Learning (ML) in digital health is a growing area. The rise of data-rich platforms is

enabling researchers to follow a data-driven approach to modelling diseases, rather than an

epidemiological approach (for a review, see [5]). This has improved all areas of health, from

prevention through to post-treatment care. For example, ML is able to provide disease diagno-

sis at significantly earlier stages than typical methods. It was found that ensemble predictors

such as Random Forests were able to predict diabetes to 93% accuracy [6]. Another study

applied a gradient boosting machine to predict the risk of sepsis in patients, significantly

improving on the state-of-the-art (from 49.2% to 67.7%) [7]. Furthermore researchers have

used genetic algorithms to predict heart disease in its early stages [8] and lastly, a combination

of principal component analysis and neural networks have been used to diagnose diabetic reti-

nopath in patients [9].

ML has also aided the analysis of patient data improving treatment. For example, support

vector machines and Random Forests are able to localise brain tumours in magnetic resonance

images [10]. Finally, machine learning is aiding post-care treatment with algorithms now able

to predict which patients are at a high risk of readmission, a significant cost to healthcare sys-

tems [11], and algorithms that are able to monitor public opinion on how healthcare systems

manage certain crises. For example, [12] used social media to scrape public opinions of how

people reacted to COVID-19. It is clear from the breadth of examples that machine learning

can advance healthcare in a multitude of ways.

Malaria specific data-driven models are rare given the lack of structured data-sets. [13]

carried out a study looking at a variety of different machine-learning techniques to predict

Malaria cases in healthcare centres in the district of Visakhapatnam, India. Using 6 years

worth of data they found that Gradient Boosting was a good predictor of cases. However, this

was limited to just one small region of India, with no inter-healthcare variance.

Despite the opportunity that machine-learning presents, risks exist. Biases in poorly

selected training and tests samples (for example through insufficient representation of a given

class in the sample [9]), can result in biased decision making once the algorithm has been

implemented [14]. It is clear that going forward, if machine-learning is to be used to improve

the delivery of healthcare, it must be done so with caution and transparency [15].

In this paper we attempt to directly model the case rate of malaria in Burkina Faso over the

last three years. In this way we can provide in-situ predictions of future case rates immediately,

without the need to run complicated numerical simulations of malaria transmission in the

country. Moreover, by directly modelling the case rate we encompass not only the transmis-

sion but other factors, including social, to provide extremely localised predictions.

IeDA

The Integrated e-Diagnostic Approach (IeDA, https://www.tdh.ch/en/ieda) is an implementa-

tion of the Integrated Management of Childhood Illness, IMCI [16], on Android-based tablets.

The application allows primary healthcare workers to conduct efficient and informed consul-

tations for children younger than 5 years. The primary aim of the IMCI protocol is to combat

child mortality, which in the case of Burkina Faso fluctuates around 8% [17]. The IeDA pro-

gram started in 2010 in 39 primary healthcare facilities (PHC) in Tougan, Burkina Faso. Since

then (at time of writing), it has risen to cover more than 67% of the entire country, taking
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around 200, 000 consultations each month. This has already dramatically improved the deliv-

ery of healthcare to Burkina Faso, particularly in rural areas. As a result of the IeDA project

there has been a reduction in antibiotic usage by� 6 − 15% [18] and the potential savings of

millions of Swiss Francs.

For those PHCs in the program, the tablet is used in 92% of children’s consultations, such

that we have a good coverage of this population. The database is fully pseudonymised to retain

the privacy of the patients and contains over 9 million consultations. Throughout this study

we use the confirmed diagnosis of malaria as the target feature. This may have its own biases,

which we discuss later. The objective of this paper is two fold:

1. Predict the trajectory of the case numbers of malaria for a specific primary healthcare

facility;

2. Train and validate an early warning system for the onset of an epidemic up to three months

in advance.

