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Abstract
Understanding the short- and long-term consequences of climate change is a major chal-
lenge in biology. For aquatic organisms, temperature changes and drought can lead to ther-
mal stress and habitat loss, both of which can ultimately lead to higher mutation rates. 
Here, we examine the effect of high temperature and mutation accumulation on gene 
expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. 
HSPs have been posited to serve as ‘mutational capacitors’ given their role as molecular 
chaperones involved in protein folding and degradation, thus buffering against a wide range 
of cellular stress and destabilization. We assayed changes in HSP expression across 5 geno-
types of Daphnia magna, a sentinel species in ecology and environmental biology, with 
and without acute exposure to thermal stress and accumulated mutations. Across geno-
types, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumula-
tion, individually. Both factors simultaneously (lineages with high mutation loads exposed 
to high heat) increased gene expression ~ 23×—much more than that predicted by an addi-
tive model. Our results corroborate suggestions that HSPs can buffer against not only the 
effects of heat, but also mutations—a combination of factors both likely to increase in a 
warming world.
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Introduction

Climate change and habitat loss can impose stress on biological organisms, either directly 
(e.g., increased heat exposure due to higher temperatures), over short time periods (e.g., 
increases in oxidative stress leading to higher DNA damage), or over long time peri-
ods (e.g., increased mutation rates resulting from lower effective population sizes due to 
shrinking habitats). Furthermore, stressors can interact synergistically, potentially result-
ing in larger effects than individual stressors alone. Inferring the effects of stress on fitness 
requires a broad array of assays, ranging from molecular assays, to behavioral studies, to an 
examination of species range shifts (e.g., the heat shock response [HSR] (Lindquist 1986); 
diel vertical migrations (e.g., Müller et  al. 2018); shifts in species distributions towards 
higher elevations (e.g., Freitas et al. 2016; reviewed in Parmesan 2006; Pinsky et al. 2020; 
Walther et al. 2002)). Changes in gene expression, however, represent an early, immediate, 
measurable response that can be assayed in a laboratory environment under controlled con-
ditions, and as such can be a useful indicator of the initial, direct impact of one or multiple 
stressors on large scale, long-term outcomes like fitness and distribution.

Here, we assay the changes in gene expression of two heat shock protein (HSP) genes 
(HSP90 and HSP60) in Daphnia magna in response to two different stressors—heat and 
mutation load. Members of the HSP gene family perform an array of essential functions 
in the cell, including acting as molecular chaperones, facilitating immune response, regu-
lating apoptosis, and signaling protein degradation (Czarnecka et al. 2006; Höhfeld et al. 
2001; Javid et al. 2007; Queitsch et al. 2002). HSP90 is a 90 kDa chaperonin, known as 
a ‘central modulator’ or a ‘hub of hubs’ due to its role in signaling pathways and pro-
tein–protein interactions (Schopf et al., 2017; Zabinsky et al., 2019b), that stabilizes a large 
clientele of intracellular proteins and signaling proteins. HSP60 is a 60  kDa chaperonin 
primarily localized to the mitochondria (Cheng et al. 1989), where it is involved in the de 
novo folding and refolding of imported proteins (Martin et al. 1992).

