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Abstract

Motivation: The identification of novel drug–target (DT) interactions is a substantial part of the

drug discovery process. Most of the computational methods that have been proposed to predict

DT interactions have focused on binary classification, where the goal is to determine whether a DT

pair interacts or not. However, protein–ligand interactions assume a continuum of binding strength

values, also called binding affinity and predicting this value still remains a challenge. The increase

in the affinity data available in DT knowledge-bases allows the use of advanced learning techni-

ques such as deep learning architectures in the prediction of binding affinities. In this study, we

propose a deep-learning based model that uses only sequence information of both targets and

drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity

prediction use either 3D structures of protein–ligand complexes or 2D features of compounds. One

novel approach used in this work is the modeling of protein sequences and compound 1D repre-

sentations with convolutional neural networks (CNNs).

Results: The results show that the proposed deep learning based model that uses the 1D represen-

tations of targets and drugs is an effective approach for drug target binding affinity prediction. The

model in which high-level representations of a drug and a target are constructed via CNNs

achieved the best Concordance Index (CI) performance in one of our larger benchmark datasets,

outperforming the KronRLS algorithm and SimBoost, a state-of-the-art method for DT binding af-

finity prediction.

Availability and implementation: https://github.com/hkmztrk/DeepDTA

Contact: arzucan.ozgur@boun.edu.tr or elif.ozkirimli@boun.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The successful identification of drug–target interactions (DTI) is a

critical step in drug discovery. As the field of drug discovery expands

with the discovery of new drugs, repurposing of existing drugs and

identification of novel interacting partners for approved drugs is

also gaining interest (Oprea and Mestres, 2012). Until recently, DTI

prediction was approached as a binary classification problem

(Bleakley and Yamanishi, 2009; Cao et al., 2014, 2012; Cobanoglu

et al., 2013; Gönen, 2012; Öztürk et al., 2016; Yamanishi et al.,

2008; van Laarhoven et al., 2011), neglecting an important piece of

information about protein–ligand interactions, namely the binding

affinity values. Binding affinity provides information on the strength

of the interaction between a drug–target (DT) pair and it is usually

expressed in measures such as dissociation constant (Kd), inhibition

constant (Ki) or the half maximal inhibitory concentration (IC50).

IC50 depends on the concentration of the target and ligand

(Cer et al., 2009) and low IC50 values signal strong binding.

Similarly, low Ki values indicate high binding affinity. Kd and Ki val-

ues are usually represented in terms of pKd or pKi, the negative loga-

rithm of the dissociation or inhibition constants.

In binary classification based DTI prediction studies, construc-

tion of the datasets constitutes a major step, since designation of the

negative (not-binding) samples directly affects the performance of

the model. As of last decade, most of the DTI studies utilized four

major datasets by Yamanishi et al. (2008) in which DT pairs with

no known binding information are treated as negative (not-binding)

samples. Recently, DTI studies that rely on databases with binding

affinity information have been providing more realistic binary

datasets created with a chosen binding affinity threshold value (Wan

and Zeng, 2016). Formulating the DT prediction task as a binding

affinity prediction problem enables the creation of more realistic

datasets, where the binding affinity scores are directly used.
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Furthermore, a regression-based model brings in the advantage of

predicting an approximate value for the strength of the interaction

between the drug and target which in turn would be significantly

beneficial for limiting the large compound search-space in drug dis-

covery studies.

Prediction of protein–ligand binding affinities has been the focus

of protein–ligand scoring, which is frequently used after virtual

screening and docking campaigns in order to predict the putative

strengths of the proposed ligands to the target (Ragoza et al., 2017).

Non-parametric machine learning methods such as the Random

Forest (RF) algorithm have been used as a successful alternative to

scoring functions that depend on multiple parameters (Ballester and

Mitchell, 2010; Li et al., 2015; Shar et al., 2016). However, Gabel

et al. (2014) showed that RF-score failed in virtual screening and

docking tests, speculating that using features such as co-occurrence

of atom-pairs over-simplified the description of the protein–ligand

complex and led to the loss of information that the raw interaction

complex could provide. Around the same time this study was pub-

lished, deep learning started to become a popular architecture pow-

ered by the increase in data and high capacity computing machines

challenging other machine learning methods.

