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Simple Summary: Broilers are especially heat sensitive because of the absence of sweat glands and
their elevated metabolism. Under commercial conditions, extremely high temperatures (heat stress)
reduce their performance. This research aimed to assess spray-dried feeding plasma (SDP) during
constant heat stress (HS) on the performance, intestinal permeability, and bone strength in broilers.
Chickens fed with a diet supplemented with SDP increased both their body weight and body weight
gain compared to the HS control group. At the end of the study (d 42 of age), chickens fed with SDP
significantly alleviated the increased gut leakage induced by HS and showed a significant increase
in tibia strength compared with control HS chickens. The results in the present study suggest SDP
mends gut integrity, hence reducing chronic systemic inflammation.

Abstract: The aim of this study was to see how spray-dried plasma (SDP) supplementation affected
broiler chicken performance, intestinal permeability, and bone strength during persistent heat stress.
One-day-old chicks (n = 480) were randomly assigned into twelve environmental corrals; four
thermoneutral (TN-negative control, maintained at 24 ◦C from d 21–42); four heat stress (HS, exposed
to 35 ◦C from d 21–42); and four heat stress treated with 2% SDP in the feed until d 28 followed
by 1% SDP until d 42 (HS-SDP). The performance and serum levels of fluorescein isothiocyanate-
dextran (FITC-d) were evaluated at d 21, 28, 35, and 42. The tibias strength was evaluated on
d 21 and 42. The increment in chicken temperature (p < 0.05) was observed two h following
the increase in environmental temperature in both HS groups and was associated with decreased
performance parameters compared with the TN group. At d 42 of age, the chickens exposed to HS
had an impaired gut permeability and decreased tibia strength compared to the TN group (p < 0.05).
However, partially feeding SDP mitigated these adverse effects significantly. These findings imply
that using SDP strategically during stressful times, such as prolonged heat stress, may help mitigate
its negative consequences.

Keywords: broiler chickens; tibia strength; heat stress; leaky gut; spray-dried plasma

1. Introduction

Since 2001, there has been a documented increase in hot temperatures, and climate
trends are anticipated to continue [1]. These increments in temperatures will serve as a
severe environmental stress concern to plants and animals [2,3]. However, broilers are
especially heat sensitive because of the absence of sweat glands as well as their elevated
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metabolism [4,5]. According to a recent study, heat stress costs the US broiler poultry sector
over a hundred million dollars per year [6].

Spray-dried plasma (SDP) has been used in monogastric and ruminants in the pres-
ence or absence of antibiotic growth promoters (AGP) [7]. Immunoglobulins, albumin,
growth factors, and biologically active peptides are examples of functional proteins present
in SDP that modulate the immune response and improve intestinal health [8–11]. Therefore,
the continued understanding of SDP’s benefits on gut integrity in poultry during different
types of stress and feeding regimes will help the poultry industry better utilize SDP as a
management tool. Recently, we published that continuous heat stress is a reliable model to
induce intestinal inflammation [12]. Hence, we postulated that the immunological proper-
ties of SDP could reduce gastrointestinal leakage in chicks under continuous experimental
heat conditions. Leaky gut has been associated with multiple organ failure and local
and systemic inflammation [13]. Several poultry models have confirmed that fluorescein
isothiocyanate-dextran is a reliable biomarker to measure intestinal permeability [14]. The
purpose of this investigation was to assess feeding SDP during constant heat stress on
performance, intestinal permeability, and bone strength in broilers.

2. Materials and Methods
2.1. Ethics

The Institutional Animal Care and Use Committee (IACUC) at the University of
Arkansas, Fayetteville, approved all animal handling methods. This study was approved
by the IACUC under protocol # 18030.

2.2. Spray-Dried Plasma

Spray-dried plasma (Appetein, APC, LLC, Ankeny, IA 50021, USA) is a feed ingredient
widely used in animal diets; it is effective in helping animals mitigate the consequences of
the most stressful growth phases. The composition of the SDP is summarized in Table 1.

Table 1. Supplier reported composition of spray-dried plasma.