As molecular chaperones, HSPs stabilize proteins, protein complexes, and other molec-
ular interactions, including under stressful conditions. Increased HSP expression has been 
observed, not only in response to heat, but also to a variety of other stressors (e.g., heavy 
metals, oxidative stress, cytotoxic agents, and mutation; Casanueva et al. 2012; Chen et al. 
2018; Kim et  al. 2014; Liu et  al. 2015; Neuhaus-Steinmetz and Rensing 1997; Queitsch 
et al. 2002; Zabinsky et al. 2019a). In the case of mutation, specifically, HSP90 has been 
posited to act as a “capacitor of evolution” because it can mask mutations that cause pro-
tein misfolding or destabilization, thereby allowing cryptic variation to accumulate in 
populations (Rutherford and Lindquist 1998; Queitsch et  al. 2002; Jarosz and Lindquist 
2010). Conversely, when the cellular pool of HSP90 becomes depleted, this variation can 
be ‘released’, facilitating rapid evolution (Hummel et al. 2017; Jarosz et al. 2010; Mason 
et al. 2018; Queitsch et al. 2002; Rohner et al. 2013; Zabinsky et al. 2019a; Zhang et al. 
2012). Evidence in support of this role for HSP90 includes higher mutation accumula-
tion in HSP90 client proteins compared to non-client homologs (Lachowiec et  al. 2015; 
Zabinsky et  al. 2019b) and elevated HSP90 expression in hypermutator lines (Zabinsky 
et  al. 2019a). Although fewer studies have looked at the capacity of HSP60 to play this 
role, there is evidence that upregulation of the bacterial homolog to HSP60, GroEL, can 
buffer mutations in a similar capacity to HSP90 (Sabater-Muñoz et al. 2015).

Although most studies of HSP responses have examined responses to stressors individ-
ually, as individuals increasingly contend with combinations of stressors, understanding 
their interactions will become more important (Côté et al. 2016; Jackson et al. 2021). In 
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fact, the effects of multiple stressors often depart from a simple additive model—for exam-
ple, in Arabidopsis, 61% of genes responsive to a dual stress did not respond to either of 
the two stresses alone (Rasmussen et al. 2013) and there are syngeristic effects of stress on 
life-history traits in Daphnia in cases where multiple stressors are applied (Cuenca‐Cam-
bronero et  al. 2021). Furthermore, heat shock and caloric restriction have been found to 
have a synergistic effect on HSP expression in C. elegans (Raynes et al. 2012), and heat 
shock and treatment with a variety of pharmaceutical agents have been found to syner-
gistically increase the levels of HSP expression in in a large variety of insects, aquatic 
organisms, and in cell culture (Mahmood et al. 2014; Török et al., 2003; Westerheide et al. 
2004). Here, we quantify HSP90 and HSP60 expression changes in response to heat shock 
and mutation using 5 genotypes of Daphnia magna from across a latitudinal gradient. We 
predicted both mutation and heat shock will be associated with an increase in HSP expres-
sion, but did not anticipate the degree to which stressors might have synergistic effects or 
how different the influence of stress would be on each of the loci. We did not predict an 
effect of genotype, but could imagine genotypes collected from along a latitudinal gradient 
would have distinctive expression profiles. Daphnia (Cladocera) have served as an ecologi-
cal, evolutionary, and ecotoxicological model for well over a century (Schaack 2008; Shaw 
et al. 2008; Yampolsky et al. 2014), in part due to their cosmopolitan distribution, however  
genomic resources are now available as well (Colbourne et al. 2011; Lee et al. 2019; Orsini 
et al. 2016). Previously, the Daphnia system has been used to demonstrate differences in 
gene expression, protein production, and microevolutionary change at HSP loci in the lab 
in response to environmental change (Becker et al. 2018; Mikulski et al. 2009, 2011; Pau-
wels et al. 2007).

Materials and methods

Experimental design and study system

Our experimental design allowed us to assess the impact of heat stress and mutation accu-
mulation on gene expression for two members of the HSP gene family (HSP60 and HSP90) 
in multiple genotypes originating from multiple locations in the aquatic microcrustacean, 
Daphnia magna (Order: Cladocera), which use a facultative parthenogenetic reproductive 
strategy (Fig. 1).