Inspired by the remarkable success rate in image processing

(Ciregan et al., 2012; Donahue et al., 2014; Simonyan and

Zisserman, 2015) and speech recognition (Dahl et al., 2012; Graves

et al., 2013; Hinton et al., 2012), deep learning methods are now

being intensively used in many other research fields, including bio-

informatics such as in genomics studies (Leung et al., 2014; Xiong

et al., 2015) and quantitative-structure activity relationship (QSAR)

studies in drug discovery (Ma et al., 2015). The major advantage of

deep learning architectures is that they enable better representations

of the raw data by non-linear transformations in each layer (LeCun

et al., 2015) and thus they facilitate learning the hidden patterns in

the data.

A few studies employing Deep Neural Networks (DNN) have al-

ready been performed for DTI binary class prediction using different

input models for proteins and drugs (Chan et al., 2016; Tian et al.,

2015; Hamanaka et al., 2016) in addition to some studies that

employ stacked auto-encoders (Wang et al., 2017) and deep-

belief networks (Wen et al., 2017). Similarly, stacked auto-encoder

based models with Recurrent Neural Networks (RNNs) and

Convolutional Neural Networks (CNNs) were applied to represent

chemical and genomic structures in real-valued vector forms

(Gómez-Bombarelli et al., 2018; Jastrzkeski et al., 2016). Deep

learning approaches have also been applied to protein–ligand inter-

action scoring in which a common application has been the use of

CNNs that learn from the 3D structures of the protein–ligand com-

plexes (Gomes et al., 2017; Ragoza et al., 2017; Wallach et al.,

2015). However, this approach is limited to known protein–ligand

complex structures, with only 25 000 ligands reported in PDB (Rose

et al., 2016).

Pahikkala et al. (2014) employed the Kronecker Regularized

Least Squares (KronRLS) algorithm that utilizes only 2D based

compound similarity-based representations of the drugs and

Smith–Waterman similarity representation of the targets. Recently,

SimBoost method was proposed to predict binding affinity scores

with a gradient boosting machine by using feature engineering to

represent DTI (He et al., 2017). They utilized similarity-based in-

formation of DT pairs as well as features that were extracted from

network-based interactions between the pairs. Both studies used

traditional machine learning algorithms and utilized 2D-represen-

tations of the compounds in order to obtain similarity

information.

In this study, we propose an approach to predict the binding

affinities of protein–ligand interactions with deep learning models

using only sequences (1D representations) of proteins and ligands.

To this end, the sequences of the proteins and SMILES (Simplified

Molecular Input Line Entry System) representations of the com-

pounds are used rather than external features or 3D-structures of

the binding complexes. We employ CNN blocks to learn representa-

tions from the raw protein sequences and SMILES strings and com-

bine these representations to feed into a fully connected layer block

that we call DeepDTA. We use the Davis Kinase binding affinity

dataset (Davis et al., 2011) and the KIBA large-scale kinase inhibi-

tors bioactivity data (He et al., 2017; Tang et al., 2014) to evaluate

the performance of our model and compare our results with the

KronRLS (Pahikkala et al., 2014) and SimBoost algorithms (He

et al., 2017). Our new model that uses two separate CNN-based

blocks to represent proteins and drugs performs as well as the

KronRLS and SimBoost algorithms on the Davis dataset, and it per-

forms significantly better than both the KronRLS and SimBoost

algorithms on the KIBA dataset (P-value, 0.0001). With our pro-

posed model, we also obtain the lowest Mean Squared Error (MSE)

value on both datasets.

2 Materials and methods

2.1 Datasets
We evaluated our proposed model on two different datasets, the

Kinase dataset Davis (Davis et al., 2011) and KIBA dataset (Tang

et al., 2014), which were previously used as benchmark datasets for

binding affinity prediction evaluation (He et al., 2017; Pahikkala

et al., 2014).

The Davis dataset contains selectivity assays of the kinase pro-

tein family and the relevant inhibitors with their respective dissoci-

ation constant (Kd) values. It comprises interactions of 442 proteins

and 68 ligands. The KIBA dataset, on the other hand, originated

from an approach called KIBA, in which kinase inhibitor bioactiv-

ities from different sources such as Ki, Kd and IC50 were combined

(Tang et al., 2014). KIBA scores were constructed to optimize the

consistency between Ki, Kd and IC50 by utilizing the statistical infor-

mation they contained. The KIBA dataset originally comprised 467

targets and 52 498 drugs. He et al. (2017) filtered it to contain only

drugs and targets with at least 10 interactions yielding a total of 229

unique proteins and 2111 unique drugs. Table 1 summarizes these

datasets in the forms that we used in our experiments.