Item Spray-Dried Plasma 1

Dry matter, % 92
ME, kcal/kg 3532
Ash, % 10
Ca, % 0.15
P, % 1.30
Na, % 2.20
Cl, % 1.10
K, % 0.30
CP and AA
CP, % 77.0
Arg, % 4.60
Cys, % 2.40
His, % 2.70
Ile, % 2.80
Leu, % 7.60
Lys, % 6.60
Met, % 0.60
Phe, % 4.50
Thr, % 4.20
Trp, % 1.40
Tyr, % 3.50
Val, % 5.20

1 Spray-dried plasma product name: Appetein, APC, LLC, Ankeny, IA 50021, USA.
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2.3. Animals and Diets

A commercial hatchery provided one-day-old Cobb 500 male broiler chicks (n = 480).
Chickens were vaccinated with a coccidia vaccine (Coccivac®-B52 Merck Animal Health,
De Soto, KS 66018). Chickens were neck tagged and randomly allocated to twelve envi-
ronmental rooms: four thermoneutral (TN); four heat stress (HS); and four heat stress
supplemented with 2% SDP in the feed until d 28 followed by 1% SDP until d 42 (HS-
SDP). The diets employed in this study were adjusted to match breeder guidelines [15].
No growth promoters were included in the diets. Diets provided an adequate supply of
nutrients, and the proportions of the feed ingredients used were adjusted to the nutrient
contribution of SDP so that diets with similar nutrient profiles were fed across treatments
(Table 2).

Table 2. Control corn–soybean diet’s ingredient mix and nutrient content, or control corn–soybean diet supplemented with
spray-dried plasma (SDP) used on an as-is basis.

Item Starter
Control Diet

Starter SDP
Diet

Grower
Control Diet

Grower SDP
Diet

Finisher
Control Diet

Finisher SDP
Diet

Ingredients (%)
Corn 9-14-18 51.80 54.38 57.81 60.39 59.64 60.93
SBM (45.16%) 37.66 33.96 31.62 27.92 27.23 25.38

DDGS 8.1% EE 4.00 4.00 4.00 4.00 6.00 6.00
Poultry fat 3.24 2.55 3.44 2.76 4.38 4.04

SDP - 2.00 - 2.00 - 1.00
Limestone 1.08 1.18 1.06 1.15 1.03 1.08

Phosphate of dicalcium 1.01 0.89 0.88 0.76 0.64 0.58
Sodium chloride 0.35 0.27 0.35 0.23 0.31 0.24
DL-Methionine 0.29 0.23 0.25 0.22 0.22 0.21

L-Lysine
Hydrochloride 0.12 0.10 0.13 0.10 0.12 0.10

Waldroup TM Mix 0.10 0.10 0.10 0.10 0.10 0.10
Tyson 2x Broiler Vit 0.10 0.08 0.10 0.09 0.10 0.10

L-threonine 0.08 0.08 0.09 0.08 0.09 0.07
Choline chloride (60%) 0.06 0.07 0.06 0.06 0.05 0.06

Sodium bicarbonate 0.04 0.06 0.05 0.06 0.03 0.04
OptiPhos2000

(0.5 lb/ton) 0.025 0.025 0.025 0.025 0.025 0.025

Se Premix (0.06%) 0.020 0.020 0.020 0.020 0.020 0.020
Santoquin 0.019 0.019 0.019 0.019 0.019 0.019

Calculated analysis
ME (kcal/kg) 3015.00 3015.00 3090.00 3090.00 3175.00 3175.00

Ether extract (%) 5.88 5.25 6.20 5.57 7.28 6.96
Crude protein (%) 22.30 22.30 20.00 20.00 18.70 18.70

Lysine (%) 1.18 1.18 1.05 1.05 0.95 0.95
Methionine (%) 0.59 0.56 0.53 0.50 0.48 0.46
Threonine (%) 0.77 0.77 0.69 0.69 0.65 0.65

Tryptophan (%) 0.25 0.25 0.22 0.22 0.20 0.20
Total calcium (%) 0.90 0.90 0.84 0.84 0.76 0.76