The individual animals used in this study were derived from genotypes originally col-
lected in Finland, Germany, and Israel (provided by D. Ebert in 2014). These three loca-
tions form a latitudinal gradient and experience distinctive environmental regimes (includ-
ing temperatures, periods of dry down, and census population sizes; Lange et  al. 2015; 
see Supplemental Table S1a). We assayed one genotype from Finland (FC), one genotype 
from Germany (GA), and three different genotypes from a single population in Israel (IA, 
IB, and IC; Fig. 1). For the genotype from Germany (GC) and one of the genotypes from 
Israel (IA), both descendants of the originally collected genotypes (referred to as ‘control 
lines’ hereon) and descendants of five mutation accumulation (MA) lines were assayed 
(average number of generations of MA = 24; Table S1b). In brief, mutation accumulation 
experiments date back to at least the 1950s (e.g., Paxman 1959) and, generally, involve 
initiating lines and propagating each line separately via single progeny descent. The non-
competitive environment and random selection of the individuals used to propagate the line 
each generation allows any mutations that occur to be passed down (‘accumulated’), and 
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the descendent individuals can be compared against descendants of parallel lineages where 
mutations are not accumulated because selection was not minimized by removing compe-
tition for resources. The complete details for the MA experiment performed to generate 
these lines are described in Ho et al. (2019).

All control and MA lines were arranged haphazardly to randomize their position in 
the rack and reared in a common laboratory environment (at 18 °C) prior to this experi-
ment, and the individuals used in the assay were from fourth generation descendants 
to minimize any maternal effects. Although we set up 4 biological replicates for each 
lineage/condition combination for the heat shock exposure (described below), in some 
cases individuals did not survive until the end of the experimental period. In most cases, 
enough individuals survived such that we were able to perform RNA extractions and 
downstream molecular analyses on 2–3 biological replicates for each lineage/condition 
assayed (n = 168 total) which then were assayed using quantitative PCR (see below) 
using three technical replicates (see Table S1c for sample lists). All individuals in the 
experiment were reared in pairs in 40  mL of Aechener Daphnien Medium (ADaM; 
Klüttgen et al. 1994) in 50 mL plastic conical tubes in environmental chambers during a 
15 day period in June/July 2019 with 16:8 light:dark cycle at constant temperature and 
humidity.

Heat shock exposure

After 15 days of growth and regular feeding, individual animals were transferred to 1.7 mL 
microcentrifuge tubes in 500 µL of ADaM to perform an acute heat shock. From each pair 
of individuals, one was placed in a 30 °C Corning LSE Digital Dry Bath inside of an 18 °C 
Percival incubator (heat shock), and the other half were placed in a Corning LSE Digital 
Dry Bath that was turned off and equilibrated to ambient temperature inside of the same 
18 °C Percival incubator (no heat shock control). 30 °C has been used in the past as an 
acute heat shock condition to measure transcriptomic response to stress in Daphnia (Becker 

Fig. 1  Experimental design showing all 15 genotypes assayed (top) in triplicate to quantify HSP60 and 
HSP90 expression levels to answer five questions (bottom). Genotypes were from Finland (n = 1), Ger-
many (n = 1), and Israel (n = 3, A–C; solid border). In addition, some genotypes assayed were from muta-
tion accumulation lines (n = 10; dashed borders) derived from genotypes collected in Germany and Israel. 
Assays were performed on individuals raised in a common laboratory environment and exposed to one of 
two environmental conditions (no heat shock [gray] or heat shock [yellow])
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et al. 2018). Individuals were heat shocked for 2 h. After 2 h, the ADaM was removed and 
replaced with 300 µL 1X DNA/RNA Shield from the Zymo Research Quick-RNA Mini-
prep Kit. Samples were frozen immediately in liquid nitrogen and stored at − 20 °C.

