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Abstract

Among the genus Actinidia, Actinidia arguta possesses the strongest cold resistance and

produces fresh fruit with an intense flavor. To investigate genomic variation that may contrib-

ute to variation in phenotypic traits, we performed whole-genome re-sequencing of four A.

arguta genotypes originating from different regions in China and identified the polymor-

phisms using InDel markers. In total, 4,710,650, 4,787,750, 4,646,026, and 4,590,616

SNPs and 1,481,002, 1,534,198, 1,471,304, and 1,425,393 InDels were detected in the

‘Ruby-3’, ‘Yongfeng male’, ‘Kuilv male’, and ‘Hongbei male’ genomes, respectively, com-

pared with the reference genome sequence of cv ‘Hongyang’. A subset of 120 InDels were

selected for re-sequencing validation. Additionally, genes related to non-synonymous SNPs

and InDels in coding domain sequences were screened for functional analysis. The analysis

of GO and KEGG showed that genes involved in cellular responses to water deprivation,

sucrose transport, decreased oxygen levels and plant hormone signal transduction were

significantly enriched in A. arguta. The results of this study provide insight into the genomic

variation of kiwifruit and can inform future research on molecular breeding to improve cold

resistance in kiwifruit.

Introduction

The genus Actinidia includes 52 species and 21 varieties. The Actinidia chinensis Planch. species

complex consists of large-fruited varieties, such as cv ‘Hongyang’, that are grown commercially

but typically exhibit poor cold resistance. Actinidia arguta, which is the second-most widely cul-

tivated Actinidia species worldwide, is resistant to cold [1–3]. A. arguta is also the most wide-

spread among all Actinidia species and is naturally distributed throughout most of China from

the Changbai Mountains in northeast China (latitude 22˚N) to the Dawei Mountains in south-

west China (latitude 47˚N) [4, 5]. In addition, A. arguta exhibits high nutritional value and hair-

less, edible skin, thus representing an excellent germplasm for breeding improvement. Cold

hardiness is a quantitative trait induced by low temperature, and many cold-inducible genes are
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regulated by CBF transcription factors. In a previous study, CBF was cloned from the fruit of

kiwifruit plants, and the expression of CBF was found to be increased when fruit was stored at

low temperatures [6]. Proteomics analysis showed differences in proteins involved in photosyn-

thesis, sugar metabolism, gene regulation, signal transduction, and stress resistance under low-

temperature stress in A. arguta leaves [7]. Despite the extensive knowledge regarding the cold-

related changes in A. arguta, the genetic components underlying these differences remain

poorly understood, and associated genomic information for this species is lacking.

The basic chromosome number of kiwifruit (x = 29) is high compared with those of other

horticultural crops, and the genus presents extensive inter-taxal and intra-taxal variations in

ploidy [1]. The sequence of the kiwifruit variety cv ‘Hongyang’, which was the first species in

Ericales to be sequenced, represents a valuable resource not only for biological discovery and

crop improvement but also for evolutionary and comparative genomic analysis. The sequence

assembly covers ~80% of the estimated genome size of 758 Mb [8], and its annotation revealed

39,040 predicted genes [9]. The genome annotation data of cv ‘Hongyang’ were updated in

2015, including 20 genes that were revised and 30 genes that were created (http://bdg.hfut.edu.

cn/kir/index.html). Mining of microRNAs in the cv ‘Hongyang’ genome and transcriptome

has led to the identification of 58 putative microRNAs in kiwifruit [10]. Li utilized this genome

sequence to profile the biosynthesis and accumulation of anthocyanins [11]; however, com-

pared with the genomes of other model plants, the study of the kiwifruit genome is still in its

infancy, and little is known about the genomes of other species.