While Pahikkala et al. (2014) used the Kd values of the Davis

dataset directly as the binding affinity values, we used the values

transformed into log space, pKd, similar to He et al. (2017) as

explained in Equation (1).

pKd ¼ �log10
Kd

1e9

� �
(1)

Figure 1A (left panel) illustrates the distribution of the binding

affinity values in pKd form. The peak at pKd value 5 (10 000 nM)

constitutes more than half of the dataset (20 931 out of 30 056).

These values correspond to the negative pairs that either have very

Table 1. Summary of the datasets

Proteins Compounds Interactions

Davis (Kd) 442 68 30 056

KIBA 229 2111 118 254
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weak binding affinities (Kd > 10000 nM) or are not observed in the

primary screen (Pahikkala et al., 2014). As such they are true

negatives.

The distribution of the KIBA scores is depicted in the right panel

of Figure 1A. He et al. (2017) pre-processed the KIBA scores as fol-

lows: (i) for each KIBA score, its negative was taken, (ii) the min-

imum value among the negatives was chosen and (iii) the absolute

value of the minimum was added to all negative scores, thus con-

structing the final form of the KIBA scores.

The compound SMILES strings of the Davis dataset were

extracted from the Pubchem compound database based on their

Pubchem CIDs (Bolton et al., 2008). For KIBA, first the CHEMBL

IDs were converted into Pubchem CIDs and then, the corresponding

CIDs were used to extract the SMILES strings. Figure 1B illustrates

the distribution of the lengths of the SMILES strings of the com-

pounds in the Davis (left) and KIBA (right) datasets. For the com-

pounds of the Davis dataset, the maximum length of a SMILES is

103, while the average length is equal to 64. For the compounds of

KIBA, the maximum length of a SMILES is 590, while the average

length is equal to 58.

The protein sequences of the Davis dataset were extracted from

the UniProt protein database based on gene names/RefSeq accession

numbers (Apweiler et al., 2004). Similarly, the UniProt IDs of the

targets in the KIBA dataset were used to collect the protein sequen-

ces. Figure 1C (left panel) shows the lengths of the sequences of the

proteins in the Davis dataset. The maximum length of a protein se-

quence is 2549 and the average length is 788 characters. Figure 1C

(right panel) depicts the distribution of protein sequence length in

KIBA targets. The maximum length of a protein sequence is 4128

and the average length is 728 characters.

We should also note that the Smith–Waterman (S–W) similarity

among proteins of the KIBA dataset is at most 60% for 99% of the

protein pairs. The target similarity is at most 60% for 92% of the

protein pairs for the Davis dataset. These statistics indicate that

both datasets are non-redundant.

2.2 Input representation
We used integer/label encoding that uses integers for the categories

to represent inputs. We scanned approximately 2 M SMILES

Fig. 1. Summary of the Davis (left panel) and KIBA (right panel) datasets. (A) Distribution of binding affinity values. (B) Distribution of the lengths of the SMILES

strings. (C) Distribution of the lengths of the protein sequences
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sequences that we collected from Pubchem and compiled 64 labels

(unique letters). For protein sequences, we scanned 550 K protein

sequences from UniProt and extracted 25 categories (unique letters).

Here we represent each label with a corresponding integer (e.g.

‘C’: 1, ‘H’: 2, ‘N’: 3 etc.). The label encoding for the example

SMILES, ‘CN¼C¼O’, is given below.

½C N ¼ C ¼ O � ¼ ½ 1 3 63 1 63 5 �

Protein sequences are encoded in a similar way using label encod-

ings. Both SMILES and protein sequences have varying lengths.

Hence, in order to create an effective representation form, we decided

on fixed maximum lengths of 85 for SMILES and 1200 for protein

sequences for Davis. To represent the components of KIBA, we chose

the maximum 100 characters length for SMILES and 1000 for protein

sequences. We chose these maximum lengths based on the distribu-

tions illustrated in Figure 1B and C so that the maximum lengths

cover at least 80% of the proteins and 90% of the compounds in the

datasets. The sequences that are longer than the maximum length are

truncated, whereas shorter sequences are 0-padded.