RNA extraction and reverse transcription

RNA was extracted from each sample independently using the Zymo Research Quick-RNA 
Miniprep kit according to the manufacturer’s protocol. Briefly, one D. magna individual 
in 1X DNA/RNA Shield was mixed with 300 µL RNA Lysis Buffer and ground using a 
microcentrifuge pestle. All centrifugations were done at 10,000g for 30  s unless speci-
fied with a Labnet Spectrafuge 24D. After centrifugation through a DNA-specific filter for 
1 min, the flow-through was mixed with 600 µL ethanol, transferred to an RNA-specific 
filter, and centrifuged. The bound RNA was then washed with 400 µL of RNA Wash Buffer 
and treated with a solution of 75 µL DNA Digestion Buffer and 5 µL DNase I for 15 min 
in order to destroy any remaining DNA. The digestion was centrifuged, and the remaining 
RNA was washed once with 400 µL RNA Prep Buffer and once with 700 µL RNA Wash 
Buffer. The final wash was done with 400 µL RNA Wash Buffer, and it was centrifuged 
for 2 min in order to remove any latent buffer. RNA was then eluted into a nuclease-free 
microcentrifuge tube with 50 µL DNase/RNase-free water and stored at − 20 °C. Concen-
tration of RNA was measured using the Invitrogen Qubit RNA BR Assay with a Qubit 
3.0 (Life Technologies). For each sample, 100 ng of total RNA per individual was reverse 
transcribed with random primers in a 20 µL reaction using the Promega GoTaq 2-Step RT-
qPCR System according to the manufacturer’s protocol. cDNA was then stored at − 20 °C.

Quantitative PCR

An RNA sequence for HSP60 was obtained from Steinberg et  al. (2010) and the 
sequence for HSP90 from Kotov et al. (2006). Sequences were aligned to whole genome 
sequences of control lines from each genotype in this study using blastn (see Supple-
mental Data File A for alignments). Candidate control genes for qPCR (succinate dehy-
drogenase (SDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ubiquitin 
conjugating protein (UBC)) were selected from Heckmann et al. (2006). Primers were 
designed using Primer3 to generate amplicons between 70 and 200  bp (Supplemental 
Table S0). After qPCR, the stability of each control gene was checked using RefFinder 
(Xie et  al. 2012). Though UBC expression was previously observed to be somewhat 
responsive to heat in different D. magna populations (Jansen et al. 2017), we found it 
to be the most stable, so it was used as the reference gene for normalizing HSP60 and 
HSP90 expression. Primer efficiencies were assessed by serial dilution. Both target 
genes and UBC were found to have efficiencies of 100% (Supplemental Figure 1). Any 
primer pairs with estimated efficiencies slightly over 100% were assumed to have true 
efficiencies of 100%. Primer functionality and specificity were verified through end-
point PCR using Qiagen Taq PCR Master Mix. Products were analyzed by gel electro-
phoresis. Amplicon lengths are as follows: HSP90 is 138 bp, HSP60 is 74 bp, and UBC 
is 90 bp.

We performed qPCR using the Promega GoTaq 2-Step RT-qPCR System according to 
the manufacturer’s protocol. Each 10 µL reaction included 5 µL GoTaq qPCR Master Mix, 
2 µL each of 1 µM forward and reverse primers, and 1 µL of cDNA. Cycling conditions 
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(CFX Connect, Bio-Rad) were 2 min at 95 °C for polymerase activation followed by 40 
cycles of 15 s of denaturation at 95 °C with 1 min at 55 °C of annealing and extension. 
Lastly, a melt curve from 55 to 95 °C was added at the end to verify no off-target amplifi-
cation. Samples and genes were organized through the sample maximization method such 
that each plate only amplified one gene, but each plate had all samples (2–3 biological rep-
licates per line and treatment). Three technical replicate reactions were performed on sepa-
rate plates. Because each sample was represented in every plate, plates served as technical 
replicates (Derveaux et al. 2010).