Epidemic detection

The definition of an epidemic is defined as the point at which the instantaneous case rate rises

above the five-year mean for that period of year plus two standard deviations. The disadvan-

tage of this is that it is an instantaneous definition, such that a region does not know it is in an

epidemic until it arrives. Early warning of the onset of an epidemic will allow local and federal

governments to prepare and react before the onset of an emergency. It is the aim of this work

to develop an early warning system for malarial epidemics in Burkina Faso up to three months

in advance.

Materials and methods

Patient and public involvement

We utilise the IeDA database that consists of consultations of infants less than an age of five

years. All data is fully anonymised. Patients agree to be part of the database through a verbal

agreement. Data has been provided by the Burkina Faso government under strict licensing

uniquely to Terres des hommes for the purpose of improving healthcare delivery throughout

Burkina Faso.

Time series

The base framework of the algorithm is to fit a library of models to some observed data that

will then predict the subsequent time period required. For example, we will use models which

span 26 weeks. This will allow us to fit to 13 weeks of observed data and then for the model to

predict 13 weeks ahead in time.

This library of models will be agnostic in time and geographical location, that is, to make a

single prediction we will compare a single observed time series to the entire library of time

series that we have and find the best fitting ones.

We therefore first manipulate the historical data vectors into series of time windows of 26

weeks. With� 1000 PHCs and� 2.5 years of data we have in total� 100, 000 separate time

series that we can use to formulate a library of models.

Learning each time series: Gaussian Processes

A naive method would be to use the raw data as our library of models, comparing historical

pasts directly with the current data. However, the historical past suffers from large variance
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due to not just random noise but also noise generated from social factors such as strikes and

routine monthly cycles of medicine distribution. If we are to generate a library of reliable mod-

els that look beyond weekly variations and extract the seasonal cycles of malaria and how these

correlate with other observables then we must use a more sophisticated model. To do this we

choose a Gaussian Process.

A Gaussian Process (GP from now on), is defined as a collection of finite random variables

that are Gaussian distributed. Each variable can be fully described by their mean, m and their

co-variance, k, where we assume a exponential, sine squared kernel,

kðxi; xjÞ ¼ exp
2 sin2ðpdðxi; xjÞ=pÞ

l2

 !

; ð1Þ

where d is the distance between observed values, xi and xj, p is the periodicity and l is the length

scale, both free parameters to be fit. Indeed we test these free parameters and find that the

impact on these data-sets is small. We choose a periodicity of p = 52, corresponding to the

annual cycle of 52 weeks, and the length scale, l = 1.

Following these choices we then fit the GP to our data. During the fitting we define how

well we expect the GP to do at describing the data, i.e. to avoid over-fitting to each time series

we give it some buffer. This acts to choose functions that are smoother since they are statisti-

cally a better fit. Not only this, however but co-variances between observables, builds a model

that jointly fits each observable equally. As such the advantages of a GP is that it takes in to

account correlations not only in time but between observables.

We use the freely available Gaussian Process Regressor (GPR) package from scikit-learn

[19] to model our time series. We jointly fit each GPR to each chosen time-dependent feature,

assuming some level of noise. This noise must be tuned empirically to strike a balance between

fitting to signal in the data and over-fitting to noise. The top panel of Fig 1 shows the impact of

a varying noise parameter, α, on the modelled time series of absolute malarial cases. We see

that in the low α limit the GPR finds models that fit the data exactly, greatly over-fitting,

whereas a very high noise value results in the GPR fitting only the mean of the time series.

To tune α we calculate the log marginal likelihood of each model given the data-set and

find the noise value that returns the maximum. The log marginal likelihood of a Gaussian Pro-

cess takes in to account how well the data fits the model, and how complex the model is. From

Bayes Theorem, the marginal likelihood, or evidence, of the target y given the input data X, is

the product of likelihood of the target values given the function f, p(y|f, X), and the prior over

f, p(f|X), integrated over the parameters of the function f, i.e.

pðyjXÞ ¼
Z

pðyjf ;XÞpðf jXÞdf : ð2Þ

For a Gaussian Process, the prior is a Gaussian with a mean of zero and co-variance, k,