2.3 Proposed model
In this study, we treated protein–ligand interaction prediction as a regres-

sion problem by aiming to predict the binding affinity scores. As a pre-

diction model, we adopted a popular deep learning architecture,

Convolutional Neural Network (CNN). CNN is an architecture that

contains one or more convolutional layers often followed by a pooling

layer. A pooling layer down-samples the output of the previous layer

and provides a way of generalization of the features that are learned by

the filters. On top of the convolutional and pooling layers, the model is

completed with one or more fully connected (FC) layers. The most

powerful feature of CNN models is their ability to capture the local

dependencies with the help of filters. Therefore, the number and size of

the filters in a CNN directly affects the type of features the model learns

from the input. It is often reported that as the number of filters increases,

the model becomes better at recognizing patterns (Kang et al., 2014).

We proposed a CNN-based prediction model that comprises two

separate CNN blocks, each of which aims to learn representations from

SMILES strings and protein sequences. For each CNN block, we used

three consecutive 1D-convolutional layers with increasing number of fil-

ters. The second layer had double and the third convolutional layer had

triple the number of filters in the first one. The convolutional layers were

then followed by the max-pooling layer. The final features of the max-

pooling layers were concatenated and fed into three FC layers, which we

named as DeepDTA. We used 1024 nodes in the first two FC layers,

each followed by a dropout layer of rate 0.1. Dropout is a regularization

technique that is used to avoid over-fitting by setting the activation of

some of the neurons to 0 (Srivastava et al., 2014). The third layer con-

sisted of 512 nodes and was followed by the output layer. The proposed

model that combines two CNN blocks is illustrated in Figure 2.

As the activation function, we used Rectified Linear Unit (ReLU)

(Nair and Hinton, 2010), gðxÞ ¼ maxð0; xÞ, which has been widely

used in deep learning studies (LeCun et al., 2015). A learning model

tries to minimize the difference between the expected (real) value

and the prediction during training. Since we work on a regression

task, we used mean squared error (MSE) as the loss function, in

which P is the prediction vector, and Y corresponds to the vector of

actual outputs. n indicates the number of samples.

MSE ¼ 1

n

Xn

i¼1

ðPi � YiÞ2 (2)

The learning was completed with 100 epochs and mini-batch

size of 256 was used to update the weights of the network. Adam

was used as the optimization algorithm to train the networks

(Kingma and Ba, 2015) with the default learning rate of 0.001. We

used Keras’ Embedding layer to represent characters with 128-di-

mensional dense vectors. The input for Davis dataset consisted of

(85, 128) and (1200, 128) dimensional matrices for the compounds

and proteins, respectively. We represented KIBA dataset with a

(100, 128) dimensional matrix for the compounds and a (1000,

128) dimensional matrix for the proteins.

3 Experiments and results

Here, we propose a novel drug–target binding affinity prediction

method based on only sequence information of compounds and pro-

teins. We utilized the Concordance Index (CI) to measure the per-

formance of the proposed model and compared it with the current

state-of-art methods that we chose as our baselines, namely a

Kronecker Regularized Least Squares (KronRLS) based approach

(Pahikkala et al., 2014) and SimBoost (He et al., 2017). We provide

more information about these baseline methodologies, our model

and experimental setup, as well as our results in the following

subsections.

3.1 Baselines
3.1.1 Kron-RLS

KronRLS aims to minimize the following function, where f is the

prediction function (Pahikkala et al., 2014):

Jðf Þ ¼
Xm
i¼1

ðyi � f ðxiÞÞ2 þ kjjf jj2k (3)

jjf jj2k is the norm of f, which is related to the kernel function k,

and k > 0 is a regularization hyper-parameter defined by the user.