Data analysis

In order to determine if any technical replicates were outliers, the mean of each sample 
x gene combination was calculated. Only replicates < 1 standard deviation from the mean 
(− 1 < Z-score < 1) were included in the analysis. The relative quantity (RQ) of experimen-
tal genes (HSP90, HSP60) originally present in the sample was calculated using the mean 
quantification cycle  (Cq) of the remaining replicates, as determined by the CFX software, 
and the efficiency of the primer pair (E). Experimental gene RQs were normalized by 
the RQ of the reference gene (UBC) as described by Rieu and Powers (2009) to estimate 
normalized relative quantities (NRQ). NRQ values were log transformed prior to statisti-
cal analysis to correct for heterogeneity of variance (Rieu and Powers 2009). Data used 
for analyses can be found in Tables S6 and Table S7 for HSP90 and HSP60, respectively. 
Transformed data (using a  log2(NRQ) transformation) are in Table S8 and Table S9, for 
HSP90 and HSP60, respectively. Raw data can be found in Table S10a, and data without 
outliers removed by Z-score can be found in Table S10b.

We tested our log-transformed dataset for normality and homogeneity of vari-
ances. Using the Levene’s test, the data for HSP90  (F13,70 = 1.56, p = 0.117) and HSP60 
 (F13,70 = 1.1, p = 0.38) suggest that there is homogeneity of variances. Through a Shapiro-
Wilks test on the residuals of a multiple linear regression model including all data for 
both genes independently, HSP60 did not depart significantly from normality (W = 0.974, 
p = 0.087) while HSP90 expression levels were found to have high non-normality 
(W = 0.811, p < 0.0001). As the data were already  log2 transformed, there was no further 
transformation that improved the normality of the dataset. However, because there is no 
non-parametric equivalent of a multi-way ANOVA, and ANOVA is robust to departures 
from normality (Knief and Forstmeier, 2020) such as those in this dataset, differences in 
means were tested using ANOVAs.

All ANOVAs were performed in R using the ‘aov’ function with its default formula 
parameters (R Core Team 2017); see Supplemental File S1 for all R code). The full 5-Way 
ANOVA model tested the effects of gene (HSP60, HSP90), heat shock, mutation accumu-
lation, location of origin, and genotype, and all interactions, on expression level of both 
HSP60 and HSP90 (Model A in R code and Table  S2). To test for mutation accumula-
tion effects specific to HSP90 and HSP60, a model was made for each gene with all sam-
ples including both mutation accumulation lines and control lines for all genotypes using 
a 4-Way ANOVA (Models B and C, respectively in R code and Tables S3 and S4). To 
test for location-of-origin effects, in addition to Model A, two additional models (Model D 
and E) were made that included only control lines using a 2-Way ANOVA (Tables S3 and 
S4). Lastly, two 2-Way ANOVA models were made using only Israel control lines for each 
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gene to test for a genotype effect within a single location (Models F and G in R code and 
Table S5).

Results

Our assay of gene expression levels for HSP60 and HSP90 allowed us to assess the effects 
heat stress (30  °C vs. 18  °C) and mutation loads across genotypes of D. magna. Over-
all, HSP90 was expressed approximately tenfold higher than HSP60 (F = 163.7, df = 1, 
p << 0.001; Tables 1 and 2; Table S2). Generally, heat shock increases the mean expres-
sion levels of both genes ~ 5.9× (F = 101.2, df = 1, p < 0.001; Table 1), although the spe-
cific fold-change depends on the gene and location-of-origin (Table 2 and Fig. 2). We also 
observed higher HSP expression levels in lineages with higher mutation loads (MA lines 
relative to control lines; F = 15.7, df = 1, p < 0.0001; Table 1 and Fig. 2), although the size 
of the increase was not as large as with heat shock (on average, 3.8×; Table 2) and was only 
significant for HSP60 (F = 42.9, df = 1, p < 0.0001; Table 1 and Tables S3 and S4).  

In lineages where both heat stress occurs and high mutation loads have accumulated, 
the change in HSP expression observed is higher than a purely additive model would pre-
dict (a ~ 23× increase compared to a ~ 9.8× null expectation, but there is no significant 
interaction effect likely due to the (expected) increase in variance introduced by heat and 
mutation accumulation, as well [Fig. 2 and Table 2; Table S2]). Even though genotypes 
were originally sampled from a latitudinal gradient from Finland to Israel, there is little 
evidence of intraspecific variation in HSP expression overall (no location-of-origin main 
effect [F = 1.26, df = 2, p = 0.29]; Table 1), although there was an effect of genotype for one 
locus (meaning genotypes IA, IB, and IC from Israel exhibited high variation for HSP 90 
[F = 6.4, df = 2, p = 0.01], but not HSP60 [F = 3.1 df = 2, p = 0.08; Table S5]; Fig. 3).