Total phosphorous (%) 0.63 0.59 0.58 0.54 0.53 0.51
Available phosphorus

(%) 0.45 0.45 0.42 0.42 0.38 0.38

Sodium (%) 0.20 0.20 0.20 0.20 0.18 0.18
Potassium (%) 1.06 0.99 0.94 0.87 0.87 0.83
Chloride (%) 0.27 0.21 0.28 0.21 0.25 0.22

Magnesium (%) 0.19 0.18 0.18 0.17 0.17 0.17
Copper (%) 19.20 18.71 18.46 17.98 18.85 18.61

Selenium (%) 0.28 0.27 0.27 0.26 0.26 0.26
Linoleic acid (%) 1.01 1.06 1.13 1.18 1.16 1.19

Starter diet from d 0–10; grower diet from d 11–28; and finisher diet from d 28 to 42.
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2.4. Experimental Design

This study was conducted at the Poultry Environmental Research Laboratory (PERL)
at the University of Arkansas. In this facility, there are 12 environmental rooms; each has its
own air conditioner unit with a thermostat. In the present study, each environmental room
was divided into two-floor corrals (150 cm × 300 cm), with feeders and automatic watering
systems (n = 8 repeats per treatment; n = 20 birds/corral for n = 160 chickens/treatment).
From d 1 to 21 in all rooms, temperature and light were controlled to imitate commercial
circumstances, with a steady decrease in temperature from 32 to 24 ◦C and relative humid-
ity at 55 ± 5%. The TN group was kept at 24 ◦C from d 21 to 42, whereas the heat stress
experimental groups were exposed to 35 ◦C. Temperature and relative humidity were mon-
itored three times a day. On d 18, a chicken from each pen was chosen at random to have a
Thermochron temperature logger inserted into its beak (iButton, DS1922L, Embedded Data
Systems, Lawrenceburg, KY, USA). As described by Flees et al. [16], the devices remained
in the gizzard for body temperature measurement. The chickens’ body temperatures were
recorded every minute for the first two h after starting the heat stress and then every hour
after that. Individual body weight (BW) and body weight gain (BWG) were recorded from
each experimental replicate for performance. Feed intake (FI) and feed conversion rate
(FCR) were evaluated per replicate (n = 8). Performance parameters were collected at d 11,
22, 28, 35, and 42.

2.5. Serum Fluorescein Isothiocyanate-Dextran Determination

On d 21, 28, 35, and 42, two chicks were chosen at random from each pen (n = 16)
and gavaged with fluorescein isothiocyanate-dextran at a dose of 8.32 mg/kg body weight
(FITC-d, MW 3–5 KDa; Sigma-Aldrich Co., St. Louis, MO, USA). Chickens were euthanized
by CO2 exposure an hour after receiving FITC-d. Blood samples were drawn from the
femoral vein and centrifuged (1000× g for fifteen minutes) to separate the serum. Bax-
ter et al. [17] stated that serum levels of FITC-d were utilized as a biomarker to assess
leaky gut.

2.6. Bone Parameters

The left tibia from each sampled chicken (n = 16) was removed to assess break strength
(kg) and total ash on d 21 and 42, as described by Gautier et al. [18].

2.7. Statistical Analysis

Results were evaluated utilizing the PROC general linear models system of statistical
analysis software [19]. An analysis of variance was conducted to detect differences among
dietary treatments. Treatment was the independent variable. Dependent variables were
body weight, average gain, feed intake, feed conversion, bone-breaking strength, and
intestinal permeability. The mean values of all dietary regimens were calculated using the
least squares (marginal) means (LSMEANS). If treatment effects were found, least square
means were used to differentiate the groups by the requested p-values for differences
(PDIFF) option in SAS (Statistical Analysis System). Significance used to assess differences
was declared at p < 0.05 unless otherwise reported.

3. Results

Figure 1 displays the outcomes of the evaluation of the core body temperature of
chicks supplemented with SDP during continuous acute and chronic heat stress. Just two
h after initiating heat stress in the corrals of the experimental HS groups, the body core
temperature of the chickens was considerably higher than that of the control TN group and
persisted through the termination of the trial, with severe repercussions in performance
parameters (Tables 3 and 4).
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Figure 1. Evaluation of core body temperature of broiler chickens under thermoneutral (TN) condi-
tions compared with broiler chickens during continuous heat stress (HS) without spray-dried 
plasma (SDP) or with dietary supplementation of SDP during acute (A) and chronic (B) heat stress 
(p < 0.001). 