Fig. 2. DeepDTA model with two CNN blocks to learn from compound

SMILES and protein sequences
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A minimizer for Equation (3) can be defined as follows (Kimeldorf

and Wahba, 1971):

f ðxÞ ¼
Xm
i¼1

aikðx; xiÞ (4)

where k is the kernel function. In order to represent compounds,

they utilized a similarity matrix computed using Pubchem structure

clustering server (Pubchem Sim)(http://pubchem.ncbi.nlm.nih.gov),

a tool that utilizes single linkage for cluster and uses 2D properties

of the compounds to measure their similarity. As for proteins, the

Smith–Waterman algorithm was used to construct a protein similar-

ity matrix (Smith and Waterman, 1981).

3.1.2 SimBoost

SimBoost is a gradient boosting machine based method that depends

on the features constructed from drugs, targets and drug–target pairs

(He et al., 2017). The proposed methodology uses feature engineer-

ing to build three types of features: (i) object-based features that util-

ize occurrence statistics and pairwise similarity information of drugs

and targets, (ii) network-based features such as neighbor statistics,

network metrics (betweenness, closeness etc.), PageRank score,

which are collected from the respective drug–drug and target–target

networks (In a drug–drug network, drugs are represented as nodes

and connected to each other if the similarity of these two drugs is

above a user-defined threshold. The target–target network is con-

structed in a similar way.) and (iii) network-based features that are

collected from a heterogeneous network (drug–target network)

where a node can either be a drug or target and the drug nodes

and target nodes are connected to each other via binding affinity

value. In addition to the network metrics, neighbor statistics and

PageRank scores, as well as latent vectors from matrix factorization

are also included in this type of network.

These features are fed into a supervised learning method named

gradient boosting regression trees (Chen and Guestrin, 2016; Chen

and He, 2015) derived from gradient boosting machine model

(Friedman, 2001). With gradient boosting regression trees, for a

given drug–target pair dti, the binding affinity score yi predicted as

follows (He et al., 2017):

yi ¼ hðdtiÞ ¼
XM
m¼1

fmðdtiÞ; fm 2 F (5)

in which M denotes the number of regression trees and F represents

the space of all possible trees. A regularized objective function to

learn the set of trees fm is described in the following form (He et al.,

2017):

RðhÞ ¼
X

i

lðyi; yiÞ þ
X

m

aðfmÞ (6)

where l is the loss function that measures the difference between the

actual binding affinity value yi and the predicted value yi, while a is

the tuning parameter that controls the complexity of the model. The

details are described in (Chen and Guestrin, 2016; Chen and He,

2015; He et al., 2017). Similar to Pahikkala et al. (2014), He et al.

(2017) also used PubChem clustering server for drug similarity and

Smith–Waterman for protein similarity computation.

3.2 Evaluation metrics
To evaluate the performance of a model that outputs continuous

values, Concordance Index (CI) was used (Gönen and Heller, 2005):

CI ¼ 1

Z

X
di>dj

hðbi � bjÞ (7)

where bi is the prediction value for the larger affinity di, bj is the pre-

diction value for the smaller affinity dj, Z is a normalization con-

stant, h(x) is the step function (Pahikkala et al., 2014):

hðxÞ ¼

1; if x > 0

0:5; if x ¼ 0

0; if x < 0

8>><
>>:

(8)

The metric measures whether the predicted binding affinity val-

ues of two random drug–target pairs were predicted in the same

order as their true values were. We used paired-t test for the statistic-

al significance tests with 95% confidence interval. We also used

MSE, which was explained in Section 2.3, as an evaluation metric.

3.3 Experiment setup
We evaluated the performance of the proposed model on the bench-

mark datasets (Davis et al., 2011; Tang et al., 2014) similarly to (He

et al., 2017). They used nested-cross validation to decide on the best

parameters for each test set. In order to learn a generalized model,

we randomly divided our dataset into six equal parts in which one

part is selected as the independent test set. The remaining parts of

the dataset were used to determine the hyper-parameters via 5-fold

cross validation. Figure 3 illustrates the partitioning of the dataset.

The same setting with the same train and test folds was used for

KronRLS (Pahikkala et al., 2014) and Simboost (He et al., 2017) for

a fair comparison.