Discussion

The HSP genes are members of a large and diverse family and play a variety of impor-
tant roles in responding to extrinsic and intrinsic sources of cellular stress and molecular 
destabilization, including heat and mutation (Kim et al. 2014; Liu et al. 2015; Neuhaus-
Steinmetz and Rensing 1997). While HSP90 has long been referred to as a mutational 
“capacitor” because of its major role in protein folding and the large number of pro-
teins it interacts with (Schopf et  al. 2017), the role of HSP60 in the stress response 
is less well understood given its localization primarily to the mitochondria (Magnoni 
et al. 2014). Given recent studies reporting the highest direct estimates of spontaneous 
mutation rates in D. magna (based on mutation accumulation experiments with animals; 
Ho et al. 2019, 2020, 2021; Ho and Schaack 2021), in addition to their long-standing 
importance as an ecological and environmental model system, understanding of the 
stress response of Daphnia and their ability to buffer the phenotypic effects of mutation 
is of particular interest (Davenport et al. 2021; Latta et al. 2015).

Here, we compare the expression levels of HSP90 and HSP60 with and without heat 
stress in MA lines versus controls lines where mutations did not accumulate across indi-
viduals from five different genotypes. Overall, we find that HSP90 is expressed ~ 10× more 
than HSP60 in D. magna (Table 1 and Fig. 2). This corroborates previous work that shows 
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HSP90 constitutes approximately 1–2% of the total protein content of eukaryotic cells 
(Borkovich et  al. 1989). The importance of this protein is underscored by its abundance 
and its interaction with other proteins (e.g., in yeast, HSP90 interacts with up to 20% of 
other proteins produced in the cell; Taipale et al. 2010). As predicted, we found both genes 
have a robust heat shock response (Table 1 and Fig. 2), likely because elevated HSP expres-
sion, generally, can protect against exposure of hydrophobic segments, aggregation, and 
misfolding of destabilized proteins (Kimura et al. 1993; Vabulas et al. 2010; Chen et al. 
2021). In D. melanogaster, HSP60 is upregulated in response to heat (Martin et al., 1992) 
and oxidative stress (Singh et al. 2009), but a rapid response may be even more important 

Table 1  Analysis of variance (ANOVA) for gene expression based on transcript abundance for HSP60 and 
HSP90 assayed in Daphnia magna originally collected from three locations (Finland, Germany, and Israel), 
subject to mutation accumulation, and raised with and without heat shock

Factors with statistical significance based on an alpha value of 0.05 are in bold
For complete ANOVA tables of all data partitions, see Supplemental Tables S2–S5; for the raw data used in 
this analysis, see Supplemental Tables S6, S7, and S10

Data partitions Factor Df Sum of squares F value Pr(> F)

All data
 Main effects and 

2/3-way interac-
tions

Location 2 6.63 1.2611 0.2865
Gene 1 430.19 163.7196 < 0.0001
HeatShock 1 265.8 101.1594 < 0.0001
MutationAccumulation 1 41.23 15.6915 0.0001
Location:Gene 2 10.44 1.9864 0.1410
Location:HeatShock 2 3.68 0.701 0.4978
Gene:HeatShock 1 7.62 2.8984 0.0909
Location:MutationAccumulation 1 1.73 0.659 0.4183
Gene:MutationAccumulation 1 15.4 5.861 0.0168
HeatShock:MutationAccumulation 1 1.37 0.5202 0.4720
Location:Genotype 2 7.37 1.4027 0.2494
Location:Gene:HeatShock 2 19.91 3.7878 0.0250