N ð0; kÞ and the likelihood of the function given the data is also a Gaussian with a mean of the

input function f and the input variance, α. [19] show by carrying out the integral in Eq (2), the

log marginal likelihood is,

logðpðyjXÞÞ ¼ �
1

2
ðy � f ÞTðkþ a2IÞ� 1

ðy � f Þ �
1

2
logjkþ a2Ij �

n
2
log 2p; ð3Þ

where I is an identity matrix and n is the number of observations. We see that the first term of

the marginal likelihood is how well the data is fit by the Gaussian Process, the second term

penalises complexity in the algorithm. To find the best fitting α parameter we carry out a grid

based search, testing different levels of noise and finding the mean marginal log-likelihood.
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The bottom panel of Fig 1 shows the result of this search. We find that a value of log(α) =

−2.75 best fits the data.

Model selection

Now with a library of models based on historical data, we want to be able predict the case rate

of malaria for a given PHC. To do this, we take the observed data from the previous 13 weeks

and compare this to the first half of every model in our library. We construct a joint likelihood

of each model and its component features and find the best fitting one. From this we can take

the second half of these models to predict the following 13 weeks.

We construct the total log-likelihood for a given observed data-set, LT, as the linear addi-

tion of each observable’s log-likelihood, Li, i.e.

LT ¼
XnObs

i¼0

Li; ð4Þ

where we assume either a Gaussian log-likelihood,

LG ¼ �
1

2
w2 ¼ �

1

2

ðD � MÞ2

s2
M

; ð5Þ

where D and M are the data and model respectively and σ is the total error or Poisson,

LP ¼ � Dþ D lnM � lnðM!Þ; ð6Þ

Fig 1. Top: How the fit of the Gaussian Processor Regressor to the time series data depends on the noise value α.

Assuming a sine, exponential squared kernel, we see that for small α values the regressor over-fits the malaria (top),

fitting every point in each curve. Additionally, at high values of alpha, the regressor tends to the mean of each time

series. Bottom: We optimise the noise value through a simple grid-based search for the best fitting value of α. For each

time-series we derive a log-likelihood of the model given the data. We then find the alpha parameter that has the best

mean log-likelihood over the entire data-set. We find that the log(alpha) = −2.75 returns the highest mean likelihood.

https://doi.org/10.1371/journal.pone.0253302.g001
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where this is the log-likelihood of observing D events for a Poisson distribution with a mean of

M events. Fig 2 shows an example of the likelihood function. Each panel shows the distribution

of the likelihood of a model given a single observed data set for the absolute case numbers of

malaria (top) and the rain fall (middle). The bottom panel shows the total likelihood given the

two observables. We see that the final distribution of likelihoods has a small number of models

that fit well and the rest that do not.

We then select all models that lie within some DLT threshold, λ, relative to the best fitting

model’s log-likelihood. We define this as the Δχ2 for the given number of degrees of freedom,

where the Δχ2 is given by,

Dw2 ¼ � 2DLT: ð7Þ

Despite the assumption of Gaussian statistics, PHCs have extremely irregular time series that

result in models that are equally irregular. This nuance with the data lead us to two decisions:

(1) we need to tune the value of Δχ2 which selects models that fit a time-series at hand, and (2)

from the selected models we need to derive what the predictions are at various levels of

confidence.

This is not a trivial operation since a model may have a very low Δχ2 (fitting the time-series

very well), but still give a prediction which is extremely rare when compared to other models

with a same low Δχ2. In order to make a prediction we therefore carry out an iterative process:

We first choose an initial threshold, find the prediction and estimate the error bars. The

Fig 2. An example of how we select our models. We compare the observed data to each GP and generate a likelihood

according to the type of data (whether it be Poisson or Gaussian). In this case the top panel showing the absolute

number of cases of malaria is Poisson distributed, whereas the rain-fall is Gaussian. We then combined these

likelihoods in to a final likelihood and select only those models that have an overall good fit.

https://doi.org/10.1371/journal.pone.0253302.g002
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second iteration will increase the threshold slightly and make another prediction. The iterative

approach continues until the error bars are stable to within 5%. This ensures that the estimated

error bars are stable and not sensitive to the addition of a couple of models, moreover, the

adaptive threshold allows the algorithm to account for time series with different noise proper-

ties. How this initial threshold and the sub-sample selection is carried out depends on the

desired confidence region (see section).