We decided on three hyper-parameters for our model, namely

the number of the filters (same for proteins and compounds), the

length of the filter size for compounds, and the length of the filter

size for proteins. We opted to experiment with different filter

lengths for compounds and proteins instead of a common length,

due to the fact that they have different alphabets. The hyper-

parameter combination that provided the best average CI score over

the validation set was selected as the best combination in order to

model the test set. We first experimented with hyper-parameters

chosen from a wide range and then fine-tuned the model. For ex-

ample, to determine the number of filters we performed a search

over [16, 32, 64, 128, 512]. We then narrowed the search range

around the best performing parameter (e.g. if 16 was chosen as the

best parameter, then our range was updated as [4, 8, 16, 20] etc.).

As explained in the Proposed Model subsection, the second convo-

lution layer was set to contain twice the number of filters of the first

layer, and the third one was set to contain three times the number of

filters of the first layer. 32 filters gave the best results over the cross-

validation experiments. Therefore, in the final model, each CNN

block consisted of three 1D convolutions of 32, 64, 96 filters. For all

test results reported in Table 3, we used the same structure summar-

ized in Table 2 except for the lengths of the pre-fine-tuned filters that

were used for the compound CNN-block and protein CNN-block.

In order to provide a more robust performance measure, we eval-

uated the performance over the independent test set which was

Fig. 3. Experiment setup
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initially left out (blue part). We utilized the same five training sets

that we used in 5-fold cross validation to train the model with the

learned parameters in Table 2 (note that the validation sets were not

used, yielding only four green parts for each training set.) The final

CI score was reported as the average of these five results. Keras

(Chollet et al., 2015) with Tensorflow (Abadi et al., 2016) back-end

was used as development framework. Our experiments were run on

OpenSuse 13.2 [3.50 GHz Intel(R) Xeon(R) and GeForce GTX

1070 (8GB)]. The work was accelerated by running on GPU with

cuDNN (Chetlur et al., 2014). We provide our source code as well

as the train and test folds of the datasets (https://github.com/

hkmztrk/DeepDTA/).

3.4 Results
In this study, we propose a deep-learning model that uses two CNN-

blocks to learn representations for drugs and targets based on their

sequences. As a baseline for comparison, the KronRLS algorithm and

SimBoost methods that use similarity matrices for proteins and com-

pounds as input were used. The S–W and Pubchem Sim algorithms

were used to compute the pairwise similarities for the proteins and

ligands, respectively. We then used these S–W and Pubchem Sim simi-

larity scores as inputs to the FC part of our model (DeepDTA) to

evaluate the model. Finally, we used three alternative combinations in

learning the hidden patterns of the data and used this information as

input to our DeepDTA model. The combinations were (i) learning

only compound representation with a CNN block and using S–W

similarity as protein representation, (ii) learning only protein sequence

representation with a CNN block and using Pubchem Sim to describe

compounds and (iii) learning both protein representation and com-

pound representations with a CNN block. We call the last combin-

ation used with DeepDTA the combined model.

Tables 3 and 4 report the average MSE and CI scores over the in-

dependent test set of the five models trained with the same parame-

ters (shown in Table 2) using the five different training sets for

Davis and KIBA datasets.

In the Davis dataset, SimBoost and KronRLS methods perform

similarly while the CI values for SimBoost is higher than that for

KronRLS in the larger KIBA dataset. When the similarity measures

S–W, for proteins, and Pubchem Sim, for compounds, are used with

the the fully connected part of the neural networks (DeepDTA), the

CI drops to 0.79 for the Davis dataset and to 0.71 for the KIBA

dataset. The MSE increases to >0.5. These results suggest that the

use of a feed-forward neural network with predefined features is not

sufficient to describe drug target interactions and to predict drug tar-

get affinities. Therefore, we used CNN layers to learn representations

of drugs and proteins to capture hidden patterns in the datasets.

We first used CNN to learn representations of proteins and used

the predefined Pubchem Sim scores for the ligands. Using this com-

bination did not improve the results suggesting that use of a CNN

architecture is not effective enough to learn from amino acid

sequences.

Then we used the CNN block to learn compound representa-

tions from SMILES and used the predefined S–W scores for the pro-

teins. This combination outperformed the baselines on the KIBA

dataset with statistical significance (P-value of 0.0001 for both

SimBoost and KronRLS), and on the Davis dataset (P-value of

around 0.03 for both SimBoost and KronRLS). These results sug-

gested that the CNN is able to capture more information than

Pubchem Sim in the compound representation task.