The advent of next-generation sequencing (NGS) technologies has contributed to highly

efficient determination of genome-wide genetic variation and genotyping through large-scale

re-sequencing of whole genomes. More than 100 plant genomes, ranging in size from 64 Mb

to over 5 Gb, have been sequenced to date[12]. These genomes include those of a number of

horticulturally important fruit crops, such as apple[13], grape [14], Chinese white pear [15],

papaya [16], strawberry [17], and peach [18]. In one study, 4.6 million single nucleotide poly-

morphisms (SNPs) were identified in 74 peach cultivars, including 10 wild varieties, via re-

sequencing [18]. In another study, the genome-wide sequences of two apple cultivars were

determined and analyzed to identify floral-associated traits[19]. Furthermore, numerous SNPs

and structural variations (SVs) have been detected in grape through re-sequencing, allowing

the discovery of ripening-related genes [20]. SNPs were first identified in kiwifruit using

expressed sequence tag (EST) libraries. The frequency of SNPs in kiwifruit is estimated to be

2,515 SNPs/Mb, and a total of 32,764 SNPs were detected from a combination of four main

species and seven different tissues [21]. A previous study identified a total of 12,586 SNP mark-

ers using double-digest RAD sequencing (ddRADseq) [22]. Although the A. chinensis genome

has already been sequenced and annotated, the absence of diversity within the genome, includ-

ing a limited number of SNPs and insertions or deletions (InDels), complicates molecular

breeding and the identification of target traits. In this study, we re-sequenced four A. arguta
varieties using the Illumina platform, compared sequence variations with the reference

genome of cv ‘Hongyang’, and analyzed SNPs and InDels. This investigation of whole-genome

variations improves our understanding of the cold resistance mechanism of kiwifruit at the

molecular level and provides information regarding quantitative trait loci (QTLs) that are asso-

ciated with cold resistance and can be used in molecular-assisted selection breeding.

Materials and methods

Plant materials

The experimental materials used for re-sequencing included four A. arguta genotypes (2n =

4x = 116). The ‘Ruby-3’ (female) genotype and the ‘Hongbei male’ genotype were originated

Actinidia arguta re-sequencing
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from Henan Province (113˚N, 34˚E), China. The ‘Kuilv male’ genotype and ‘Yongfeng male’

were originated from Jilin Province (125˚N, 43˚E) and Liaoning Province (123˚N, 42˚E),

China. All the experiment tree were planted in Zhengzhou Fruit Research Institute, kiwifruit

germplasm resource nursery. Fruit in Ruby-3 and stamen in male of A. arguta were showed in

Fig 1. Cv ‘Hongyang’ (2n = 58) was used as a reference to evaluate cold resistance. All the geno-

types were planted at the Zheng Zhou Fruit Research Institute. The leaves of the four A. arguta
genotypes were collected and used for the DNA extraction and re-sequencing analysis. The

shoots of the four A. arguta genotypes and the ‘Hongyang’ variety were collected in the dor-

mant period to assess cold hardiness. Eleven genotypes, including 7 A. arguta genotypes

(‘Ruby-3’, ‘Kuilv’, ‘Xuxiang’, ‘Ruby-4’, ‘Hongbei male’, ‘LD134’, and ‘Hongbei’), 3 A. chinensis
genotypes (‘Hort16A’, ‘Boshanbiyu’, and ‘Hongyang’), and 1 A. deliciosa genotype (‘Hay-

ward’), were used to identify InDels.

Electrolyte leakage tests

One-year-old shoots of the four A. arguta genotypes and the A. chinensis cv ‘Hongyang’ variety

were collected in the dormant period, and all the shoots were cut into 20-cm sections and

wrapped in plastic film. The samples were placed in a low-temperature incubator (Shanghai

Hong Yun Experimental Equipment Factory, Shanghai, China). The A. arguta samples were

subjected to temperatures of -10˚C, -15˚C, -20˚C, -25˚C, and -30˚C, whereas the ‘Hongyang’

samples were subjected to temperatures -5˚C, -10˚C, -15˚C, -20˚C, and -25˚C. The samples

were kept at each low temperature for 8 h, followed by a thawing period of 1 h at room temper-

ature. After the freezing treatment, cold hardiness was assessed using the electrolyte leakage

Fig 1. Fruit and stamen in A. arguta, A: fruit in A. arguta, B: stamen in A. arguta male.

https://doi.org/10.1371/journal.pone.0219884.g001
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method [23, 24]. The lethal temperature at 50% lethality (LT50) was calculated based on the

logistic sigmoid function, y = K / (1+ae-bx), where y is the REL (Relative Electrolyte Leakage), x

is the exposure temperature, a and b are the equation parameters, and k indicates extreme val-

ues when x is infinite. The data were calculated and analyzed and standard error were deter-

mined using Excel 2013 and SPSS 14.0.