Features

It is known that observables such as rain correlate well with forthcoming epidemics of malaria

[20, 21]. It is therefore clear that introducing these in to our model can improve the selection

process. We can introduce observables trivially by including them in the model fitting of the

GPR and then the likelihood through Eq (4). The feature set to adopt is potentially very large

since the available data is broad. However, not all features will contribute information equally.

We set-out an initial framework to understand the sensitivity of the algorithm to these differ-

ent features, these include: the absolute number of confirmed cases of malaria; the absolute

number of consultations; absolute number of tests required; the confirmed number of cases of

malaria within a 30km Gaussian smoothed region (not including the current centre); con-

firmed number of malaria cases within 100km (not including the current centre); rain-fall and

surface water. We then carry out a series of tests to determine whether or not each feature adds

predictive power. We find that only rain-fall improves the precision of the algorithm. We

therefore select our primary base of absolute malaria cases and rain-fall as our feature-base.

Estimating the amplitude: Random Forest Regressor

In addition to the standard observables we can also introduce meta-observables to use during

the fitting. For example, a key variable in making the prediction is understanding the overall

normalisation of the time series (i.e. the mean case number). This way we can remove many

models that rise too early, or do not rise at all.

In order to introduce this meta-variable in to our feature set we set-up a classic machine-

learning problem: using 13 weeks prior information can we estimate the 26 week mean case

rate. To do this we initialise a random-forest regressor (RFR) [22]. We set up feature base

where we calculate the mean and standard deviation of each observable over the 13 week time

period. The target feature is the 26 week mean of the absolute malaria case. Then using an

Extra Trees Random Forest Regressor from the scikit-learn package we train a random forest.

We first split the historical data in to a test and training set. We take all data before the 1st

May 2020 as the training set and all data after as the test set. For the training data we compile

our feature set of the 13 week mean and variance for all available features (a total of 14 features)

and the target feature as the 26 week mean of the absolute malaria numbers. We then carry out

a simple grid-based search we determine the optimum number of trees and minimal split sam-

ple, which turn out to be 1000 and 2 respectively.

We show the results of our test sample in Fig 3. The left hand panel shows the true versus

the estimated normalisation for the test set with the solid blue line showing the 1–1 correlation

and the red markers the mean and variance in the estimate. We see that there is a mild bias in

our estimate, often over-estimating the true normalisation. We find that the RFR has an error

of�30%. The right hand panel shows the estimated importance of each feature when estimat-

ing the normalisation, with the caption giving the legend. We find that the absolute number of

confirmed malaria cases, absolute number of consultations and the absolute number of tests

needed (and their standard deviations) are strong predictors, with the others adding only a

small amount of information.
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Fig 3. The performance of the Random Forest Regressor at estimating the mean malarial case rate over a 26 week

period using data from the first 13 weeks. We set up a feature base and train the regressor. The top panel shows the

estimated mean case rate as a function of the true case rate for the test set. The red markers show the mean and

variance in binned true case rates. We find that the estimated case rate has a slight bias. The bottom panels shows

feature importance from the Random Forest. The legend is as follows, the first seven as the mean 13 value for (1):

absolute number of malaria cases, (2):the absolute number of consultations, (3): the absolute number of tests needed,

(4): the Gaussian smooth case rate of malaria over a 30km region, (5): the Gaussian smooth case rate of malaria over a

100km region, (6):the rain-fall in mm over a 15km Gaussian smoothed area and 15day time period, (7): the amount of

surface-water, and the variance in each feature over the same 13 week window.

https://doi.org/10.1371/journal.pone.0253302.g003
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We find that introducing this normalisation constraint improves our model by a factor of

two in its precision.