Motivated by this result, we tested the combined CNN model in

which both protein and compound representations are learned from

the CNN layer. This method performed as well as the baseline meth-

ods with CI score of 0.878 on the Davis dataset and achieved the

best CI score (0.863) on the KIBA dataset with statistical signifi-

cance over both baselines (P-value of 0.0001 for both). The MSE

values of this model were also notably lower than the MSE of the

baseline models on both datasets. Even though learning protein rep-

resentations with CNN was not effective, combination of the two

CNN blocks for proteins and ligands provided a strong model.

In an effort to provide a better assessment of our model, we

measured the performances of DeepDTA with two CNN modules

and two baseline methods with two different metrics as well. r2
m

index can be used to evaluate the external predictive performance of

QSAR models where r2
m values > 0.5 for the test set was determined

as an acceptable model. The metric is described in Equation (9)

where r2 and r0
2 are the squared correlation coefficients with and

Table 3. The average CI and MSE scores of the test set trained on

five different training sets for the Davis dataset

Proteins Compounds CI (std) MSE

KronRLS

(Pahikkala

et al., 2014)

S–W Pubchem Sim 0.871 (0.0008) 0.379

SimBoost

(He et al.,

2017)

S–W Pubchem Sim 0.872 (0.002) 0.282

DeepDTA S–W Pubchem Sim 0.790 (0.009) 0.608

DeepDTA CNN Pubchem Sim 0.835 (0.005) 0.419

DeepDTA S–W CNN 0.886 (0.008) 0.420

DeepDTA CNN CNN 0.878 (0.004) 0.261

Note: The standard deviations are given in parenthesis.

Table 2. Parameter settings for CNN based DeepDTA model

Parameters Range

Number of filters 32*1; 32*2; 32*3

Filter length (compounds) [4, 6, 8]

Filter length (proteins) [4, 8, 12]

epoch 100

hidden neurons 1024; 1024; 512

batch size 256

dropout 0.1

optimizer Adam

learning rate (lr) 0.001

Table 4. The average CI and MSE scores of the test set trained on

five different training sets for the KIBA dataset

Proteins Compounds CI (std) MSE

KronRLS

(Pahikkala

et al., 2014)

S–W Pubchem Sim 0.782 (0.0009) 0.411

SimBoost

(He et al.,

2017)

S–W Pubchem Sim 0.836 (0.001) 0.222

DeepDTA S–W Pubchem Sim 0.710 (0.002) 0.502

DeepDTA CNN Pubchem Sim 0.718 (0.004) 0.571

DeepDTA S–W CNN 0.854 (0.001) 0.204

DeepDTA CNN CNN 0.863 (0.002) 0.194

Note: The standard deviations are given in parenthesis.
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without intercept, respectively. The details of the formulation are

explained in (Pratim Roy et al., 2009; Roy et al., 2013).

r2
m ¼ r2 � ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

0

q
Þ (9)

The Area Under Precision Recall (AUPR) score is adopted by

many studies that utilize binary prediction. In order to measure

AUPR based performances, we converted the quantitative datasets

into binary datasets by selecting binding affinity thresholds. For Davis

dataset we used pKd value of 7 as threshold (pKd�7 binds) similar to

(He et al., 2017). For KIBA dataset we used the suggested threshold

KIBA value of 12.1 (He et al., 2017; Tang et al., 2014). Tables 5 and

6 depict the performances of DeepDTA with two CNN modules and

two baseline methods on Davis and KIBA datasets, respectively.

The results suggest that both SimBoost and DeepDTA are ac-

ceptable models for affinity prediction in terms of r2
m value and

DeepDTA performs significantly better than SimBoost in KIBA

dataset in terms of r2
m (P-value of 0.0001) and AUPR performances

(P-value of 0.0003).

Figure 4 illustrates the predicted against measured (actual) bind-

ing affinity values for Davis and KIBA datasets. A perfect model is

expected to provide a p¼ y line where predictions (p) are equal to

the measured (y) values. We observe that especially for KIBA data-

set, the density is high around the p¼ y line.

We also provide plots for two sample targets from KIBA dataset

with predictions against actual values in Supplementary Figures S1

and S2.