DNA library construction and sequencing

Young leaf tissues were collected from the four A. arguta genotypes for DNA isolation. Total

DNA was extracted using the Solarbio DNA Extraction Kit (Beijing Solarbio Science & Tech-

nology Co., Ltd, Beijing, China) according to the manufacturer’s instructions. Genomic re-

sequencing was performed by Biomarker Technologies (Beijing, China), and the procedure,

based on the standard Illumina protocol, was as follows: DNA fragments were generated using

ultrasound; the DNA fragments were purified; the ends were repaired with poly-A at the 30

ends; adaptors were ligated; and clusters were generated. Agarose gel electrophoresis was per-

formed to select specific fragments, and a library was established through PCR amplification.

After qualification of the library, sequencing was performed on the Illumina HiSeq 4000

platform.

The raw reads were subsequently evaluated, and low-quality reads (< 20), reads with adap-

tor sequences, and duplicate reads were filtered. The remaining clean reads were used for map-

ping. The A. chinensis ‘Hongyang’ genome was used as a reference [9]. The short reads were

aligned using the Burrows Wheeler transformation (BWA, 0.7.10—r789) [25] with the default

parameters, except that -M was activated (marking shorter split hits as secondary to make the

results compatible with Picard tools software), and the threads for mapping were set to 8 (bwa

mem -t 8 -M) to accelerate mapping.

SNP and InDel screening

The BWA mapping results were used to detect SNPs and InDels. Picard tools was employed to

produce duplicates (http://sourceforge.net/projects/picard/) to limit the influence of PCR

duplication. GATK software was used for SNP screening and InDel testing [26]. The raw data

were translated into sequenced reads through base-calling; during the quality evaluation, the

adapters were discarded, and low-quality sequences (quality < 30, or quality by depth< 2.0)

were filtered to obtain clean reads. The detected SNPs were screened using the following crite-

ria: coverage depth� 5X, discard the alleles > 2.

Various gene analyses and DNA-Level functional annotation

The identified genes with SNPs and InDels were subjected to BLAST searches against func-

tional databases [27]. The NCBI non-redundant (NR), Swiss-Prot, Gene Ontology (GO), Clus-

ters of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) annotation databases were used to analyze gene functions [28–30]. For the

enrichment test, significance was evaluated based on a P-value� 10−5 and an FDR

value� 0.01.

InDel primer design and validation

DNA was extracted using the Solarbio DNA Extraction Kit (Beijing Solarbio Science & Tech-

nology Co., Ltd, Beijing, China) according to the manufacturer’s instructions. Based on the re-

sequencing results, we randomly searched every chromosome for InDels based on an insertion

or deletion size�10 bp. The InDel primers were designed using Primer Premier 5.0; the

Actinidia arguta re-sequencing
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parameters for InDel primer design were as follows: PCR product size: 200–500 bp; primer

size: 18–24 bp; primer GC content: 40%-60%; and primer Tm: 55–60˚C. In total, 120 primers

were used, which are listed in S1 Table. PCR was performed using a PCR mix (Beijing Com-

Win Biotech Co., Ltd) in a 10-μl reaction volume with the following components: 5 μl of the

PCR mix, 0.5 μl of each primer, 1 μl of template DNA, and 3 μl of ddH2O. The amplification

program consisted of 35 cycles at 94˚C for 5 min, 94˚C for 30 s, 55˚C for 30 s, and 72˚C for 30

s, followed by 72˚C for 10 min. PCR amplification was performed in a thermocycler (Bio-

Rad). The PCR products were tested via 6% polyacrylamide gel electrophoresis (PAGE) under

the following conditions: voltage: 80 V, and electrophoresis time: 2 h. Silver staining was per-

formed, and the bands were photographed and analyzed. PopGen32 and NTsys 2.10e software

were used to analyze the polymorphisms.