Calibrating the errors: One and two-tailed uncertainties

The threshold (Δχ2) in which we cut the number of models we include in our estimate is

somewhat arbitrary. As such we must calibrate it in order to ensure that the Δχ2 corresponds

directly to the confidence region we state.

The algorithm that we have developed will have two key objectives. The first is a warning

system; whereby we alert the user that the number of malaria cases are expected to rise above

the threshold for an epidemic in the coming three months. This constitutes a lower bound and

hence a one-tailed probability distribution. The second objective is a forecast such that the

algorithm sets out a lower and upper bound between which it believes the case rates of the

malaria will follow; this constitutes a two tailed probability distribution. As such we calibrate

the error to four distinct uncertainties: the two tailed 1σ and 2σ and the one tailed 1σ and 2σ
upper and lower bound.

Since the lower the threshold the smaller the uncertainties, we search for the lowest possible

threshold that remains consistent with the desired confidence region. We use a Monte Carlo

Markov Chain to find this lowest threshold.

Results

Following the description of the algorithm we now present its performance. In order to cali-

brate and test our algorithm we split our archival data in to a test and training sample. We split

the entire data-set in time from the 1st May 2020 (such that it agrees with the same split for the

RFR). This ensures that there is� 1: 10 split in the amount of test to training data (such that

the expected uncertainty in the prediction will be close to using the full data-set for the final

algorithm). For each test we take a time series of 26 weeks and split it into two, the first 13

weeks which is the data we use to make our prediction, and the following 13 weeks as our

ground truth that we can compare to.

We split our tests in to three distinct scenarios: the rising, (where the case numbers rise

over the time series); falling, (where case numbers fall through out the time series); and flat,

(where case numbers remain relatively stable throughout the time series). This enables us to

examine exactly how the algorithm performs in different malarial scenarios. Moreover, it

ensures that we do not over-fit and bias towards one specific scenario that may be more com-

mon in the data-set (since we take from the 1st May 2020 there will be one scenario that is

more common that others). We also test the six different estimators: the 68% and 95% two-

tailed precision, and the 68% and 95% one-tailed upper and lower precision. This ensures that

the estimated confidence intervals are consistent with all scenarios. The reader can find the

results of the accuracy tests in Appendix A in S1 Appendix.

Fig 4 shows the results from the one-tailed precision tests. The left hand panel shows preci-

sion of the lower bounds for the three different scenarios and the 1&2σ confidence regions (i.e.

68% and 95%) as a function of the week predicted. The right hand panel shows the same except

for the upper bound.

We find that the lower bounds are most precise in the falling scenario and the least in the

rising scenario. The 1σ lower bound has a 25 case precision in the 13th week in a rising case,

improving to a 5 case precision in the 13th week for the falling scenario. We find that the

2σ bounds are� 60% looser than the 1σ bounds, rising from 8 case precision in the 13th

week for the falling scenario to 40 case precision in the rising scenario for the same week.
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The upper bounds are more consistent between scenarios, particularly in the early weeks of

the prediction. However, in the rising scenario the upper bounds become more precise. This is

because the aggregation of many exponential models acts to smooth out the rise and therefore

the estimated bounds are no longer exponential. As such the bounds do not match precisely

the shape of the exponential rise in cases. As a result, in the rising case scenario, towards later

time, the true line tends towards the upper bound and away from the lower bound, increasing

the precision in the upper bound and reducing it in lower bound. We find that the 1σ upper

bound for the all scenarios are less than 15 cases even at the 13th week, whereas the 2σ interval

is significantly worse at 80 cases for the falling scenario.

Fig 5 shows the precision of the two-tailed confidence region for the three scenarios as a

function of the week predicted. We find that the algorithm performs best in the falling case sce-

nario for both confidence intervals and the worst for the rising case. This is unsurprising since

when cases fall they do so slowly and linearly, where as when cases rise they do so exponentially

and therefore much more difficult to predict. We find that in the best case scenario that we

have a two-tailed precision at the 1σ (2σ) of 5 (26) cases and 15 (52) in the worse case scenario.