HSP 60 only
 Main effects Location 2 0.819 0.3281 0.7214

HeatShock 1 92.799 74.3486 < 0.0001
MutationAccumulation 1 53.519 42.8784 < 0.0001

HSP 90 only
 Main effects Location 2 13.637 1.7017 0.1898

HeatShock 1 183.224 45.726 < 0.0001
MutationAccumulation 1 3.118 0.7782 0.3807

HSP 60 only, Israel only
 Genotype effects Genotype 2 4.0676 3.0971 0.0823

HeatShock 1 16.6449 25.35 0.0003
Genotype:HeatShock 2 3.9055 2.97 0.0893

HSP 90 only, Israel only
 Genotype effects Genotype 2 5.729 6.3804 0.0130

HeatShock 1 34.261 76.3196 < 0.0001
Genotype:HeatShock 2 1.048 1.1673 0.3442
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in aquatic animals living in shallow water given the major temperature fluctuations they 
experience (Feder and Hofmann 1999).

We also observed an increase in HSP expression in mutation accumulation lines rela-
tive to controls, especially in HSP60 (Table 1). These elevated levels of HSP60 may be 
related to the higher mutation rates observed in the mtDNA genome relative to the nuclear 

Table 2  Estimated mean expression levels for HSP60 and HSP90 assayed in Daphnia magna originally col-
lected from three locations (Finland, Germany, and Israel), subject to mutation accumulation, and raised 
with and without heat shock

For Germany and Finland, one genotype each was sampled (GC and FC, respectively). For Israel, three 
individual genotypes were assayed (IA, IB, and IC). For complete ANOVA tables of all data partitions, see 
Supplemental Tables S2–S5; for the data used in this analysis, see Supplemental Tables S6, S7, and S10.

Gene Location Genotype Mutation accu-
mulation

Heat shock Mean expression 
(NRQ) untrans-
formed

HSP90 Finland FC No − 0.350
FC No + 2.282

Germany GC No − 0.181
GC No + 2.754
GC Yes − 0.674
GC Yes + 4.267

Israel IA, IB, IC No − 0.314
IA, IB, IC No + 1.791
IA Yes − 0.636
IA Yes + 1.818
IA No − 0.124
IA No + 1.287
IB No − 0.392
IB No + 1.917
IC No − 0.425
IC No + 2.169

HSP60 Finland FC No − 0.071
FC No + 0.083

Germany GC No − 0.015
GC No + 0.080
GC Yes − 0.059
GC Yes + 0.245

Israel IA, IB, IC No − 0.021
IA, IB, IC No + 0.090
IA Yes − 0.090
IA Yes + 0.384
IA No − 0.010
IA No + 0.135
IB No − 0.019
IB No + 0.042
IC No − 0.035
IC No + 0.094
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genome, prevalent in animals (reviewed in Schaack et al. 2020) and observed in D. pulex 
(Xu et al. 2012) and D. magna (Ho et al. 2020). Mutations can lead to toxic protein mis-
folding and aggregation (Bross et al. 1999). Molecular chaperones, including HSPs, recog-
nize misfolded proteins and facilitate their removal and, therefore, proteome maintenance 
(proteostasis; Guo et al. 2019; Samant et al. 2018). HSP60 specifically is involved in mito-
chondrial proteostasis and is upregulated in response to several cancers (Guo et al. 2019), 
suggesting that it responds transcriptionally to mutation. The greater upregulation of 
HSP60 in response to mutation accumulation underscores the importance of further exam-
ining the potential of other HSPs (in addition to HSP90) as potential mutational capacitors 
(Rutherford and Lindquist 1998; Bernatowicz et al. 2021).