Results

Evaluation of cold resistance

LT50 is used as a standard index to assess cold hardiness in plants [31]. According to our

results, the REL at different temperatures showed an acceptable ‘S’ curve; therefore, LT50

could be calculated using the logistic sigmoid function method. According to the REL curve

(Fig 2), A. arguta and A. chinensis showed an obvious difference at -25˚C; the REL was approx-

imately 60% for cv ‘Hongyang’, and it was approximately 40%-50% for the A. arguta geno-

types, indicating that the shoots of A. arguta are more cold resistant than those of A. chinensis
‘Hongyang’ when the temperature is decreased to -25˚C. The logistic regression analysis indi-

cated that the LT50 of ‘Hongyang’ was -20.9˚C, whereas the LT50 values were -25.0˚C,

-23.1˚C, -31.1˚C, and -29.7˚C for ‘Ruby-3’, ‘Hongbei male’, ‘Yongfeng male’, and ‘Kuilv male’,

respectively (Fig 2). The LT50 values follow the order ‘Yongfeng male’ > ‘Kuilv male’ >

‘Ruby-3’> ‘Hongbei male’ > ‘Hongyang’. These results indicate that the LT50 value of A.

arguta is higher in North China than that in Central China, and A. arguta exhibits greater cold

resistance than A. chinensis.

Comparison of reads to the Actinidia chinensis ‘Hongyang’ reference

genome

In this study, we performed genome re-sequencing of four A. arguta genotypes as follows. A

total of 72,865,383, 58,671,207, 58,281,578, and 69,620,711 clean reads (150 bp) were generated

for ‘Ruby-3’, ‘Hongbei male’, ‘Kuilv male’, and ‘Yongfeng male’, respectively; the distribution

of each genome was widely uniform, and the sequence was random (S1 Fig), which indicated

good sequence quality. The GC contents were all approximately 38% (i.e., slightly higher than

that obtained using the cv ‘Hongyang’ genome). Approximately 67.68% of the reads mapped

to the reference genome (Table 1). The double ‘Hongyang’ genome size was standardized to

the A. arguta genome size, and the average depths were 16, 14, 15, and 20 in ‘Ruby-3’, ‘Hon-

gbei male’, ‘Kuilv male’, and ‘Yongfeng male’, respectively. All sequencing data for the four A.

arguta genotypes have been uploaded to NCBI (SRA accession number: SRP118582), and the

accession numbers are SRX3209765, SRX3209753, SRX3209750, and SRX3205072 for ‘Ruby-

3’, ‘Hongbei male’, ‘Kuilv male’, and ‘Yongfeng male’, respectively.

Analysis of SNPs and InDels

Highly reliable SNPs were identified in the four genotypes. In total, 4,710,650, 4,590,616,

4,646,026, and 4,787,750 SNPs were identified in ‘Ruby-3’, ‘Hongbei male’, ‘Kuilv male’, and

‘Yongfeng male’, respectively. The four genotypes exhibited overlapping and distinct SNPs

Actinidia arguta re-sequencing
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(Fig 3), with approximately 1 million different SNPs between any two of the genotypes

(Table 2), and all the samples displayed different heterozygous and homozygous SNP loci. A

greater number of homozygous SNPs corresponds to a greater difference between the samples

and the reference genome. The percentages of heterozygous and homozygous SNPs were

approximately 30% and 70%, respectively (Table 3). According to the observed nucleotide sub-

stitution, the SNP type can be classified as a transition (A/G and T/C) or transversion (A/C, T/

G, A/T, and G/C); the transition to transversion ratio (Ti/Tv) in the four varieties was 1.45.

The distribution of SNP mutation types showed that C:G> T:A and T:A> C:G, accounting

for the high ratio (Fig 4). The distribution of the SNPs in the functional regions of the four

Fig 2. Electrolyte leakage freeze tests were conducted on ‘Hongyang’ and four A. arguta genotypes. Data are means (± SE)

of three technical replicates.

https://doi.org/10.1371/journal.pone.0219884.g002

Table 1. Coverage of reads mapped to the reference genome following the re-sequencing of four A. arguta genotypes.