Table 3. Evaluation of body weight and body weight gain in broiler chickens under thermoneutral 
conditions compared with broiler chickens during continuous heat stress (HS) without spray-dried 
plasma (SDP) or with dietary supplementation of SDP. 

Days Control Thermoneutral Control HS SDP-HS SEM 
Body weight    

0 d 41.14 41.45 41.40 0.26 
11 d 224.96 b 219.42 b 244.07 a 3.68 
22 d 880.05 873.80 895.02 11.86 
28 d 1510.20 a 1260.18 c 1334.92 b 17.92 
35 d 2283.00 a 1515.53 c 1624.99 b 30.50 
42 d 2913.48 a 1714.69 c 1850.46 b 50.64 

Body weight gain    
0–11 d 183.63 b 178.09 b 202.74 a 3.68 
0–22 d 838.69 832.44 853.66 11.86 
0–28 d 1468.94 a 1218.92 c 1293.65 b 17.92 
0–35 d 2241.82 a 1474.35 c 1583.81 b 30.50 
0–42 d 2872.32 a 1673.53 c 1809.30 b 50.64 

Data expressed as least squares means ± SEM of 8 replicates per treatment. a–c Values within rows 
with different superscripts are statistically significant. 

  

Figure 1. Evaluation of core body temperature of broiler chickens under thermoneutral (TN) condi-
tions compared with broiler chickens during continuous heat stress (HS) without spray-dried plasma
(SDP) or with dietary supplementation of SDP during acute (A) and chronic (B) heat stress (p < 0.001).

Table 3. Evaluation of body weight and body weight gain in broiler chickens under thermoneutral
conditions compared with broiler chickens during continuous heat stress (HS) without spray-dried
plasma (SDP) or with dietary supplementation of SDP.

Days Control Thermoneutral Control HS SDP-HS SEM

Body weight
0 d 41.14 41.45 41.40 0.26
11 d 224.96 b 219.42 b 244.07 a 3.68
22 d 880.05 873.80 895.02 11.86
28 d 1510.20 a 1260.18 c 1334.92 b 17.92
35 d 2283.00 a 1515.53 c 1624.99 b 30.50
42 d 2913.48 a 1714.69 c 1850.46 b 50.64

Body weight gain
0–11 d 183.63 b 178.09 b 202.74 a 3.68
0–22 d 838.69 832.44 853.66 11.86
0–28 d 1468.94 a 1218.92 c 1293.65 b 17.92
0–35 d 2241.82 a 1474.35 c 1583.81 b 30.50
0–42 d 2872.32 a 1673.53 c 1809.30 b 50.64

Data expressed as least squares means ± SEM of 8 replicates per treatment. a–c Values within rows with different
superscripts are statistically significant.



Animals 2021, 11, 2213 6 of 10

Table 4. Evaluation of feed intake and feed conversion ratio in broiler chickens under thermoneutral
conditions compared with broiler chickens during continuous heat stress (HS) without spray-dried
plasma (SDP) or with dietary supplementation of SDP.

Days Control Thermoneutral Control HS SDP-HS SEM

Feed intake
0–11 d 141.44 135.08 136.02 9.64
0–22 d 1058.90 1029.18 1070.50 32.48
0–28 d 1876.88 b 1668.99 c 1778.73 ab 54.26
0–35 d 3101.35 a 2566.45 b 2713.42 b 63.41
0–42 d 4239.76 a 3157.23 b 3332.08 b 92.49

Feed conversion
0–11 d 0.774 0.779 0.672 0.067
0–22 d 1.264 1.233 1.253 0.023
0–28 d 1.280 b 1.368 a 1.375 a 0.023
0–35 d 1.383 b 1.730 a 1.735 a 0.052
0–42 d 1.475 b 1.881 a 1.878 a 0.054

Data expressed as least squares means ± SEM of 8 replications per treatment. a–c Values within rows with different
superscripts are statistically significant.