4 Conclusion

We propose a deep-learning based approach to predict drug–target

binding affinity using only sequences of proteins and drugs. We use

Convolutional Neural Networks (CNN) to learn representations

from the raw sequence data of proteins and drugs and fully con-

nected layers (DeepDTA) in the affinity prediction task. We com-

pare the performance of the proposed model with two recent studies

that employed the KronRLS regression algorithm (Pahikkala et al.,

2014) and the SimBoost method (He et al., 2017) as our baselines.

We perform our experiments on the Davis kinase–drug dataset and

the KIBA dataset.

Our results showed that the use of predefined features with

DeepDTA is not sufficient to describe protein–ligand interactions.

However, when two CNN-blocks that learn representations of pro-

teins and drugs based on raw sequence data are used in conjunction

with DeepDTA, the performance increases significantly compared

to both baseline methodologies for both KIBA and Davis datasets.

Furthermore, the model that uses CNN to learn compound represen-

tations from SMILES and S–W similarities of proteins also achieves

better performance than the baselines.

We observed that the model that uses CNN-block to learn pro-

teins and 2D compound similarity to represent compounds per-

formed poorly compared to the other methods that employ CNN.

This might be an indication that amino-acids require a structure that

can handle their ordered relationships, which the CNN architecture

failed to capture successfully. Long-Short Term Memory (LSTM),

which is a special type of Recurrent Neural Networks (RNN),

could be a more suitable approach to learn from protein sequences,

since the architecture has memory blocks that allow effective learning

from a long sequence. LSTM architecture has been successfully

Table 5. The average r2
m and AUPR scores of the test set trained on

five different training sets for the Davis dataset

Proteins Compounds r2
m (std) AUPR (std)

KronRLS

(Pahikkala

et al., 2014)

S–W Pubchem

Sim

0.407 (0.005) 0.661 (0.010)

SimBoost

(He et al.,

2017)

S–W Pubchem

Sim

0.644 (0.006) 0.709 (0.008)

DeepDTA CNN CNN 0.630 (0.017) 0.714 (0.010)

Note: The standard deviations are given in parenthesis.

Fig. 4. Predictions from DeepDTA model with two CNN blocks against meas-

ured (real) binding affinity values for Davis (pKd) and KIBA (KIBA score)

datasets

Table 6. The average r2
m and AUPR scores of the test set trained on

five different training sets for the KIBA dataset

Proteins Compounds r2
m (std) AUPR (std)

KronRLS

(Pahikkala

et al., 2014)

S–W Pubchem

Sim

0.342 (0.001) 0.635 (0.004)

SimBoost

(He et al.,

2017)

S–W Pubchem

Sim

0.629 (0.007) 0.760 (0.003)

DeepDTA CNN CNN 0.673 (0.009) 0.788 (0.004)

Note: The standard deviations are given in parenthesis.
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employed to tasks such as detecting homology (Hochreiter et al.,

2007), constructive peptide design (Muller et al., 2018) and function

prediction (Liu, 2017) that utilize amino-acid sequences. As future

work, we also aim to utilize a recent ligand-based protein representa-

tion method proposed by our team that uses SMILES sequences of

the interacting ligands to describe proteins (Öztürk et al., 2018).

The results indicated that deep-learning based methodologies

performed notably better than the baseline methods with a statistical

significance when the dataset grows in size, as the KIBA dataset is

four times larger than the Davis dataset. The improvement over the

baseline was significantly higher for the KIBA dataset (from CI score

of 0.836 to 0.863) compared to the Davis dataset (from CI score of

0.872 to 0.878). The increase in the data enables the deep learning

architectures to capture the hidden information better.

The major contribution of this study is the presentation of a

novel deep learning-based model for drug–target affinity prediction

that uses only character representations of proteins and drugs. By

simply using raw sequence information for both drugs and targets,

we were able to achieve similar or better performance than the base-

line methods that depend on multiple different tools and algorithms

to extract features.

A large percentage of proteins remains untargeted, either due to

bias in the drug discovery field for a select group of proteins or due

to their undruggability, and this untapped pool of proteins has

gained interest with protein deorphanizing efforts (Edwards et al.,

2011; Fedorov et al., 2010; O’Meara et al., 2016). As future work,

we will focus on building an effective representation for protein

sequences. The methodology can then be extended to predict the af-

finity of known compounds/targets to novel targets/drugs as well as

to the prediction of the affinity of novel drug–target pairs.
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