Genotype Raw_Reads Clean_Reads GC (%) Q30 (%) Mapped (%) Average_depth

Ruby-3 73,121,307 72, 865, 383 38.70 80.14 70.47 16

Hongbei male 58,871,369 58, 671, 207 38.79 82.26 68.04 14

Kuilv male 58,498,020 58, 281, 578 38.33 82.73 66.43 15

Yongfeng male 69,998,704 69, 620, 711 38.30 80.08 65.81 20

https://doi.org/10.1371/journal.pone.0219884.t001
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varieties was determined and was found to be similar among the varieties. The highest propor-

tion was observed in intergenic regions, which accounted for ~22.63% of the SNPs, followed

by downstream regions (15.62%) and upstream regions (13.35%), while SNPs in coding (CDS)

regions accounted for 7.95%-8.21% of the SNPs (Table 4). Upstream regions included more

SNPs than CDS regions.

Fig 3. SNP analysis of the four A. arguta genotypes.

https://doi.org/10.1371/journal.pone.0219884.g003

Table 2. SNP numbers in the four genotypes.

Ruby-3 Yongfeng male Kuilv male Hongbei male

Ruby-3 0 3,167,034 2,960,512 2,961,833

Hongbei male 1,259,980 1,452,152 1,395,862 0

Kuilv male 1,448,080 1,194,586 0 1,395,862

Yongfeng male 1,491,845 0 1,194,586 1,452,152

https://doi.org/10.1371/journal.pone.0219884.t002
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In total, 1,481,002, 1,425,393, 1,534,198, and 1,534,198 InDels were detected in ‘Ruby-3’,

‘Hongbei male’, ‘Kuilv male’, and ‘Yongfeng male’, respectively. The types of InDels are pre-

sented in Table 5. The InDel length distributions in the whole genome and in the CDS region

are shown in Fig 5. Along with InDels longer than 10 bp, InDels with a length of one, two, or

three bp accounted for a large proportion of all InDels, accounting for 70.42%, 75.86%,

65.26%, and 70.33% of the InDels in ‘Ruby-3’, ‘Hongbei male’, ‘Kuilv male’, and ‘Yongfeng

male’, respectively. A total of 1,005,226 InDels were unique in A. arguta relative to ‘Hongyang’

(Fig 6). Approximately 1.75% of the InDels were located in CDS regions. In contrast to the

results for SNPs in CDS regions, few InDels were present in these regions, suggesting few

insertions or deletions in A. arguta relative to A. chinensis. However, InDels occupied 15% of

upstream regions, including promoter regions (S2 Fig).

Gene categories, functional annotation, and differences

Mutations that occur in CDS regions may cause changes in gene function. By examining the

non-synonymous SNP mutations and InDels in CDS regions, we identified potential differ-

ences in functional genes between A. arguta and A. chinensis. In total, 22,112, 22,443,

22,077, and 21,935 genes were analyzed in ‘Ruby-3’, ‘Yongfeng male’, ‘Hongbei male’, and

‘Kuilv male’, respectively, using public databases, including the NCBI, NR, Swiss-Prot pro-

tein, GO categories, COG, and KEGG databases. Detailed information regarding the func-

tional annotation can be found in S2 Table. All the functionally annotated genes were

classified into GO categories. The GO enrichment classification suggested that the genes

from the biological process (BP), cellular component (CC), and molecular function (MF)

categories could be divided into 20, 16, and 16 groups, respectively (Fig 7). Based on these

categories, a clearly understanding of the genomic characteristics of these kiwifruit geno-

types could be obtained. The most abundant components of the BP category were “meta-

bolic process”, “cellular process”, and “biological regulation”. In the CC category, the most

abundant components were “cell part” and “cell”, followed by “organelle” and “membrane”.

Regarding the BP terms, many genes were classified into the “catalytic activity” and “bind-

ing” categories. The GO category analysis also indicated that the genes involved in the cellu-

lar response to water deprivation (GO: 0042631), sucrose transport (GO: 0015770),

endosome transport via the multivesicular body sorting pathway (GO: 0032509), the

response to decreased oxygen levels (GO: 0036293), the response to oxygen levels (GO:

0070482), and the regulation of cellular carbohydrate metabolic processes (GO: 0010675)

were significantly enriched in the four genotypes (S3 and S4 Tables).