Precision and recall

We now estimate the precision and recall of the algorithm at estimating the occurrence of epi-

demics. It is important to distinguish between ‘claimed epidemics’ (the algorithm raises an

Fig 4. The one-tailed precision for the algorithm as a function of predicted week for the three scenarios and two confidence limits (68% and 95%).

The left hand Fig shows the precision for the lower confidence limit and the right hand Fig the precision for the upper confidence limit.

https://doi.org/10.1371/journal.pone.0253302.g004

Fig 5. The two-tailed precision for the algorithm as a function of predicted week for the three scenarios and two

confidence intervals (68% and 95%).

https://doi.org/10.1371/journal.pone.0253302.g005
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alert, regardless of what eventually happens), and ‘actual epidemics’. Precision is defined as the

fraction of claimed epidemics that are actual epidemics, and recall is the fraction of actual epi-

demics which were claimed. Formally, they are defined as

Precision ¼
tp

tpþ fp
Recall ¼

tp
tpþ fn

; ð8Þ

where tp = the number of true positives, fp = the number of false positives and fn = the num-

ber of false negatives. In order to do this we must create a test set that has known epidemics

in them. The World Health Organisation’s definition of an epidemics is when the case num-

bers rise above the five year average plus two standard deviations. Unfortunately the database

only has three years worth of historical information. We therefore create a threshold around

the three year mean plus two standard deviations. We create a test set of 131 situations where

epidemics have occurred and a test set of 300 scenarios where no epidemic has occurred,

again with a minimum date of the 1st May 2020 to ensure not future data exists in the train-

ing set.

In order to test the precision and recall of our algorithm we must now make clear what and

when our algorithm defines an epidemic. Given the confidence intervals of the prediction,

there will be different percentages of confidence in different situations. To avoid confusion, let

us now use percentiles rather than confidence intervals. The xth percentile is the value below

which x% of the predictions fall. So if the 5th percentile curve crosses the WHO definition of

an epidemic, this means that 95% of our models predict an epidemic. Conversely, if only the

95th percentile exceeds the WHO definition, this means that 5% of the models predict an epi-

demic. It should be straightforward to see now, how choosing the percentile at which we trig-

ger an epidemics directly translates into a degree of confidence at which the epidemic is going

to happen.

In brief: when the 5th percentile equals the WHO epidemic definition, we are 95% confi-

dent that the epidemic will happen, and vice versa. As a direct consequence, using a low per-

centile as the trigger guarantees a high precision: the alert is only raised when we are highly

confident that an epidemic will happen, and as a consequence only true epidemics are claimed,

but also many true epidemics are missed. There is a high number of false negatives. Using a

high percentile for the trigger, guarantees a high recall: all true epidemics are claimed, together

with a high number of false-positives and few false-negatives.

The top panel of Fig 6 shows how we define our epidemic alert system. We show the prob-

ability distribution for the number of cases for a given week and PHC. Should the WHO defi-

nition of an epidemic cross a certain percentile, the system will trigger an alert. The bottom

panel shows the corresponding precision and recall as a function of these trigger percentiles

(that must exceed the threshold before an epidemic is claimed). For example the left-most

points show the recall (red, star) and precision (blue, balls) when the 95th percentile goes

above the threshold. The blue line gives the precision and the red the recall. We find that

when we claim an epidemic as soon as the 95th percentile exceeds the threshold, we return

100% of the epidemics, however with only 30% precision. I.e 70% of the time we claim an

epidemic when in-fact there isn’t one. When using higher percentiles, we find that our preci-

sion improves to 100% with a recall of 4.5%. Table 1 gives the results of these tests. We note

here that the total number of positives in the test set was 131 and negatives in the test set 300

therefore we have a limit of 0.76%, therefore should our algorithm get all correct then this

results in a > 99% (since 100% is clearly impossible). Finally we also would like to note

that these percentiles are how we classify as our tier grading system in the alert system (see

section).
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Implementation

Following our error calibration and precision and recall testing, we now look at how this algo-

rithm will be implemented. We choose to have a tier system with our alerts since it is not clear

whether an optimal precision or recall is best suited. As such we have generated a five-tier