The results of the assessment of BW and BWG in chicks supplemented with SDP
during continuous heat stress are described in Table 3. Birds that received SDP during the
first eleven days significantly (p < 0.05) increased BW by 10% (~22 g). As expected, heat
stress significantly reduced BW at d 28. However, chickens fed with 2% SDP increased BW
by 6% (~75 g) compared to the heat stress control group. A similar trend was observed at d
42, where chickens under continuous heat stress had a significantly reduced BW at d 42.
In contrast, chickens fed SDP early and during heat stress increased BW by 8% (~135 g)
compared to heat stress control chickens (Table 3). These significant increments in BW at d
28, 35, and 42 in chickens fed with 2% SDP under heat stress were also reflected in BWG
during the same periods of evaluation compared to heat stress control chickens (Table 3).

Table 4 shows the evaluation of FI and FCR during continuous heat stress. In the
present study, chickens in both experimental groups that were exposed to constant heat
stress showed a significantly reduced feed intake through d 42 when compared with TN
control chickens. Similarly, heat stress significantly increased feed conversion from d 0–42.
However, feeding plasma did not mitigate the increase in feed conversion resulting from
heat stress (Table 4).

Nevertheless, chickens consuming plasma numerically mitigated some of the reduc-
tion in feed intake resulting from heat stress.

The assessment of serum FITC-d in birds supplemented with SDP during continuous
heat stress is summarized in Table 5. Interestingly, before initiating heat stress, a significant
variation was observed between treatments on d 21. However, on d 35, both experimental
groups receiving continuous HS showed increased levels of FITC-d in the serum, compared
with the control TN group. Nevertheless, at the termination of the trial on d 42, chickens
fed with SDP during continuous heat stress significantly alleviated the increase in gut
permeability (Table 5).

The findings of bone mineralization in birds supplemented with SDP during contin-
uous heat stress are presented in Table 6. On d 21, no changes in the treatment groups
were noticed. However, when compared to control TN chickens on d 42, the constant heat
exposure resulted in a considerable decline in tibia strength. When chickens were fed SDP
and then subjected to heat stress, they demonstrated a substantial increase in tibia strength
when compared to control heat stress chicks. Furthermore, heat-stressed birds exhibited a
larger percentage of tibia ash than thermoneutral control birds (Table 6).
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Table 5. Assessment of FITC-d in the serum of chickens under thermoneutral conditions compared
with broiler chickens during continuous heat stress (HS) without spray-dried plasma (SDP) or with
dietary supplementation of SDP.

Serum FITC-d
(ng/mL) Control Thermoneutral Control HS SDP-HS SEM

Day 21 231.37 A 157.08 C 192.10 B 12.02
Day 28 240.74 247.67 251.13 10.84
Day 35 177.65 b 235.79 a 248.41 a 13.49
Day 42 218.55 C 312.60 A 276.64 B 15.00

Data expressed as least squares means ± SEM. a,b at p < 0.05 and A–C p < 0.10, values in rows with distinct
superscripts are statistically significant.

Table 6. Evaluation of bone mineralization in chickens under thermoneutral conditions compared
with broiler chickens during continuous heat stress (HS) without spray-dried plasma (SDP) or with
dietary supplementation of SDP.

Days Control Thermoneutral Control HS SDP-HS SEM

Tibia strength (kg)
Day 21 17.93 18.79 16.86 0.99
Day 42 37.71 A 24.37 C 29.74 B 2.01

Total ash from the tibia (%)
Day 21 54.07 54.57 53.23 0.52
Day 42 54.78 b 56.33 a 56.89 a 0.32

Data expressed as least squares means ± SEM. a,b at p < 0.05 and A–C at p < 0.10, values in rows with distinct
superscripts are statistically significant.