The KEGG pathway analysis showed enrichment of genes involved in 128 pathways, and 13

pathways were significantly enriched (P-value <0.05) (Table 6), including plant hormone sig-

nal transduction (ko04075), porphyrin and chlorophyll metabolism (ko00860), and photosyn-

thesis (ko00195). Under the application of a significance threshold of a P-value <0.01, the only

metabolic pathway that was enriched was 2-oxocarboxylic acid metabolism. In total, 747, 534,

576, and 674 genes involved in the above pathways were detected, respectively.

Table 3. Total number of variants and the type and zygosity of the variants in each genotype.

Genotypes SNP number Transition Transversion Ti/Tv Heterozygosity Homozygosity

Ruby-3 4,710,650 2,810,112 1,900,538 1.47 1,345,504 (28.56%) 3,365,146 (71.44%)

Hongbei male 3,590,616 2,738,635 1,851,981 1.47 1,278,546 (27.85%) 3,312,070 (72.15%)

Kuilv male 4,646,026 2,769,604 1,876,422 1.47 1,246,789 (26.84%) 3,399,237 (75.16%)

Yongfeng male 4,787,750 2,855,581 1,932,169 1.47 1,336,943 (27.92%) 3,450,807 (72.08%)

https://doi.org/10.1371/journal.pone.0219884.t003

Actinidia arguta re-sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219884 April 10, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0219884.t003
https://doi.org/10.1371/journal.pone.0219884


Validation of InDels

To validate the InDels identified in this study, 120 InDels were selected and converted into

InDel markers. In the PCR analysis, 81 of the 120 primer pairs exhibited appropriate amplifi-

cation using genomic DNA from the four A. arguta varieties and ‘Hongyang’ as the template;

64 of these 81 primer pairs revealed identifiable polymorphisms among these five varieties

based on PAGE analysis. To test the InDel distribution in the other varieties, the diploid A. chi-
nensis ‘Boshanbiyu’, tetraploid A. arguta ‘Ruby-4’, ‘Hongbei’, and ‘LD134’, and hexaploid A.

deliciosa ‘Xuxiang’ and ‘Hayward’ genotypes as well as three re-sequenced genotypes (‘Ruby-

Fig 4. Distribution of SNP mutation types.

https://doi.org/10.1371/journal.pone.0219884.g004

Table 4. Ratio of SNP variants in different gene regions of the A. arguta genotypes.

Functional regions Ruby-3 Hongbei male Yongfeng male Kuilv male

CDS 15.44 15.68 15.15 15.36

Intergenic 13.21 12.97 13.42 13.20

Intragenic 0.00 0.00 0.00 0.00

Upstream 10.65 10.29 10.91 10.71

Downstream 11.85 11.66 12.02 11.86

Splice_site_acceptor 0.02 0.02 0.02 0.02

Splice_site_donor 0.02 0.02 0.02 0.02

Splice_site_region 0.74 0.75 0.72 0.73

https://doi.org/10.1371/journal.pone.0219884.t004
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3’, ‘Kuilv male’, and ‘Hongbei male’) were selected for the identification of InDel polymor-

phisms (Table 6). In total, 14 InDel markers were selectively amplified (Fig 8), resulting in 43

polymorphic loci among the 11 germplasm resources, with an average of 2.87 loci per primer.

Shannon’s diversity index ranged from 0.25 to 0.64, with a mean value of 0.47. The cluster

analysis showed that all the varieties could be divided into two categories, with a genetic simi-

larity coefficient of 0.39; one category was composed of A. arguta, and the other category con-

sisted of the A. chinensis complex.

Discussion

The kiwifruit genome is complex and exhibits variations in ploidy. Actinidia species of different

ploidies show diverse traits, which are controlled by their unique genomes. The species exam-

ined in the present study, A. arguta (2n = 4x = 116), also exhibits excellent characteristics.

According to our results, the average LT50 of A. arguta was -27.2˚C, while that of A. chinensis cv

‘Hongyang’ was -20.9˚C, indicating that A. arguta shows better cold resistance than A. chinensis.
Chat evaluated plant survival and growth recovery to illustrate that A. arguta appeared to be

more tolerant to cold than A. chinensis [32]. The examination of cold damage to kiwifruit in the

natural environment showed that A. arguta exhibited a better survival ability than A. chinensis
and A. deliciosa [33], which is consistent with our conclusion in previous work. However, little

genetic information is available for A. arguta, and this type of information is vital for exploiting

molecular markers of desired traits to develop functional genes. In this study, we re-sequenced

the genomes of A. arguta ‘Ruby-3’, ‘Hongbei male’, ‘Kuilv male’, and ‘Yongfeng male’.