Fig 6. Top: How we trigger an alert for an epidemic. Here we show the predicted number of cases for a given week (of

thirteen) and PHC. Each colour shows a different tier of alert and the associated percentile trigger. Should the WHO

definition of an epidemic cross one of those triggers, an alert is made, with the associated precision and recall. Bottom:

The precision and recall of the algorithm corresponding to these trigger levels. The precision (blue) is the fraction of

true positives the algorithm makes from the total claimed positives and the recall (red) is the fraction of true positives

from the total number of positives (or epidemics) there are. Here we show these as a function of the proportion of

models predicting a case rate above the threshold. For those bounds that include more models that predict the case rate

to go above the threshold we get a higher precision, however a lower recall.

https://doi.org/10.1371/journal.pone.0253302.g006

Table 1. The precision (fraction of detected epidemics are indeed epidemics) and recall (the rate at which we claim

an epidemics in the case of an epidemic) as a function of the percentile (i.e. the proportion of models predicting a

case rate below the threshold). For example, when we raise an alert when the 95th percentile goes above the threshold,

we detect all epidemics, however, 68% of the time the claimed epidemics do not result in an epidemic; simply put we

claim epidemics all the time.

Percentile Trigger Precision (%age) Recall (%age)

5th > 99 4.580

32nd 83.673 31.298

50th 67.969 66.412

68th 51.082 90.076

95th 32.266 > 99

https://doi.org/10.1371/journal.pone.0253302.t001
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system based on Fig 6. Each tier is defined by how many of these limits cross the threshold for

an epidemic at any point during the 13 weeks. There are upper percentiles: 5%, 32% 68%, 95%

which correspond to five tiers (with the first being when no percentile crosses the threshold).

1. Tier 1: No Alert: All percentiles are below the threshold for an epidemic throughout the 13

week period. There is a negligible chance (< 1%) that cases will rise above the threshold

during the next 13 weeks.

2. Tier 2: Low Alert: The 95th percentile (only), crosses the threshold for an epidemic. The

algorithm suggests that there is a small chance that cases may rise above the epidemic

threshold. Based on the empiric performance of the model (Table 1), there remains a 70%

chance no epidemic occurs.

3. Tier 3: Medium Alert: The 95th and 68th percentiles cross the threshold for an epidemic.

There is a 50/50 chance of an epidemic at some point during the 13 weeks.

4. Tier 4: High Alert: The 95th, 68th and 32nd percentiles cross the epidemic threshold: There

is a 84% chance of an epidemic.

5. Tier 5: Very High Alert: All four percentiles at some point during the 13 weeks are above

the threshold for an epidemic: There is a greater than 99% chance of an epidemic.

In addition to the alert system, this algorithm also provides a two-tailed prediction. This

will allow the user to understand how long the epidemic will last, and the magnitude of the epi-

demic. As such the algorithm will provide two-tailed confidence regions. Fig 9 in S2 Appendix

in the appendices shows a set of ten examples. In each case we show the preceding 13 weeks of

data to which we fit our models. We then show the following 13 week prediction. In yellow

(orange) we should the 1σ (2σ) two-tailed confidence region. The green (red) lines with the

arrows signify the upper and lower bounds at the 1σ (2σ) confidence. We stress here that these

lower and upper bounds are independent of one another unlike the confidence region.

Discussion

In this study we have shown that we can estimate the future cases of malaria. This algorithm

has been implemented in to the Burkina Faso governmental database to aid decision making

at the district level. However, there remains limitations:

1. All rates of malaria are based on data from the confirmed diagnosis of malaria in the IeDA

database, that consists only of infants less than five years old. Extrapolation to the full popu-

lation requires an understanding of how these two demographics correlate. This correlation

could be age dependent, geography dependent and time dependent. This needs to be looked

in to, however is beyond the scope of this work.