Notably, the application of both stressors simultaneously (heat shock and mutation 
loads) led to an increase in gene expression levels at both loci beyond the levels predicted 
by purely additive effects, suggesting the synergism between multiple stressors as a result 
of global climate change and habitat loss could have compounding effects. While examin-
ing gene expression changes when stressors are applied potentially represents and early 
and immediate response, there is reason to think that HSPs in particular represent a rela-
tively complex protein/phenotype given that they play so many roles in the cell. Finally, 
because the HSP expression variance was greater in cases where two stressors were applied 

Fig. 2  Gene expression for HSP90 (top) and HSP60 (bottom) in genotypes collected originally from three 
locations (Finland, Germany, and Israel) from individuals from mutation accumulation (unshaded) versus 
control lines (shaded) that were (yellow) and were not heat shocked (gray). Horizontal lines represent medi-
ans, boxes indicate quartiles and vertical lines illustrate the maximum value of 1.5× IQR + the 75th percen-
tile and the minimum value of the 25th percentile—1.5× IQR of the variance. Note: One outlier in Germany 
MA (HSP90 mRNA Expression = 12.64) was excluded from the graph of HSP90 expression to better visu-
alize differences in medians; however, it is included in the ANOVA results in Table 1
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(Fig. 2), it is possible that evolutionary forces shaping the traits affected by HSP expres-
sion will have a greater range of trait values on which to act, should these stressors become 
more prevalent in natural environments.

Initially, we were surprised by the lack of difference in baseline HSP expression 
among genotypes originating from different locations (Table 1), given the abiotic dif-
ferences among those locales (e.g., mean annual temperatures are ~ 2, 10, and 21  °C 
in Finland, Germany, and Israel, respectively; Rohde and Hausfather 2020). It could 
be that evolution of the HSR depends more on maximum temperatures or temperature 
fluctuations, however, which exhibit a much smaller range of only ~ 10 and 7 degrees, 
respectively, among these populations (Table S1a; Cambronero et al. 2018; Gehring and 
Wehner 1995; Hofmann and Somero 1996; Sgrò et al. 2010; Tomanek 2010). The lack 
of intraspecific variation in HSP expression observed is consistent with protein level 
studies (Bernatowicz et al. 2021), and may be explained by the high degree of sequence 
identity at these two loci (> 99% of sites are identical for coding regions in HSP60 
[418/422] and HSP90 [735/741]; Supplemental Data Files).

In conclusion, our results provide support for HSPs playing a role in both respond-
ing to higher temperatures and dealing with intrinsic sources of intracellular stress, like 
mutation. These dual roles may be important, especially for Daphnia, in a changing 
climate where higher mean temperatures, larger temperature fluctuations, and habitat 
loss might increase heat exposure and/or lead to elevated mutation rates. Indeed, while 
a changing climate can alter exposure to UV or other atmospheric mutagens, directly, 

Fig. 3  Gene expression levels for HSP90 (top) and HSP60 (bottom) with exposure to heat shock (yellow) 
and without heat shock (gray) for three genotypes from Israel (data for ANOVAs appears in Table S5). Hor-
izontal lines represent medians, boxes indicate quartiles and vertical lines illustrate the maximum value of 
1.5× IQR + the 75th percentile and the minimum value of the 25th percentile—1.5× IQR of the variance
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it can also reduce the availability of freshwater aquatic habitats caused by drought or 
sea level rise, thereby reducing effective population size, and thus reducing the relative 
role of selection in shaping the evolution of the mutation rate, as predicted by the Drift 
Barrier Hypothesis (reviewed in Lynch et al. 2016). More directly, heat stress itself has 
been shown to result in higher mutation rates, which might provide an additional role 
for HSPs in the buffering of mutations (Chu et al. 2018). While spontaneous mutations 
are known to be, on average, deleterious, beneficial mutations do occur and can provide 
an evolutionary escape hatch or opportunity for rapid adaptation (Swings et  al. 2017; 
Rutter et al. 2018; Weng et al. 2021). Ultimately, genetic variation generated by muta-
tions, if it can be buffered against in the short term, may facilitate the long-term success 
of organisms as climates change.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10682- 022- 10209-1.
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