Because genomic information for tetraploid A. arguta is lacking, ‘Hongyang’ was used as

the reference genome in this study. The mapped reads covered approximately 68% of the refer-

ence genome (Table 1); however, whether this variety is autotetraploid or allotetraploid is

unclear, and the unmapped sequences may be due to differences in ploidy (e.g., tetraploid ver-
sus diploid), or the varieties may differ from ‘Hongyang’. Polyploidization events in plants can

result in new functions. For example, the sub-genomes of bread wheat display limited gene

loss or rearrangement, and cell- and stage-dependent dominance is observed, including in

gene families related to baking quality. In Brassica napus, however, dynamic shuffling and

loss-of-polyploidy events have been reported [34][35]. In our study, the unknown genome of

A. arguta is still a large challenge. In this study, SNPs, InDels, and gene functions were ana-

lyzed based on the mapped sequence to obtain a better general understanding of A. arguta. We

analyzed 73% of total reads and found numerous differences in the SNPs and InDels detected

in A. arguta and A. chinensis. Among the SNPs and InDels detected in A. arguta and A. chinen-
sis, differences were observed in more than 5 million SNPs and 1 million InDels in the differ-

ent A. arguta varieties. These findings offer an overview of the A. arguta genome and provide

genomic resources for future studies investigating specific characteristics and genetic differen-

tiation. In addition, the results may be particularly useful for the development of excellent

cold-resistant trait genes.

Table 5. Numbers of InDels of different types in the CDS regions of the four A. arguta genotypes.

Genotypes CDS-Insertion CDS-Deletion CDS-Het CDS-Homo CDS-Total

Ruby-3 13,345 15,876 15,775 13,446 29,221

Hongbei male 13,027 15,599 15,700 12,926 28,626

Kuilv male 13,177 15,550 16,013 12,714 28,727

Yongfeng male 13,568 16,165 16,189 13,544 29,733

Total 19,138 23,843 - - 42,981

https://doi.org/10.1371/journal.pone.0219884.t005
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Fig 5. Distribution of different InDel sizes in the four A. arguta genotypes.

https://doi.org/10.1371/journal.pone.0219884.g005
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The genomic variations identified at the whole-genome level in the four A. arguta geno-

types that may result in amino acid changes, such as SNPs and InDels, were mainly caused by

positive selection during adaptation to environmental changes during the evolutionary pro-

cess. The observed genome polymorphisms were mainly located in intergenic, upstream, and

downstream regions, and similarities were observed among the genotypes (Table 3). Changes

in these regions may influence gene expression, but not gene function [36]. Regarding the sub-

stitution of bases, the transition to transversion ratio (Ti/Tv) observed in the four varieties was

~1.45 in our study. This high ratio maintains the structure of the DNA double helix, as shown

in rice, in which the Ti/Tv ratio is approximately 2.0–2.5 [37]. The ratio of homozygosity to

heterozygosity was approximately 2.20 in ‘Ruby-3’ and ‘Hongbei male’ and approximately 2.37

and 2.40 in ‘Kuilv male’ and ‘Yongfeng male’, respectively. A. arguta from northern China

exhibited greater differences than A. arguta from the middle of China. The SNP frequency

Fig 6. Venn diagram of InDels in the four A. arguta genotypes.

https://doi.org/10.1371/journal.pone.0219884.g006
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Fig 7. GO classification of differentially expressed unigenes in the four A. arguta genotypes. (A) GO classification

of differentially expressed genes in ‘Ruby-3’. (B) GO classification of differentially expressed genes in ‘Yongfeng male’.

Actinidia arguta re-sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219884 April 10, 2020 13 / 18

https://doi.org/10.1371/journal.pone.0219884


observed in the current study was about 8,643 SNPs/Mb, which is higher than the reported

value of 2,515 SNPs/Mb [21], but lower than the value of 15,260 SNPs/Mb observed in Brassica
rapa [38]. The InDel polymorphism frequency was found to be ~48 InDels/Mb in this study.