4. Discussion

Poultry is exceptionally susceptible to heat due to the absence of sweat glands and
their tremendous metabolic rate [5]. Unfortunately, the pressure of an exceeded growth
rate and feed efficiency is not accompanied by an increase in cardiovascular and respiratory
functionality [20]. As a result, heat stress has become one of the most severe economic
challenges for the poultry sector [6] since birds absorb more heat than is dissipated [21]. To
compensate for the absence of sweat glands, birds have evolved alternative mechanisms
for maintaining physiological homeostasis and regulating core temperature, including
convective cooling, evaporation, and radiation [20]. The harmful consequences of heat
stress can vary from heat exhaustion to cellular, tissue, and organ impairment. Severe or
chronic heat stress can cause heatstroke and death [21]. Under commercial conditions, HS
reduces the poultry’s performance [4,16]. Perhaps one of the most susceptible tissues to
heat stress is the gastrointestinal tract, as it decreases tight junction protein gene expression,
leading to an increase in permeability and chronic systemic inflammation [22–24]. In
agreement with previous publications, heat stress hurt the performance of broilers [12].
However, in the present study, the inclusion of SDP led to improvements in BW and BWG
and numerically alleviated the reduction in feed intake compared to heat stress birds
not supplemented with SDP. The decrease in feed intake observed in both heat stress
experimental groups affected performance parameters.

Interestingly, the addition of SDP reduced serum concentrations of FITC-d. Due
to the small molecular size of FITC-d (3–5 kDa), the molecule is not absorbed by the
gastrointestinal tract under normal conditions. Nonetheless, regardless of its source,
any stress induces oxidative stress in the enterocytes and inflammation, causing down-
regulation of the tight junction proteins and leading to an increased permeability [13].
Hence, FITC-d has become a reliable and essential biomarker to evaluate leaky gut in
poultry [14].

The improvement of intestinal barrier function has also been reported with the dietary
supplementation of spray-dried chicken plasma in weaning piglets [25]. In another study,
the significant physiological and performance parameters observed in pigs supplemented
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with SDP and subjected to heat stress were linked to the enhancement of gut barrier in-
tegrity, antioxidant activity, and immune modulation [26]. This is the first study confirming
the reduction of FITC-d in the serum of SDP-supplemented heat stress chickens. This find-
ing agrees with previous publications and suggests an improvement of intestinal barrier
function and gut integrity, hence, reducing chronic systemic inflammation [7,27]. These
findings may help to explain why chickens exposed to heat and supplemented with SDP
performed better than chickens that are not exposed to heat.

On d 42, heat stress significantly reduced bone strength, which is consistent with
several studies confirming that inflammation reduces bone mineralization, healing, and
regeneration [28–30]. Nevertheless, chickens under chronic and continuous heat stress sup-
plemented with SDP in the feed showed substantial bone strength than control HS chickens.
Recent studies in weaning piglets have shown that the dietary supplementation of SDP
also increases BW and reduces feed conversion by enhancing intestinal digestive function
and regulating specific microbiota in the gut [31]. These effects have been associated with
reducing the animals to microbial or dietary antigens and anti-inflammatory properties of
SDP [9,27,32,33]. The improvements reported with SDP in commercial poultry operations
are more significant than cleaner research settings [7]. Furthermore, several studies have
confirmed that SDP reduces the damage of enteropathogens [32–34] and improves the
digestibility of amino acids and microbiota diversity [35,36]. These results suggest that
SDP is a safe alternative to AGPs, particularly under stressful conditions [8,34,37–39].

In poultry nutrition, protein products play a critical role in the birds’ biology and
performance. Several investigators have shown that feeding SDP to broiler chicks during
their first ten days improves their gastrointestinal physiology and performance through
reducing intestinal inflammation and immune regulation [11,35,40]. Furthermore, it is
essential to know the protein sources for the formulation of the diets in order to reduce the
presence of anti-nutritional factors and maintain gut health [13].

5. Conclusions

Heat stress reduced BW, feed intake, and bone strength, and increased feed conversion
and gut permeability. However, feeding plasma during continuous HS mitigated the effects
of HS on BW, FI, gut permeability, and bone strength to a certain extent. These findings
suggest that strategic use of SDP during times of stress, such as prolonged HS, may mitigate
its adverse effects on performance, intestinal permeability, and bone strength reduction.
Further studies to evaluate SDP’s effect on cyclic heat stress and other inflammatory
biomarkers are presently undergoing evaluation.
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