2. The base idea behind the algorithm is that it uses historical data to predict the trajectory of

malaria cases going forward. Therefore the predictions are dependent on the quality of the

data. Should the data be biased for one reason or another then these maybe propagated in

to the predictions. For example, should a district enact a intervention policy, whereby they

distribute a large amount of medicine to a region then this will alter the trajectory of the

malarial cases in that area. Currently this algorithm will use this case and a non-intervened

case as an equal possibility in its prediction and hence they will be degenerate with one

another. It is therefore vital to include extra, external data that can break these degeneracies.

These can include, for example, information regarding intervention policies, local natural

and social events that prevent people from going to hospital (and hence recording malaria

cases), biases within the consultation that may result in certain demographics having a
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better recorded malaria prevalence. These biases should be explored within the current

data-set to see how the predictions, precision and accuracy changes with each one, however,

is beyond the scope of this work.

3. Implementation of the machine-learning algorithms is a highly debated one, with even the

simplest of data representation (risk maps) being not completely effective [23]. Translating

error bars and risk analysis to interventions is something that must be carried out beyond

the machine-learning domain, and exists as a continuing discussion between data-scien-

tists, epidemiologists and key decision makers. As such this work represents the foundation

in a long tree of decisions that must be made in order to have true impact.

Conclusion

We have presented a combined Gaussian Process and Random Forest Regressor that can pre-

dict the case rate of malaria to within 5 and 30 cases at the 1σ and 2σ confidence level.

Using a combination of historical data from the Integrated e-Diagnostic Approach (IeDA)

database of consultations of infants less than five years old in Burkina Faso and external rain

data, we construct a library of Gaussian Processes that we use to fit to observed data to make a

13 week prediction. We calibrate these errors to ensure they are accurate to one and two stan-

dard deviations. We find that although only rain and malaria data aid our algorithm in select

models that predict well the trajectory of malaria cases, features such as the absolute number

of consultations and the variance in this statistic are also a good predictor of the expected daily

rate of malaria cases.

We create a three scenario test set: the first, a scenario where cases rise up (akin to an epi-

demic); the second, a scenario where case numbers remain flat and thirdly a scenario where

case numbers fall. We find that our algorithm is least sensitive in the scenario where case

numbers rise and the most precise when the case numbers fall. This is due to the difficulty in

modelling the fast, exponential rise in the case rate, whereas the fall is often linear and easier to

predict.

We calibrate and test a five tier epidemic alert system based on the lower bound threshold

of the algorithm. The lower-bound threshold alert is based on the situation whereby we make

an alert when the lower limit of our predicted case rate (at some given confidence interval)

goes above the threshold for an epidemic (the five-year mean plus two standard deviations).

For example, the 95% confidence lower-bound is the limit whereby we are 95% confident the

case rate will be above this prediction. Should this limit be above the threshold for an epidemic,

we will be extremely confident an epidemic is going to occur in the forthcoming 13 weeks. We

test and validate this alert system. We find that the precision of epidemic prediction of this sys-

tem for the 95th, 68th, 32nd and 5th percentile is 32%, 51%, 83% and> 99% respectively.

However, the recall rate for the same lower-limits are > 99%, 90%, 66% and 5% respectively.

We address potential biases in the algorithm, highlighting the need to introduce further

features that will break potential degeneracies that exist due to social factors, such as strikes

and malaria intervention programmes. Moreover, further work highlighting potential demo-

graphic biases within the system need to be addressed.

Finally we note that the algorithm is limited. The current IeDA database only contains con-

sultations of infants less than five years old and therefore predictions must be scaled to the

overall population. How this is scaled is not a trivial problem to solve. Moreover the data is

only three years old and therefore has covered a limited number of malaria seasons, and it cur-

rently does not cover the entirety of Burkina Faso. As such, in its current form it may not be

as good a predictor as current epidemiological methods (for example directly simulating the
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transmission of the disease). Such a comparison would be interesting going forward. Despite

these limitations, this work represents the first efforts to develop a data-driven predictor of

malaria in sub-Saharan Africa.
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