Among other plants, the frequency of short InDels was found to be 151 InDels/Mb (1–100 bp

in size) in Arabidopsis thaliana [39], approximately 1,050 InDels/Mb in rice [40], and 434

InDels/Mb in B. rapa when the InDel size was limited to 1–5 bp [41], the InDel density was

limited to 1–100 bp, and the frequency was limited to 4,830 InDels/Mb [38]. In A. arguta, the

frequency (1–100 bp) was lower than those observed in these other species. It is likely that the

deep sequencing approach used in these previous studies influenced the number of InDels

identified. In the present study, 41 polymorphic loci were detected among the different varie-

ties, and the InDel primers revealed a high rate of polymorphism. The InDel primers were

designed based on the re-sequencing data, and 20.8% of the primers were specifically amplified

in ‘Hongyang’. In tetraploid and hexaploid species, there are more than two polymorphic loci,

which may show different InDels in the sub-genome. The validation data further implied that

the InDel primers were effective in different kiwifruit species and may be used to identify

phenotypes.

The genome polymorphisms revealed in this study provide comprehensive information,

which can be beneficial for gene function identification. In the different genes, such as CBF
gene (Achn233741) [42], which is a transcription factor involved in cold tolerance, Fructose-1-

6-bisphosphatase (Achn002191), which participating in sucrose synthesis, they all belong to

GO term of the response to cold. Genes associated with the GO categories of the response to

decreased oxygen levels (GO: 0036293) and the response to oxygen levels (GO: 0070482) were

enriched, implying some divergence between A. arguta and A. chinensis.
Since the 1980s, A. arguta cultivation has been introduced in several regions of Europe,

including Belgium, Italy, France, and Iran [32, 33, 43]. In New Zealand, A. arguta has shown

(C) GO classification of differentially expressed genes in ‘Kuilv male’. (D) GO classification of differentially expressed

genes in ‘Hongbei male’.

https://doi.org/10.1371/journal.pone.0219884.g007

Table 6. KEGG pathway enrichment analysis.

Pathway Ko_ID Ruby-3 Yongfeng male Kuilv male Hongbei male

Number of

genes

P-value Number of

genes

P-value Number of

genes

P-value Number of

genes

P-value

2-Oxocarboxylic acid metabolism ko01210 53 0.0067 54 0.0052 51 0.0199 52 0.0137

alpha-Linolenic acid metabolism ko00592 46 0.0127 - - 45 0.0200 44 0.0472

Thiamine metabolism ko00730 19 0.0138 19 0.0176 19 0.0120 19 0.0140

Fatty acid elongation ko00062 37 0.0139 38 0.0087 39 0.0017 37 0.0141

Photosynthesis ko00195 65 0.0169 - - 63 0.0369 64 0.0297

Steroid biosynthesis ko00100 27 0.0182 - - - - - -

Stilbenoid, diarylheptanoid, and gingerol

biosynthesis

ko00945 26 0.0242 27 0.0123 26 0.0204 26 0.0245

Plant hormone signal transduction ko04075 251 0.0290 265 0.0013 255 0.0048 251 0.0303

Terpenoid backbone biosynthesis ko00900 54 0.0307 - - - - 54 0.0313

Porphyrin and chlorophyll metabolism ko00860 48 0.0312 50 0.0130 48 0.0247 49 0.0168

Zeatin biosynthesis ko00908 31 0.0362 33 0.0092 31 0.0303 31 0.0366

Alanine, aspartate, and glutamate metabolism ko00250 47 0.0380 49 0.0161 - - 48 0.0209

Flavonoid biosynthesis ko00941 44 0.0465 - - - - - -

https://doi.org/10.1371/journal.pone.0219884.t006
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good cold resistance and is used as a stock for improving cold resistance [44]. Qi examined the

thickness of the collenchyma and found that collenchyma thickness was closely related to cold

resistance [45]. In the present study, four entire genomes of A. arguta were re-sequenced to

increase our understanding of plant traits, which could benefit further transcriptome analyses

to identify functional genes.
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